Tag Archives: Plato

“The earth is mostly made of cubes,” said Plato in 5th Century BCE. Turns out, he was right!

Theories from mathematics, physics, and geology have been used to demonstrate that the earth’s basic shape is, roughly speaking, a cube. From a July 20, 2020 news item on ScienceDaily,

Plato, the Greek philosopher who lived in the 5th century B.C.E. [before the common era], believed that the universe was made of five types of matter: earth, air, fire, water, and cosmos. Each was described with a particular geometry, a platonic shape. For earth, that shape was the cube.

Science has steadily moved beyond Plato’s conjectures, looking instead to the atom as the building block of the universe. Yet Plato seems to have been onto something, researchers have found.

In a new paper in the Proceedings of the National Academy of Sciences [PNAS], a team from the University of Pennsylvania, Budapest University of Technology and Economics, and University of Debrecen [Hungary] uses math, geology, and physics to demonstrate that the average shape of rocks on Earth is a cube.

A July 17, 2020 University of Pennsylvania news release (also on EurekAlert but dated July 20, 2020), which originated the news item, goes on to describe the work as “mind-blowing,”

“Plato is widely recognized as the first person to develop the concept of an atom [Maybe not, scroll down to find the subhead “Leucippus and Democritus”], the idea that matter is composed of some indivisible component at the smallest scale,” says Douglas Jerolmack, a geophysicist in Penn’s School of Arts & Sciences’ Department of Earth and Environmental Science and the School of Engineering and Applied Science’s Department of Mechanical Engineering and Applied Mechanics. “But that understanding was only conceptual; nothing about our modern understanding of atoms derives from what Plato told us.

“The interesting thing here is that what we find with rock, or earth, is that there is more than a conceptual lineage back to Plato. It turns out that Plato’s conception about the element earth being made up of cubes is, literally, the statistical average model for real earth. And that is just mind-blowing.”

The group’s finding began with geometric models developed by mathematician Gábor Domokos of the Budapest University of Technology and Economics, whose work predicted that natural rocks would fragment into cubic shapes.

“This paper is the result of three years of serious thinking and work, but it comes back to one core idea,” says Domokos. “If you take a three-dimensional polyhedral shape, slice it randomly into two fragments and then slice these fragments again and again, you get a vast number of different polyhedral shapes. But in an average sense, the resulting shape of the fragments is a cube.”

Domokos pulled two Hungarian theoretical physicists into the loop: Ferenc Kun, an expert on fragmentation, and János Török, an expert on statistical and computational models. After discussing the potential of the discovery, Jerolmack says, the Hungarian researchers took their finding to Jerolmack to work together on the geophysical questions; in other words, “How does nature let this happen?”

“When we took this to Doug, he said, ‘This is either a mistake, or this is big,'” Domokos recalls. “We worked backward to understand the physics that results in these shapes.”

Fundamentally, the question they answered is what shapes are created when rocks break into pieces. Remarkably, they found that the core mathematical conjecture unites geological processes not only on Earth but around the solar system as well.

“Fragmentation is this ubiquitous process that is grinding down planetary materials,” Jerolmack says. “The solar system is littered with ice and rocks that are ceaselessly smashing apart. This work gives us a signature of that process that we’ve never seen before.”

Part of this understanding is that the components that break out of a formerly solid object must fit together without any gaps, like a dropped dish on the verge of breaking. As it turns out, the only one of the so-called platonic forms–polyhedra with sides of equal length–that fit together without gaps are cubes.

“One thing we’ve speculated in our group is that, quite possibly Plato looked at a rock outcrop and after processing or analyzing the image subconsciously in his mind, he conjectured that the average shape is something like a cube,” Jerolmack says.

“Plato was very sensitive to geometry,” Domokos adds. According to lore, the phrase “Let no one ignorant of geometry enter” was engraved at the door to Plato’s Academy. “His intuitions, backed by his broad thinking about science, may have led him to this idea about cubes,” says Domokos.

To test whether their mathematical models held true in nature, the team measured a wide variety of rocks, hundreds that they collected and thousands more from previously collected datasets. No matter whether the rocks had naturally weathered from a large outcropping or been dynamited out by humans, the team found a good fit to the cubic average.

However, special rock formations exist that appear to break the cubic “rule.” The Giant’s Causeway in Northern Ireland, with its soaring vertical columns, is one example, formed by the unusual process of cooling basalt. These formations, though rare, are still encompassed by the team’s mathematical conception of fragmentation; they are just explained by out-of-the-ordinary processes at work.

“The world is a messy place,” says Jerolmack. “Nine times out of 10, if a rock gets pulled apart or squeezed or sheared–and usually these forces are happening together–you end up with fragments which are, on average, cubic shapes. It’s only if you have a very special stress condition that you get something else. The earth just doesn’t do this often.”

The researchers also explored fragmentation in two dimensions, or on thin surfaces that function as two-dimensional shapes, with a depth that is significantly smaller than the width and length. There, the fracture patterns are different, though the central concept of splitting polygons and arriving at predictable average shapes still holds.

“It turns out in two dimensions you’re about equally likely to get either a rectangle or a hexagon in nature,” Jerolmack says. “They’re not true hexagons, but they’re the statistical equivalent in a geometric sense. You can think of it like paint cracking; a force is acting to pull the paint apart equally from different sides, creating a hexagonal shape when it cracks.”

In nature, examples of these two-dimensional fracture patterns can be found in ice sheets, drying mud, or even the earth’s crust, the depth of which is far outstripped by its lateral extent, allowing it to function as a de facto two-dimensional material. It was previously known that the earth’s crust fractured in this way, but the group’s observations support the idea that the fragmentation pattern results from plate tectonics.

Identifying these patterns in rock may help in predicting phenomenon such as rock fall hazards or the likelihood and location of fluid flows, such as oil or water, in rocks.

For the researchers, finding what appears to be a fundamental rule of nature emerging from millennia-old insights has been an intense but satisfying experience.

“There are a lot of sand grains, pebbles, and asteroids out there, and all of them evolve by chipping in a universal manner,” says Domokos, who is also co-inventor of the Gömböc, the first known convex shape with the minimal number–just two–of static balance points. Chipping by collisions gradually eliminates balance points, but shapes stop short of becoming a Gömböc; the latter appears as an unattainable end point of this natural process.

The current result shows that the starting point may be a similarly iconic geometric shape: the cube with its 26 balance points. “The fact that pure geometry provides these brackets for a ubiquitous natural process, gives me happiness,” he says.

“When you pick up a rock in nature, it’s not a perfect cube, but each one is a kind of statistical shadow of a cube,” adds Jerolmack. “It calls to mind Plato’s allegory of the cave. He posited an idealized form that was essential for understanding the universe, but all we see are distorted shadows of that perfect form.”

The human capacity for imagination, in this case linking ideas about geometry and mathematics from the 5th Century BCE to modern physics and geology and to the solar system, astounds and astonishes me. As for Jerolmack’s comment that Plato (428/427 or 424/423 – 348/347 BC) was the first to develop the concept of an atom, not everyone agrees.

Leucippus and Democritus

It may not ever be possible to determine who was the first to theorize/philosophize about atoms but there is relatively general agreement that Leucippus (5th cent.BCE) and his successor, Democritus (c. 460 – c. 370 BC) were among the first. Here’s more about Ancient Atomism and its origins from the Stanford Encyclopedia of Philosphy,

Leucippus (5th c. BCE) is the earliest figure whose commitment to atomism is well attested. He is usually credited with inventing atomism. According to a passing remark by the geographer Strabo, Posidonius (1st c. BCE Stoic philosopher) reported that ancient Greek atomism can be traced back to a figure known as Moschus or Mochus of Sidon, who lived at the time of the Trojan wars. This report was given credence in the seventeenth century: the Cambridge Platonist Henry More traced the origins of ancient atomism back, via Pythagoras and Moschus, to Moses. This theologically motivated view does not seem to claim much historical evidence, however.

Leucippus and Democritus are widely regarded as the first atomists [emphasis mine] in the Greek tradition. Little is known about Leucippus, while the ideas of his student Democritus—who is said to have taken over and systematized his teacher’s theory—are known from a large number of reports. These ancient atomists theorized that the two fundamental and oppositely characterized constituents of the natural world are indivisible bodies—atoms—and void. The latter is described simply as nothing, or the negation of body. Atoms are by their nature intrinsically unchangeable; they can only move about in the void and combine into different clusters. Since the atoms are separated by void, they cannot fuse, but must rather bounce off one another when they collide. Because all macroscopic objects are in fact combinations of atoms, everything in the macroscopic world is subject to change, as their constituent atoms shift or move away. Thus, while the atoms themselves persist through all time, everything in the world of our experience is transitory and subject to dissolution.

Although the Greek term atomos is most commonly associated with the philosophical system developed by Leucippus and Democritus, involving solid and impenetrable bodies, Plato’s [emphasis mine] Timaeus presents a different kind of physical theory based on indivisibles. The dialogue elaborates an account of the world wherein the four different basic kinds of matter—earth, air, fire, and water—are regular solids composed from plane figures: isoceles and scalene right-angled triangles. Because the same triangles can form into different regular solids, the theory thus explains how some of the elements can transform into one another, as was widely believed.

As you can see from the excerpt, they are guessing as to the source for atomism and thee are different kinds of atomism and Plato staked his own atomistic territory.

The paper

Here’s a link to and a citation for the paper followed by a statement of significance and the paper’s abstract,

Plato’s cube and the natural geometry of fragmentation by Gábor Domokos, Douglas J. Jerolmack, Ferenc Kun, and János Török. PNAS DOI: https://doi.org/10.1073/pnas.2001037117 First published July 17, 2020

This paper is behind a paywall.

Now for the Significance and the Abstract,

We live on and among the by-products of fragmentation, from nanoparticles to rock falls to glaciers to continents. Understanding and taming fragmentation is central to assessing natural hazards and extracting resources, and even for landing probes safely on other planetary bodies. In this study, we draw inspiration from an unlikely and ancient source: Plato, who proposed that the element Earth is made of cubes because they may be tightly packed together. We demonstrate that this idea is essentially correct: Appropriately averaged properties of most natural 3D fragments reproduce the topological cube. We use mechanical and geometric models to explain the ubiquity of Plato’s cube in fragmentation and to uniquely map distinct fragment patterns to their formative stress conditions.

Plato envisioned Earth’s building blocks as cubes, a shape rarely found in nature. The solar system is littered, however, with distorted polyhedra—shards of rock and ice produced by ubiquitous fragmentation. We apply the theory of convex mosaics to show that the average geometry of natural two-dimensional (2D) fragments, from mud cracks to Earth’s tectonic plates, has two attractors: “Platonic” quadrangles and “Voronoi” hexagons. In three dimensions (3D), the Platonic attractor is dominant: Remarkably, the average shape of natural rock fragments is cuboid. When viewed through the lens of convex mosaics, natural fragments are indeed geometric shadows of Plato’s forms. Simulations show that generic binary breakup drives all mosaics toward the Platonic attractor, explaining the ubiquity of cuboid averages. Deviations from binary fracture produce more exotic patterns that are genetically linked to the formative stress field. We compute the universal pattern generator establishing this link, for 2D and 3D fragmentation.

Fascinating, eh?

North Carolina universities go beyond organ-on-a-chip

The researchers in the North Carolina universities involved in this project have high hopes according to an Oct. 9, 2015 news item on Nanowerk,

A team of researchers from the University of North Carolina at Chapel Hill and NC State University has received a $5.3 million, five-year Transformative Research (R01) Award from the National Institutes of Health (NIH) to create fully functioning versions of the human gut that fit on a chip the size of a dime.

Such “organs-on-a-chip” have become vital for biomedical research, as researchers seek alternatives to animal models for drug discovery and testing. The new grant will fund a technology that represents a major step forward for the field, overcoming limitations that have mired other efforts.

The technology will use primary cells derived directly from human biopsies, which are known to provide more relevant results than the immortalized cell lines used in current approaches. In addition, the device will sculpt these cells into the sophisticated architecture of the gut, rather than the disorganized ball of cells that are created in other miniature organ systems.

“We are building a device that goes far beyond the organ-on-a-chip,” said Nancy L. Allbritton, MD, PhD, professor and chair of the UNC-NC State joint department of biomedical engineering and one of four principle investigators on the NIH grant. “We call it a ‘simulacrum,’ [emphasis mine] a term used in science fiction to describe a duplicate. The idea is to create something that is indistinguishable from your own gut.”

I’ve come across the term ‘simulacrum’ in relation to philosophy so it’s a bit of a surprise to find it in a news release about an organ-on-a-chip where it seems to have been redefined somewhat. Here’s more from the Simulacrum entry on Wikipedia (Note: Links have been removed),

A simulacrum (plural: simulacra from Latin: simulacrum, which means “likeness, similarity”), is a representation or imitation of a person or thing.[1] The word was first recorded in the English language in the late 16th century, used to describe a representation, such as a statue or a painting, especially of a god. By the late 19th century, it had gathered a secondary association of inferiority: an image without the substance or qualities of the original.[2] Philosopher Fredric Jameson offers photorealism as an example of artistic simulacrum, where a painting is sometimes created by copying a photograph that is itself a copy of the real.[3] Other art forms that play with simulacra include trompe-l’œil,[4] pop art, Italian neorealism, and French New Wave.[3]

Philosophy

The simulacrum has long been of interest to philosophers. In his Sophist, Plato speaks of two kinds of image making. The first is a faithful reproduction, attempted to copy precisely the original. The second is intentionally distorted in order to make the copy appear correct to viewers. He gives the example of Greek statuary, which was crafted larger on the top than on the bottom so that viewers on the ground would see it correctly. If they could view it in scale, they would realize it was malformed. This example from the visual arts serves as a metaphor for the philosophical arts and the tendency of some philosophers to distort truth so that it appears accurate unless viewed from the proper angle.[5] Nietzsche addresses the concept of simulacrum (but does not use the term) in the Twilight of the Idols, suggesting that most philosophers, by ignoring the reliable input of their senses and resorting to the constructs of language and reason, arrive at a distorted copy of reality.[6]

Postmodernist French social theorist Jean Baudrillard argues that a simulacrum is not a copy of the real, but becomes truth in its own right: the hyperreal. Where Plato saw two types of representation—faithful and intentionally distorted (simulacrum)—Baudrillard sees four: (1) basic reflection of reality; (2) perversion of reality; (3) pretence of reality (where there is no model); and (4) simulacrum, which “bears no relation to any reality whatsoever”.[7] In Baudrillard’s concept, like Nietzsche’s, simulacra are perceived as negative, but another modern philosopher who addressed the topic, Gilles Deleuze, takes a different view, seeing simulacra as the avenue by which an accepted ideal or “privileged position” could be “challenged and overturned”.[8] Deleuze defines simulacra as “those systems in which different relates to different by means of difference itself. What is essential is that we find in these systems no prior identity, no internal resemblance”.[9]

Getting back to the proposed research, an Oct. (?), 2015 University of North Carolina news release, which originated the news item, describes the proposed work in more detail,

Allbritton is an expert at microfabrication and microengineering. Also on the team are intestinal stem cell expert Scott T. Magness, associate professor of medicine, biomedical engineering, and cell and molecular physiology in the UNC School of Medicine; microbiome expert Scott Bultman, associate professor of genetics in the UNC School of Medicine; and bioinformatics expert Shawn Gomez, associate professor of biomedical engineering in UNC’s College of Arts and Sciences and NC State.

The impetus for the “organ-on-chip” movement comes largely from the failings of the pharmaceutical industry. For just a single drug to go through the discovery, testing, and approval process can take as many as 15 years and as much as $5 billion dollars. Animal models are expensive to work with and often don’t respond to drugs and diseases the same way humans do. Human cells grown in flat sheets on Petri dishes are also a poor proxy. Three-dimensional “organoids” are an improvement, but these hollow balls are made of a mishmash of cells that doesn’t accurately mimic the structure and function of the real organ.

Basically, the human gut is a 30-foot long hollow tube made up of a continuous single-layer of specialized cells. Regenerative stem cells reside deep inside millions of small pits or “crypts” along the tube, and mature differentiated cells are linked to the pits and live further out toward the surface. The gut also contains trillions of microbes, which are estimated to outnumber human cells by ten to one. These diverse microbial communities – collectively known as the microbiota – process toxins and pharmaceuticals, stimulate immunity, and even release hormones to impact behavior.

To create a dime-sized version of this complex microenvironment, the UNC-NC State team borrowed fabrication technologies from the electronics and microfluidics world. The device is composed of a polymer base containing an array of imprinted or shaped “hydrogels,” a mesh of molecules that can absorb water like a sponge. These hydrogels are specifically engineered to provide the structural support and biochemical cues for growing cells from the gut. Plugged into the device will be various kinds of plumbing that bring in chemicals, fluids, and gases to provide cues that tell the cells how and where to differentiate and grow. For example, the researchers will engineer a steep oxygen gradient into the device that will enable oxygen-loving human cells and anaerobic microbes to coexist in close proximity.

“The underlying concept – to simply grow a piece of human tissue in a dish – doesn’t seem that groundbreaking,” said Magness. “We have been doing that for a long time with cancer cells, but those efforts do not replicate human physiology. Using native stem cells from the small intestine or colon, we can now develop gut tissue layers in a dish that contains stem cells and all the differentiated cells of the gut. That is the thing stem cell biologists and engineers have been shooting for, to make real tissue behave properly in a dish to create better models for drug screening and cell-based therapies. With this work, we made a big leap toward that goal.”

Right now, the team has a working prototype that can physically and chemically guide mouse intestinal stem cells into the appropriate structure and function of the gut. For several years, Magness has been isolating and banking human stem cells from samples from patients undergoing routine colonoscopies at UNC Hospitals.

As part of the grant, he will work with the rest of the team to apply these stem cells to the new device and create “simulacra” that are representative of each patient’s individual gut. The approach will enable researchers to explore in a personalized way how both the human and microbial cells of the gut behave during healthy and diseased states.

“Having a system like this will advance microbiota research tremendously,” said Bultman. “Right now microbiota studies involve taking samples, doing sequencing, and then compiling an inventory of all the microbes in the disease cases and healthy controls. These studies just draw associations, so it is difficult to glean cause and effect. This device will enable us to probe the microbiota, and gain a better understanding of whether changes in these microbial communities are the cause or the consequence of disease.”

I wish them good luck with their work and to end on another interesting note, the concept of organs-on-a-chip won a design award. From a June 22, 2015 article by Oliver Wainwright for the Guardian (Note: Links have been removed),

Meet the Lung-on-a-chip, a simulation of the biological processes inside the human lung, developed by the Wyss Institute for Biologically Inspired Engineering at Harvard University – and now crowned Design of the Year by London’s Design Museum.

Lined with living human cells, the “organs-on-chips” mimic the tissue structures and mechanical motions of human organs, promising to accelerate drug discovery, decrease development costs and potentially usher in a future of personalised medicine.

“This is the epitome of design innovation,” says Paola Antonelli, design curator at New York’s Museum of Modern Art [MOMA], who nominated the project for the award and recently acquired organs-on-chips for MoMA’s permanent collection. “Removing some of the pitfalls of human and animal testing means, theoretically, that drug trials could be conducted faster and their viable results disseminated more quickly.”

Whodathunkit? (Tor those unfamiliar with slang written in this form: Who would have thought it?)

Plato’s musical thoughts about science

Apparently there have been rumours for centuries that Plato, (428/7 bce – 348/7 bce) classical Greek philosopher, mathematician, writer and more, had coded messages into his writings. Dr. Jay Kennedy, University of Manchester, announced recently that he has cracked the code. From the news item on physorg.com,

“Plato’s books played a major role in founding Western culture but they are mysterious and end in riddles,” Dr Kennedy, at Manchester’s Faculty of Life Sciences explains.

“In antiquity, many of his followers said the books contained hidden layers of meaning and secret codes, but this was rejected by modern scholars.

“It is a long and exciting story, but basically I cracked the code. I have shown rigorously that the books do contain codes and symbols and that unraveling them reveals the hidden philosophy of Plato.

“This is a true discovery, not simply reinterpretation.”

This will transform the early history of Western thought, and especially the histories of ancient science, mathematics, music, and philosophy.

Dr Kennedy spent five years studying Plato’s writing and found that in his best-known work the Republic he placed clusters of words related to music after each twelfth of the text – at one-twelfth, two-twelfths, etc. This regular pattern represented the twelve notes of a Greek musical scale. Some notes were harmonic, others dissonant. At the locations of the harmonic notes he described sounds associated with love or laughter, while the locations of dissonant notes were marked with screeching sounds or war or death. This musical code was key to cracking Plato’s entire symbolic system.

As for why Plato coded some of this writing, Kennedy points out that one of Plato’s teachers for teaching unpopular ideas.

Dr Kennedy, a researcher in the Centre for the History of Science, Technology and Medicine, says: “As we read his books, our emotions follow the ups and downs of a musical scale. Plato plays his readers like musical instruments.”

However Plato did not design his secret patterns purely for pleasure – it was for his own safety. Plato’s ideas were a dangerous threat to Greek religion. He said that mathematical laws and not the gods controlled the universe. Plato’s own teacher had been executed for heresy. Secrecy was normal in ancient times, especially for esoteric and religious knowledge, but for Plato it was a matter of life and death. Encoding his ideas in secret patterns was the only way to be safe.

There’s more both at the physorg.com site and at the University of Manchester site where you can find out that Dr. Kennedy amongst other jobs once worked on the oil rigs in the Gulf of Mexico!

Ideas becoming knowledge: interview with Dr. Rainer Becker (part 1 of 2)

ETA Mar. 11, 2013: I was notified by Rainer Becker that his participation was cancelled and the organizers took the project in another direction. Consequently, much of what follows is no longer relevant. However, the discussion about knowledge and ideas and Becker’s theorists may be of some interest.

I’m very pleased to publish this interview (part 1 today) with Dr. Rainer Becker on a topic (how an idea becomes knowledge in the field of science) that has long interested me. First, some information about the research project and Dr. Becker from the April 22, 2010 news item on Nanowerk,

How do sensational ideas become commonly accepted knowledge? How does a hypothesis turn into certainty? What are the ways and words that bring results of scientific experiments into textbooks and people’s minds, how are they “transferred” into these domains? Science philosopher Dr. Rainer Becker has recently started dealing with such questions. Over the next three years, Becker will accompany the work of Professor Dr. Frank Rösl’s department at the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), which studies cancer-causing viruses. He is one of three scientists in an interdisciplinary joint project which is funded by the German Ministry of Education and Research (BMBF) with a total sum of approximately € 790,000.

Becker’s mission in Heidelberg is part of a research project entitled “Transfer knowledge – knowledge transfer. About the past and present of the transfer between life sciences and humanities.” The project is carried out by DKFZ jointly with the Center for Literary and Cultural Studies (Zentrum für Literatur- und Kulturforschung, ZfL) in Berlin. Project leaders are Professor Dr. Frank Rösl of DKFZ and Dr. Falko Schmieder of ZfL. It comprises three individual projects in which forms of knowledge transfer related to three different constellations of science history are studied in a cultural-scientific approach.

Dr. Becker’s project,

The third and final project, which is pursued by Rainer Becker at DKFZ, deals with the question of the relevance of current knowledge concepts such as the one that understands and experimentally studies cancer as a consequence of viral infections.

“I am pleased that we will explore the relevance of tumor virology across disciplinary borders and I hope we will gain fundamental insights into how scientific discourses develop and how they are ultimately accepted in scientific thought collectives,” said departmental head Frank Rösl about the relevance of the current project.

This is not Dr. Becker’s first such project, his doctoral thesis touched on some of the same themes of how scientific discourse develops,

Rainer Becker wrote his doctoral thesis while he was employed at the Institute of Philosophy of Darmstadt Technical University. There he made parallel studies of the social history of the computer and the “universal science” of cybernetics. Back then he already chose a topic that transcends borders between humanities and natural sciences. “While I was working on my doctoral thesis, I explored the question of ‘transfers’ – namely between technology, natural sciences and philosophy in the 1940s: The development of computers and cybernetics would not have been possible without prior conceptual and metaphorical ‘transfers’ between life sciences and technical sciences.”

In his future project, the philosopher will study in real time, so to speak, how natural science data are being obtained, processed and communicated. As a “researcher of science”, he will observe the laboratory work from the perspective of the humanities and cultural science, he will do research in archives and will interview scientists. It is for good reason that the project is located at DKFZ, because this is the place where findings from basic biological research become relevant for medicine and the public. Thus, the Nobel Prize-winning discovery by DKFZ’s former Scientific Director, Professor Harald zur Hausen, that particular viruses cause cervical cancer has led to a vaccine against this type of cancer.

Now for the interview:

1. First, congratulations on receiving funding for such a fascinating line of query. When does the project start and what is the period of time during which it will run?

A: Indeed, the funding delighted all of us. My sub-project in Heidelberg started in late October 2009, it will be supported for 3 years.

2. Will you be working alone or will you be working with an interdisciplinary team?

A: Currently I am doing my study in Heidelberg on my own, getting assisted locally by one of the project leaders, a biologist highly interested in interdisciplinary work: Prof. Frank Roesl, head of the department where I am doing my research. The other project leader, Dr. Falko Schmieder and two other science philosophers support me in Berlin, at the Center for Literary and Cultural Research (ZfL). Like me, both of them work on their own sub-projects while getting support by Dr. Schmieder: he does ensure the convergence of the sub-projects. We discuss the topics during our regular meetings – but also via email, skype, wikis for sharing documents etc.

Because the main focus of the project is historical, both of the other sub-projects work –like me in the past – in a more historical way: they try to elucidate the current situation in the Heidelberg lab of 2010 – molecular biological work on supposedly tumourgenic viruses – by working in archives, on in part comparable fields, but different time scales: (a) Dr. Birgit Griesecke – mainly doing studies on Ludwig Fleck – is working on the 1930s, (b) PD Dr. Peter Berz – researching contexts esp. around Jacques Monod – is working on the 1970s. Both help me to understand the current scientific situation in the corresponding historical context.

We also try to get additional funding options for one or two other researchers (e.g. sociologists, communication scientists) supporting our work in a interdisciplinary way.

3. Are there any theorists that have influenced how you are approaching this project?

A: The whole project is closely related to the work of the Polish bacteriologist and sociologist of science Ludwig Fleck. Its main theoretical references point to him – by as well trying to ‘refresh’ his approaches in ways more adequate to the current scientific situation: not only everything that happened after the ‘linguistic turn’ and all the concerns on ‘media’, but also dealing with questions on the significance of ‘things’ in the labs around 2010. This confrontation of Fleck with the present research raises several questions, for example:

Do apparatuses reflect or even materialize special sorts of scientific ‘thought-styles’?

Do specific ‘thought-collectives’ gather or even get constituted around special lab equipments to what extent do they form prior styles of thinking – what kind of ‘migration-background’ has each ‘thing’ with what implications and what styles of local adoption?

What exactly is the correlation between assemblages of things, humans, animals, discourses and what Mary Douglas coined ‘worlds of thought’ – and their inhabitants / participants?

What is their contribution to the specific local – and the same time globally connected – scientific way of worldmaking (in the field of cancer research)?

What political implications potentially are embedded in all that fields – from specific ways of problematisation to its effects?

My own theoretical background was mainly influenced by the philosophical tradition of structuralism and so called ‘post-structuralism’, especially Michel Foucault – so phenomenological traditions also interest me. Foucault, Gilles Deleuze, J.-F. Lyotard, M. Serres and M. de Certeau framed my more traditional approaches to political philosophy on the one hand (from Plato, Hobbes, Kant, Nietzsche, Weber, Arendt to the early/middle Frankfurt School, French Postmodernist to current debates on ‘radical democratic’-thinkers as well as philosophical experiments like tiqqun) but on the same time on the other hand to different fields of knowledge, esp. concerning the relation technology – art – bios (I wrote my dissertation on a ‘coevolutionary’ history of the ‚universal machine’/ computers and ‘first’ cybernetics in connection to what Foucault termed ‘biopower’ – coming from Canguilhem and handing this concept over to E. Fox-Keller, I. Hacking, D. Haraway and L. Kay).

In my field, a biological laboratory dealing with viruses and cancer, Michel Serres’ thoughts on different phenomena of ‘inbetween’/’3rds’ as well as Foucault’s spatial approaches in their connection to knowledge/power (heterotopia, taxonomy/order, diagrams like ‘panoptism’) currently form reflections of my experiences more and more – as well as my contention with prominent ‘first wave’ researchers in the field of science/laboratory studies, e.g. B. Latour (esp. the ‘early’), K. Knorr-Cetina, H.J. Rheinberger (esp. beyond his Heidegger-References), P. Rabinow (both theoretical and practical work) and D. Haraway (esp. ‘when species meet’), flanked by what could be coined a wide field of ethnology in the broadest sense (C. Lèvi-Strauss, M. Douglas, C. Geertz, E. Goffman): ethnology of the own, western culture interested me since my first contacts with poststructuralism/Nietzsche. In that range, scientific and everyday practices and their relation to ‘strangeness’ of the field (for the lab-practitioners, for me) more and more comes to focus (think of the concept of ‘problematisation’) – and also theorist of  ‘practice’ keep framing my attention (A. Pickering, K. Sunder-Rajan, M. de Certeau). I hope the projects (my colleagues and mine) will contribute something at least in that latter field.

4. The description in the press release for how you plan to go about your project reminded me of Bruno Latour’s Laboratory Life where he described the creation of a ‘scientific fact’. Obviously you won’t be repeating that work, so I’m wondering if you could describe your process and goals in more detail.

see (3)

Tomorrow: more details about the project and how the research will be disseminated.