Tag Archives: phyto-mining

Nickel-eating plant in the Philippines

For anyone interested in phytoremediation and/or phytomining, this news from the Philippines is quite exciting (from a May 9, 2014 news release on EurekAlert, Note: A link has been removed, (also on ScienceDaily),

Scientists from the University of the Philippines, Los Baños (UPLB) have discovered a new plant species with an unusual lifestyle — it eats nickel for a living — accumulating up to 18,000 ppm of the metal in its leaves without itself being poisoned, says Professor Edwino Fernando, lead author of the report. Such an amount is a hundred to a thousand times higher than in most other plants. The study was published in the open access journal PhytoKeys.

The new species is called Rinorea niccolifera, reflecting its ability to absorb nickel in very high amounts. Nickel hyperaccumulation is such a rare phenomenon with only about 0.5–1% of plant species native to nickel-rich soils having been recorded to exhibit the ability. Throughout the world, only about 450 species are known with this unusual trait, which is still a small proportion of the estimated 300,000 species of vascular plants.

A May 9, 2014 Penfold Publishers news release, which originated the items elsewhere, provides more details and an image of the nickel-eating plant,

The new species, according to Dr Marilyn Quimado, one of the lead scientists of the research team, was discovered on the western part of Luzon Island in the Philippines, an area known for soils rich in heavy metals.

“Hyperacccumulator plants have great potentials for the development of green technologies, for example, ‘phytoremediation’ and ‘phytomining’”, explains Dr Augustine Doronila of the School of Chemistry, University of Melbourne, who is also co-author of the report.

Phytoremediation refers to the use of hyperacccumulator plants to remove heavy metals in contaminated soils. Phytomining, on the other hand, is the use of hyperacccumulator plants to grow and harvest in order to recover commercially valuable metals in plant shoots from metal-rich sites. [emphasis mine]

In a previous piece about phytomining and in contrast to this news release, I suggested that phytoremediation could also function as phytomining (an idea I found elsewhere), my March 5, 2013 posting. There are also a November 22, 2012 posting and a Sept. 26, 2012 posting on the topic of phyto-mining (anyone keen to read everything here on this topic, may want to search the term both with and without hyphens).

Here is the nickel-eating plant,

Caption: This photo shows the newly described metal-eating plant, Rinorea niccolifera. Credit: Dr. Edwino S. Fernando Usage Restrictions: CC-BY 4.0

Caption: This photo shows the newly described metal-eating plant, Rinorea niccolifera.
Credit: Dr. Edwino S. Fernando
Usage Restrictions: CC-BY 4.0

Here’s a link to and a citation for the paper,

Rinorea niccolifera (Violaceae), a new, nickel-hyperaccumulating species from Luzon Island, Philippines by Edwino Fernando, Marilyn Quimado, and Augustine Doronila. PhytoKeys 37: 1–13. doi: 10.3897/phytokeys.37.7136

This paper is open access.

In a burst of curiosity I checked out the University of Philippines website and found some research bearing similarity to today’s (May 9, 2014) piece although in this case the metal being discussed is gold and the researchers are investigating the possibility of using bacteria to produce gold nanoparticles. From an April 16, 2014 article written by Miguel Victor T. Durian for the university’s Horizon magazine,

A pioneering nanotechnology study conducted by scientists at the UPLB National Institute of Molecular Biology and Biotechnology (BIOTECH) is exploring the potentials of plantgrowth- promoting bacteria (PGPB) in the biosynthesis of nanogold.

Dr. Lilia M. Fernando, Dr. Florinia E. Merca, and Dr. Erlinda S. Paterno are looking at how nanogold could be produced in large quantities using PGPB as this could bring down medical diagnostic and treatment costs especially against a dreaded disease – cancer.

“Our study primarily aimed to find a less expensive source of gold through the biosynthesis of the element by microorganisms.” Dr. Fernando explained. “Gold costs around 200 to 300 US dollars (or about Php9,000 to Php14,000), …,” Ms. Fernando added.

Furthermore, PGPB is abundantly available in the soils of the Philippines. In fact, the researchers carried out their collection of PGPB in Tarlac and Bohol. Moreover, cultivation of PGPB does not require any special incubation procedures in order to maintain its nano-size because it can survive at room temperature. This makes the cultivation of PGPB easier and less expensive compared to other microorganisms.

I look forward to hearing more about these projects as they develop.

Phytoremediation, clearing pollutants from industrial lands, could also be called phyto-mining

The University of Edinburgh (along with the Universities of Warwick and Birmingham, Newcastle University and Cranfield University) according to its Mar. 4, 2013 news release on EurekAlert is involved in a phytoremediation project,

Common garden plants are to be used to clean polluted land, with the extracted poisons being used to produce car parts and aid medical research.

Scientists will use plants such as alyssum, pteridaceae and a type of mustard called sinapi to soak up metals from land previously occupied by factories, mines and landfill sites.

Dangerous levels of metals such as arsenic and platinum, which can lurk in the ground and can cause harm to people and animals, will be extracted using a natural process known as phytoremediation.

A Mar. 4, 2013 news item on the BBC News Edinburgh, Fife and East Scotland site offers more details about the project and the technology,

A team of researchers from the Universities of Edinburgh, Warwick, Birmingham, Newcastle and Cranfield has developed a way of extracting the chemicals through a process called phytoremediation, and are testing its effectiveness.

Once the plants have drawn contaminated material out of the soil, they will be harvested and processed in a bio-refinery.

A specially designed bacteria will be added to the waste to transform the toxic metal ions into metallic nanoparticles.

The team said these tiny particles could then be used to develop cancer treatments, and could also be used to make catalytic converters for cars.

Dr Louise Horsfall, of Edinburgh’s University’s school of biological sciences, said: “Land is a finite resource. As the world’s population grows along with the associated demand for food and shelter, we believe that it is worth decontaminating land to unlock vast areas for better food security and housing.

“I hope to use synthetic biology to enable bacteria to produce high value nanoparticles and thereby help make land decontamination financially viable.”

The research team said the land where phytoremediation was used would also be cleared of chemicals, meaning it could be reused for new building projects.

In my Sept. 28, 2012 posting I featured an international collaboration between universities in the UK, US, Canada, and New Zealand in a ‘phyto-mining’ project bearing some resemblance to this newly announced project. In that project, announced in Fall 2012, scientists were studying how they might remove platinum for reuse from plants near the tailings of mines.

I do have one other posting about phytoremediation. I featured a previously published piece by Joe Martin in a two-part series on the topic plant (phyto) and nano soil remediation. The March 30, 2012 posting is part one, which focuses on the role of plants in soil remediation.

Phyto-mining and environmental remediation flower in the United Kingdom

Researchers on a £3 million research programme called “Cleaning Land for Wealth” (CL4W) are confident they’ll be able to use flowers and plants to clean soil of poisonous materials (environmental remediation) and to recover platinum (phyto-mining). From the Nov. 21, 2012 news item on Nanowerk,

A consortium of researchers led by WMG (Warwick Manufacturing Group) at the University of Warwick are to embark on a £3 million research programme called “Cleaning Land for Wealth” (CL4W), that will use a common class of flower to restore poisoned soils while at the same time producing perfectly sized and shaped nano sized platinum and arsenic nanoparticles for use in catalytic convertors, cancer treatments and a range of other applications.

The Nov. 20, 2012 University of Warwick news release, which originated the news item, describes both how CL4W came together and how it produced an unintended project benefit,

A “Sandpit” exercise organised by the Engineering and Physical Sciences Research Council (EPSRC) allowed researchers from WMG (Warwick Manufacturing group) at the University of Warwick, Newcastle University, The University of Birmingham, Cranfield University and the University of Edinburgh to come together and share technologies and skills to come up with an innovative multidisciplinary research project that could help solve major technological and environmental challenges.

The researchers pooled their knowledge of how to use plants and bacteria to soak up particular elements and chemicals and how to subsequently harvest, process and collect that material. They have devised an approach to demonstrate the feasibility in which they are confident that they can use common classes of flower and plants (such as Alyssum), to remove poisonous chemicals such as arsenic and platinum from polluted land and water courses potentially allowing that land to be reclaimed and reused.

That in itself would be a significant achievement, but as the sandpit progressed the researchers found that jointly they had the knowledge to achieve much more than just cleaning up the land.

As lead researcher on the project Professor Kerry Kirwan from WMG at the University of Warwick explained:

“The processes we are developing will not only remove poisons such as arsenic and platinum from contaminated land and water courses, we are also confident that we can develop suitable biology and biorefining processes (or biofactories as we are calling them) that can tailor the shapes and sizes of the metallic nanoparticles they will make. This would give manufacturers of catalytic convertors, developers of cancer treatments and other applicable technologies exactly the right shape, size and functionality they need without subsequent refinement. We are also expecting to recover other high value materials such as fine chemicals, pharmaceuticals, anti-oxidants etc. from the crops during the same biorefining process.”

I last mentioned phyto-mining in my Sept. 26, 2012 post with regard to an international project being led by researchers at the University of York (UK).  The biorefining processes (biofactories) mentioned by Kirwan takes the idea of recovering platinum, etc. one step beyond phyto-mining recovery.

Here’s a picture of the flower (Alyssum) mentioned in the news release,

Alyssum montanum photographed by myself in 1988, Unterfranken, Germany [http://en.wikipedia.org/wiki/Alyssum]

From the Wikipedia essay (Note: I have removed links],

Alyssum is a genus of about 100–170 species of flowering plants in the family Brassicaceae, native to Europe, Asia, and northern Africa, with the highest species diversity in the Mediterranean region. The genus comprises annual and perennial herbaceous plants or (rarely) small shrubs, growing to 10–100 cm tall, with oblong-oval leaves and yellow or white flowers (pink to purple in a few species).

Phyto-mining; using plants to extract minerals

Plants do it anyway, so, why not harness their ability to absorb nutrients and transform them into various materials for the mining industry? In the scientists at the University of York (UK) mentioned in a Sept. 20, 2012 news item on Nanowerk are doing precisely that,

Scientists at the University of York are to lead an international team that will explore the use of plants to recover precious metals from mine tailings around the world.

Researchers in the University’s Green Chemistry Centre of Excellence and the Centre for Novel Agricultural Products (CNAP) aim to develop ways to extract platinum group metals (PGM) discarded during mine processing which might then be used in catalysis. The research will investigate “phyto-mining,” which involves growing plants on mine waste materials to sponge up PGM into their cellular structure.

Initial studies show that plant cells used to phyto-mine PGM can be turned into materials for a variety of industrial applications – the one in most demand being catalytic converters for vehicle emissions control.

The Sept. 20, 2012 University of York news release (which originated the news item) notes,

The $1.4 million PHYTOCAT project is supported by the G8 Research Councils Initiative on Multilateral Research Funding. The team is led by the University of York in the UK with support from Yale University, the University of British Columbia and Massey University in New Zealand. [emphasis mine]

Professor James Clark, the Director of the Green Chemistry Centre of Excellence at York, says: “We are looking at ways of turning these residual metals into their catalytically active form using the plants to extract them from the mine waste. The plant is heated in a controlled way with the result that the metal is embedded in a nano-form in the carbonised plant.

“The trick is to control the decomposition of the plant in a way which keeps the metal in its nano-particulate or catalytically active form. Catalysis is being used more and more in industrial processes and particularly for emission control because of the demand for cleaners cars, so ‘phyto-mining’ could provide a sustainable supply of catalytically active metals.”

For PGM phyto-mining, the researchers will investigate plants known as hyperaccumulators which include about 400 species from more than 40 plant families. Plants such as willow, corn and mustard have evolved a resistance to specific metals and can accumulate relatively large amounts of these metals, which once absorbed into the plants’ cellular structure form nano-scale clusters than can then be used directly as a catalyst.

Professor Neil Bruce, of CNAP, added: “The ability of plants to extract PGMs from soil and redeposit the metal as nanoparticles in cells is remarkable. This project will allow us to investigate the mechanisms behind this process and provide a green method for extracting metals from mine tailings that are currently uneconomical to recover.”

(It makes sense that the University of British Columbia from my home province is participating, given the province’s heavy involvement in the mining industry.)

This proposed phyto-mining process has much in common with phytoremediation where plants are grown in polluted areas so they can absorb the pollutants from the soil as per my March 30, 2012 posting, which featured a guest writer, Joe Martin on the topic of phytoremediation.

I wonder what they will be doing to the plants for make them more suitable for the phyto-mining process.