Tag Archives: Po-Chun Hsu

How is an eggshell like a lithium-ion battery?

How is an eggshell like a lithium-ion battery? It’s all about the yolk. Some days I can’t resist the urge for some wordplay, even if it isn’t the best fit, and the Jan. 9, 2013 news item by Mike Ross on phys.org proved irresistible,

SLAC [Stanford National Accelerator Laboratory] and Stanford [University] scientists have set a world record for energy storage, using a clever “yolk-shell” design to store five times more energy in the sulfur cathode of a rechargeable lithium-ion battery than is possible with today’s commercial technology. The cathode also maintained a high level of performance after 1,000 charge/discharge cycles, paving the way for new generations of lighter, longer-lasting batteries for use in portable electronics and electric vehicles.

The study has been published in Nature Communications where this explanatory image amongst others can be viewed,

[downloaded from Nature Communications: http://www.nature.com/ncomms/journal/v4/n1/full/ncomms2327.html]

[downloaded from Nature Communications: http://www.nature.com/ncomms/journal/v4/n1/full/ncomms2327.html]

You can find out more about the research here,

Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries by Zhi Wei Seh, Weiyang Li, Judy J. Cha,    Guangyuan Zheng, Yuan Yang, Matthew T. McDowell, Po-Chun Hsu & Yi Cui in Nature Communications 4, Article number: 1331 doi:10.1038/ncomms2327

The Jan. 8, 2013 SLAC news release, which originated the news item, provides more details about the lithium-ion batteries in general and this attempt to improve their energy storage capacity,

Lithium-ion batteries work by moving lithium ions back and forth between two electrodes, the cathode and anode. Charging the battery forces the ions and electrons into the anode, creating an electrical potential that can power a wide range of devices. Discharging the battery – using it to do work – moves the ions and electrons to the cathode.

Today’s lithium-ion batteries typically retain about 80 percent of their initial capacity after 500 charge/discharge cycles.

For some 20 years, researchers have known that sulfur could theoretically store more lithium ions, and thus much more energy, than today’s cathode materials…

Cui’s innovation is a cathode made of nanoparticles, each a tiny sulfur nugget surrounded by a hard shell of porous titanium-oxide, like an egg yolk in an eggshell. Between the yolk and shell, where the egg white would be, is an empty space into which the sulfur can expand. During discharging, lithium ions pass through the shell and bind to the sulfur, which expands to fill the void but not so much as to break the shell. The shell, meanwhile, protects the sulfur-lithium intermediate compound from electrolyte solvent that would dissolve it.

Each cathode particle is only 800 nanometers (billionths of a meter) in diameter, about one-hundredth the diameter of a human hair.

“After 1,000 charge/discharge cycles, our yolk-shell sulfur cathode had retained about 70 percent of its energy-storage capacity. This is the highest performing sulfur cathode in the world, as far as we know,” he [Cui] said. “Even without optimizing the design, this cathode cycle life is already on par with commercial performance. This is a very important achievement for the future of rechargeable batteries.”

Over the past seven years, Cui’s group has demonstrated a succession of increasingly capable anodes that use silicon rather than carbon because it can store up to 10 times more charge per weight. Their most recent anode also has a yolk-shell design that retains its energy-storage capacity over 1,000 charge/discharge cycles.

The group’s next step is to combine the yolk-shell sulfur cathode with a yolk-shell silicon anode to see if together they produce a high-energy, long-lasting battery.

I have posted a number of recent pieces about lithium-ion (li-ion) batteries including a Dec. 12, 2012 piece about using the Madder plant to develop a greener li-ion battery, a Dec. 10, 2012 piece about the break-up of 123 Systems, a manufacturer of li-ion batteries, and a Nov. 27, 2012 piece about a project in Québec to combine lithium iron phospate with graphene for improved li-ion batteries.