Tag Archives: Poland

Unbreakable encrypted message with key that’s shorter than the message

A Sept. 5, 2016 University of Rochester (NY state, US) news release (also on EurekAlert), makes an intriguing announcement,

Researchers at the University of Rochester have moved beyond the theoretical in demonstrating that an unbreakable encrypted message can be sent with a key that’s far shorter than the message—the first time that has ever been done.

Until now, unbreakable encrypted messages were transmitted via a system envisioned by American mathematician Claude Shannon, considered the “father of information theory.” Shannon combined his knowledge of algebra and electrical circuitry to come up with a binary system of transmitting messages that are secure, under three conditions: the key is random, used only once, and is at least as long as the message itself.

The findings by Daniel Lum, a graduate student in physics, and John Howell, a professor of physics, have been published in the journal Physical Review A.

“Daniel’s research amounts to an important step forward, not just for encryption, but for the field of quantum data locking,” said Howell.

Quantum data locking is a method of encryption advanced by Seth Lloyd, a professor of quantum information at Massachusetts Institute of Technology, that uses photons—the smallest particles associated with light—to carry a message. Quantum data locking was thought to have limitations for securely encrypting messages, but Lloyd figured out how to make additional assumptions—namely those involving the boundary between light and matter—to make it a more secure method of sending data.  While a binary system allows for only an on or off position with each bit of information, photon waves can be altered in many more ways: the angle of tilt can be changed, the wavelength can be made longer or shorter, and the size of the amplitude can be modified. Since a photon has more variables—and there are fundamental uncertainties when it comes to quantum measurements—the quantum key for encrypting and deciphering a message can be shorter that the message itself.

Lloyd’s system remained theoretical until this year, when Lum and his team developed a device—a quantum enigma machine—that would put the theory into practice. The device takes its name from the encryption machine used by Germany during World War II, which employed a coding method that the British and Polish intelligence agencies were secretly able to crack.

Let’s assume that Alice wants to send an encrypted message to Bob. She uses the machine to generate photons that travel through free space and into a spatial light modulator (SLM) that alters the properties of the individual photons (e.g. amplitude, tilt) to properly encode the message into flat but tilted wavefronts that can be focused to unique points dictated by the tilt. But the SLM does one more thing: it distorts the shapes of the photons into random patterns, such that the wavefront is no longer flat which means it no longer has a well-defined focus. Alice and Bob both know the keys which identify the implemented scrambling operations, so Bob is able to use his own SLM to flatten the wavefront, re-focus the photons, and translate the altered properties into the distinct elements of the message.

Along with modifying the shape of the photons, Lum and the team made use of the uncertainty principle, which states that the more we know about one property of a particle, the less we know about another of its properties. Because of that, the researchers were able to securely lock in six bits of classical information using only one bit of an encryption key—an operation called data locking.

“While our device is not 100 percent secure, due to photon loss,” said Lum, “it does show that data locking in message encryption is far more than a theory.”

The ultimate goal of the quantum enigma machine is to prevent a third party—for example, someone named Eve—from intercepting and deciphering the message. A crucial principle of quantum theory is that the mere act of measuring a quantum system changes the system. As a result, Eve has only one shot at obtaining and translating the encrypted message—something that is virtually impossible, given the nearly limitless number of patterns that exist for each photon.

The paper by Lum and Howell was one of two papers published simultaneously on the same topic. The other paper, “Quantum data locking,” was from a team led by Chinese physicist Jian-Wei Pan.

“It’s highly unlikely that our free-space implementation will be useful through atmospheric conditions,” said Lum. “Instead, we have identified the use of optic fiber as a more practical route for data locking, a path Pan’s group actually started with. Regardless, the field is still in its infancy with a great deal more research needed.”

Here’s a link to and a citation for the paper,

Quantum enigma machine: Experimentally demonstrating quantum data locking by Daniel J. Lum, John C. Howell, M. S. Allman, Thomas Gerrits, Varun B. Verma, Sae Woo Nam, Cosmo Lupo, and Seth Lloyd. Phys. Rev. A, Vol. 94, Iss. 2 — August 2016 DOI: http://dx.doi.org/10.1103/PhysRevA.94.022315

©2016 American Physical Society

This paper is behind a paywall.

There is an earlier open access version of the paper by the Chinese researchers on arXiv.org,

Experimental quantum data locking by Yang Liu, Zhu Cao, Cheng Wu, Daiji Fukuda, Lixing You, Jiaqiang Zhong, Takayuki Numata, Sijing Chen, Weijun Zhang, Sheng-Cai Shi, Chao-Yang Lu, Zhen Wang, Xiongfeng Ma, Jingyun Fan, Qiang Zhang, Jian-Wei Pan. arXiv.org > quant-ph > arXiv:1605.04030

The Chinese team’s later version of the paper is available here,

Experimental quantum data locking by Yang Liu, Zhu Cao, Cheng Wu, Daiji Fukuda, Lixing You, Jiaqiang Zhong, Takayuki Numata, Sijing Chen, Weijun Zhang, Sheng-Cai Shi, Chao-Yang Lu, Zhen Wang, Xiongfeng Ma, Jingyun Fan, Qiang Zhang, and Jian-Wei Pan. Phys. Rev. A, Vol. 94, Iss. 2 — August 2016 DOI: http://dx.doi.org/10.1103/PhysRevA.94.020301

©2016 American Physical Society

This version is behind a paywall.

Getting back to the folks at the University of Rochester, they have provided this image to illustrate their work,

The quantum enigma machine developed by researchers at the University of Rochester, MIT, and the National Institute of Standards and Technology. (Image by Daniel Lum/University of Rochester)

The quantum enigma machine developed by researchers at the University of Rochester, MIT, and the National Institute of Standards and Technology. (Image by Daniel Lum/University of Rochester)

First hologram of a single photon (light particle)

Polish scientists have created a technique for something thought to be impossible. From a July 19, 2016 news item on Nanowerk,

Until quite recently, creating a hologram of a single photon was believed to be impossible due to fundamental laws of physics. However, scientists at the Faculty of Physics, University of Warsaw, have successfully applied concepts of classical holography to the world of quantum phenomena. A new measurement technique has enabled them to register the first ever hologram of a single light particle, thereby shedding new light on the foundations of quantum mechanics.

A July 18, 2016 University of Warsaw press release on EurekAlert, which originated the news item, describes the breakthrough in more detail,

Scientists at the Faculty of Physics, University of Warsaw, have created the first ever hologram of a single light particle. The spectacular experiment, reported in the prestigious journal Nature Photonics, was conducted by Dr. Radoslaw Chrapkiewicz and Michal Jachura under the supervision of Dr. Wojciech Wasilewski and Prof. Konrad Banaszek. Their successful registering of the hologram of a single photon heralds a new era in holography: quantum holography, which promises to offer a whole new perspective on quantum phenomena.

“We performed a relatively simple experiment to measure and view something incredibly difficult to observe: the shape of wavefronts of a single photon,” says Dr. Chrapkiewicz.

In standard photography, individual points of an image register light intensity only. In classical holography, the interference phenomenon also registers the phase of the light waves (it is the phase which carries information about the depth of the image). When a hologram is created, a well-described, undisturbed light wave (reference wave) is superimposed with another wave of the same wavelength but reflected from a three-dimensional object (the peaks and troughs of the two waves are shifted to varying degrees at different points of the image). This results in interference and the phase differences between the two waves create a complex pattern of lines. Such a hologram is then illuminated with a beam of reference light to recreate the spatial structure of wavefronts of the light reflected from the object, and as such its 3D shape.

One might think that a similar mechanism would be observed when the number of photons creating the two waves were reduced to a minimum, that is to a single reference photon and a single photon reflected by the object. And yet you’d be wrong! The phase of individual photons continues to fluctuate, which makes classical interference with other photons impossible. Since the Warsaw physicists were facing a seemingly impossible task, they attempted to tackle the issue differently: rather than using classical interference of electromagnetic waves, they tried to register quantum interference in which the wave functions of photons interact.

Wave function is a fundamental concept in quantum mechanics and the core of its most important equation: the Schrödinger equation. In the hands of a skilled physicist, the function could be compared to putty in the hands of a sculptor: when expertly shaped, it can be used to ‘mould’ a model of a quantum particle system. Physicists are always trying to learn about the wave function of a particle in a given system, since the square of its modulus represents the distribution of the probability of finding the particle in a particular state, which is highly useful.

“All this may sound rather complicated, but in practice our experiment is simple at its core: instead of looking at changing light intensity, we look at the changing probability of registering pairs of photons after the quantum interference,” explains doctoral student Jachura.

Why pairs of photons? A year ago, Chrapkiewicz and Jachura used an innovative camera built at the University of Warsaw to film the behaviour of pairs of distinguishable and non-distinguishable photons entering a beam splitter. When the photons are distinguishable, their behaviour at the beam splitter is random: one or both photons can be transmitted or reflected. Non-distinguishable photons exhibit quantum interference, which alters their behaviour: they join into pairs and are always transmitted or reflected together. This is known as two-photon interference or the Hong-Ou-Mandel effect.

“Following this experiment, we were inspired to ask whether two-photon quantum interference could be used similarly to classical interference in holography in order to use known-state photons to gain further information about unknown-state photons. Our analysis led us to a surprising conclusion: it turned out that when two photons exhibit quantum interference, the course of this interference depends on the shape of their wavefronts,” says Dr. Chrapkiewicz.

Quantum interference can be observed by registering pairs of photons. The experiment needs to be repeated several times, always with two photons with identical properties. To meet these conditions, each experiment started with a pair of photons with flat wavefronts and perpendicular polarisations; this means that the electrical field of each photon vibrated in a single plane only, and these planes were perpendicular for the two photons. The different polarisation made it possible to separate the photons in a crystal and make one of them ‘unknown’ by curving their wavefronts using a cylindrical lens. Once the photons were reflected by mirrors, they were directed towards the beam splitter (a calcite crystal). The splitter didn’t change the direction of vertically-polarised photons, but it did diverge diplace horizontally-polarised photons. In order to make each direction equally probable and to make sure the crystal acted as a beam splitter, the planes of photon polarisation were bent by 45 degrees before the photons entered the splitter. The photons were registered using the state-of-the-art camera designed for the previous experiments. By repeating the measurements several times, the researchers obtained an interference image corresponding to the hologram of the unknown photon viewed from a single point in space. The image was used to fully reconstruct the amplitude and phase of the wave function of the unknown photon.

The experiment conducted by the Warsaw physicists is a major step towards improving our understanding of the fundamental principles of quantum mechanics. Until now, there has not been a simple experimental method of gaining information about the phase of a photon’s wave function. Although quantum mechanics has many applications, and it has been verified many times with a great degree of accuracy over the last century, we are still unable to explain what wave functions actually are: are they simply a handy mathematical tool, or are they something real?

“Our experiment is one of the first allowing us to directly observe one of the fundamental parameters of photon’s wave function – its phase – bringing us a step closer to understanding what the wave function really is,” explains Jachura.

The Warsaw physicists used quantum holography to reconstruct wave function of an individual photon. Researchers hope that in the future they will be able to use a similar method to recreate wave functions of more complex quantum objects, such as certain atoms. Will quantum holography find applications beyond the lab to a similar extent as classical holography, which is routinely used in security (holograms are difficult to counterfeit), entertainment, transport (in scanners measuring the dimensions of cargo), microscopic imaging and optical data storing and processing technologies?

“It’s difficult to answer this question today. All of us – I mean physicists – must first get our heads around this new tool. It’s likely that real applications of quantum holography won’t appear for a few decades yet, but if there’s one thing we can be sure of it’s that they will be surprising,” summarises Prof. Banaszek.

Here’s a link to and a citation for the paper,

Hologram of a single photon by Radosław Chrapkiewicz, Michał Jachura, Konrad Banaszek, & Wojciech Wasilewski.  Nature Photonics (2016) doi:10.1038/nphoton.2016.129 Published online 18 July 2016

This paper is behind a paywall.

Polish researchers develop Superman’s kryptonite?

It’s not precisely kryptonite but rather a krypton-oxygen compound according to a March 2, 2016 news item on ScienceDaily,

Theoretical chemists have found how to synthesize the first binary compound of krypton and oxygen: a krypton oxide. It turns out that this exotic substance can be produced under extremely high pressure, and its production is quite within the capabilities of today’s laboratories.

A March 2, 2016 Institute of Physical Chemistry of the Polish Academy of Sciences (IPC PAS) press release (also on EurekAlert), which originated the news item, provides more information about Superman’s kryptonite, real krypton, and the new synthesized compound,

Crystals of kryptonite, a material deadly to Superman and his race, were supposed to have been created within the planet Krypton, and therefore most likely under very high pressure. The progenitor of the name, real krypton, is an element with an atomic number of 36, a noble gas considered to be incapable of forming stable chemical compounds. However, a publication in the journal Scientific Reports by a two-man team of theoretical chemists from the Institute of Physical Chemistry of the Polish Academy of Sciences (IPC PAS) in Warsaw, Poland, presents the possibility of synthesizing a new crystalline material in which atoms of krypton would be chemically bonded to another element.

“The substance we are predicting is a compound of krypton with not nitrogen, but oxygen. In the convention of the comic book it should, therefore, be called not so much kryptonite as kryptoxide. So if Superman’s reading this, he can stay calm – at the moment there’s no cause for panic!” laughs Dr. Patrick Zaleski-Ejgierd (IPC PAS) and adds: “Our krypton monoxide, KrO, probably does not exist in nature. According to current knowledge, deep in the interiors of planets, that is, the only place where there is sufficient pressure for its synthesis, oxygen does not exist, nor even more so, does krypton.”

Compounds of krypton have been produced before, in the laboratory under cryogenic conditions. They were, however, only single, linear and small molecules of the hydrogen-carbon-krypton-carbon-hydrogen type. The Polish chemists wondered if there were conditions in which krypton would not only bond chemically with another element, but also in which it would be capable of forming an extensive and stable crystal lattice. Their search, funded by an OPUS grant from the Polish National Science Centre, involved the researchers using genetic algorithms and models built on the so-called density functional theory. In the field of solid state physics, this theory has for years been a basic tool for the description and study of the world of chemical molecules.

“Our computer simulations suggest that crystals of krypton monoxide will be formed at a pressure in the range of 3 to 5 million atmospheres. This is a huge pressure, but it can be achieved even in today’s laboratories, by skillfully squeezing samples in diamond anvils,” says PhD student Pawe? Lata (IPC PAS).

Crystal lattices are built from atoms or molecules arranged in space in an orderly manner. The smallest repetitive fragment of such structures – the basic ‘building block’ – is called a unit cell. In crystals of table salt the unit cell has the shape of a cube, the sodium and chlorine atoms, arranged alternately, are mounted on each corner, close enough to each other that they are bound by covalent (chemical) bonds.

The unit cell of krypton monoxide is cuboid with a diamond base, with krypton atoms at the corners. In addition, in the middle of the two opposite side walls, there is one atom of krypton.

“Where is the oxygen? On the side walls of the unit cell, where there are five atoms of krypton, they are arranged like the dots on a dice showing the number five. Single atoms of oxygen are located between the krypton atoms, but only along the diagonal – and only along one! Thus, on each wall with five krypton atoms there are only two atoms of oxygen. Not only that, the oxygen is not exactly on the diagonal: one of the atoms is slightly offset from it in one direction and the other atom in the other direction,” describes Lata.

In such an idiosyncratic unit cell, each atom of oxygen is chemically bound to the two nearest adjacent atoms of krypton. Zigzag chains of Kr/O\Kr\O/Kr will therefore pass through the crystal of krypton monoxide, forming long polymer structures. Calculations indicate that crystals of this type of krypton monoxide should have the characteristics of a semiconductor. One can assume that they will be dark, and their transparency will not be great.

Theorists from the IPC PAS have also found a second, slightly less stable compound of krypton: the tetroxide KrO4. This material, which probably has properties typical of a metal, has a simpler crystalline structure and could be formed at a pressure exceeding 3.4 million atmospheres.

After formation, the two kinds of krypton oxide crystals could probably exist at a somewhat lower pressure than that required for their formation. The pressure on earth, however, is so low that on our planet these crystals would undergo degradation immediately.

“Reactions occurring at extremely high pressure are almost unknown, very, very exotic chemistry. We call it ‘Chemistry on the Edge'”. Often the pressures needed to perform syntheses are so gigantic that at present there is no point in trying to produce them in laboratories. In those cases even methods of theoretic description fail! But what is most interesting here is the non-intuitiveness. From the very first to the last step of synthesis you never know what’s going to happen,” says Dr. Zaleski-Ejgierd – and he returns to his computer where simulations of subsequent syntheses are nearing their end.

I don’t usually include images of the researchers but these guys dressed up for the occasion,

Chemists from the Institute of Physical Chemistry of the Polish Academy of Sciences in Warsaw have found a method of synthesizing a new crystalline material in which atoms of krypton would be chemically bonded to another element. (Source: IPC PAS, Grzegorz Krzy¿ewski) Metodê syntezy pierwszego trwa³ego zwi¹zku kryptonu znale¿li chemicy-teoretycy z Instytutu Chemii Fizycznej PAN w Warszawie. (ród³o: IChF PAN, Grzegorz Krzy¿ewski)

Chemists from the Institute of Physical Chemistry of the Polish Academy of Sciences in Warsaw have found a method of synthesizing a new crystalline material in which atoms of krypton would be chemically bonded to another element. (Source: IPC PAS, Grzegorz Krzy¿ewski)
Metodê syntezy pierwszego trwa³ego zwi¹zku kryptonu znale¿li chemicy-teoretycy z Instytutu Chemii Fizycznej PAN w Warszawie. (ród³o: IChF PAN, Grzegorz Krzy¿ewski)

Here’s a link to and a citation for the paper,

Krypton oxides under pressure by  Patryk Zaleski-Ejgierd & Pawel M. Lata. Scientific Reports 6, Article number: 18938 (2016) doi:10.1038/srep18938 Published online: 02 February 2016

This paper is open access.

Science advice conference in Brussels, Belgium, Sept. 29 – 30, 2016 and a call for speakers

This is the second such conference and they are issuing a call for speakers; the first was held in New Zealand in 2014 (my April 8, 2014 post offers an overview of the then proposed science advice conference). Thanks to David Bruggeman and his Feb. 23, 2016 posting (on the Pasco Phronesis blog) for the information about this latest one (Note: A link has been removed),

The International Network for Global Science Advice (INGSA) is holding its second global conference in Brussels this September 29 and 30, in conjunction with the European Commission. The organizers have the following goals for the conference:

  • Identify core principles and best practices, common to structures providing scientific advice for governments worldwide.
  • Identify practical ways to improve the interaction of the demand and supply side of scientific advice.
  • Describe, by means of practical examples, the impact of effective science advisory processes.

Here’s a little more about the conference from its webpage on the INGSA website,

Science and Policy-Making: towards a new dialogue

29th – 30th September 2016, Brussels, Belgium

Call for suggestions for speakers for the parallel sessions


“Science advice has never been in greater demand; nor has it been more contested.”[1] The most complex and sensitive policy issues of our time are those for which the available scientific evidence is ever growing and multi-disciplined, but still has uncertainties. Yet these are the very issues for which scientific input is needed most. In this environment, the usefulness and legitimacy of expertise seems obvious to scientists, but is this view shared by policy-makers?


A two-day conference will take place in Brussels, Belgium, on Thursday 29th and Friday 30th September 2016. Jointly organised by the European Commission and the International Network for Government Science Advice (INGSA), the conference will bring together users and providers of scientific advice on critical, global issues. Policy-makers, leading practitioners and scholars in the field of science advice to governments, as well as other stakeholders, will explore principles and practices in a variety of current and challenging policy contexts. It will also present the new Scientific Advice Mechanism [SAM] of the European Commission [emphasis mine; I have more about SAM further down in the post] to the international community. Through keynote lectures and plenary discussions and topical parallel sessions, the conference aims to take a major step towards responding to the challenge best articulated by the World Science Forum Declaration of 2015:

“The need to define the principles, processes and application of science advice and to address the theoretical and practical questions regarding the independence, transparency, visibility and accountability of those who receive and provide advice has never been more important. We call for concerted action of scientists and policy-makers to define and promulgate universal principles for developing and communicating science to inform and evaluate policy based on responsibility, integrity, independence, and accountability.”

The conference seeks to:

Identify core principles and best practices, common to structures providing scientific advice for governments worldwide.
Identify practical ways to improve the interaction of the demand and supply side of scientific advice.
Describe, by means of practical examples, the impact of effective science advisory processes.

The Programme Committee comprises:

Eva Alisic, Co-Chair of the Global Young Academy

Tateo Arimoto, Director of Science, Technology and Innovation Programme; The Japanese National Graduate Institute for Policy Studies

Peter Gluckman, Chair of INGSA and Prime Minister’s Chief Science Advisor, New Zealand (co-chair)

Robin Grimes, UK Foreign Office Chief Scientific Adviser

Heide Hackmann, International Council for Science (ICSU)

Theodoros Karapiperis, European Parliament – Head of Scientific Foresight Unit (STOA), European Parliamentary Research Service (EPRS) – Science and Technology Options Assessment Panel

Johannes Klumpers, European Commission, Head of Unit – Scientific Advice Mechanism (SAM) (co-chair)

Martin Kowarsch, Head of the Working Group Scientific assessments, Ethics and Public Policy, Mercator Research Institute on Global Commons and Climate Change

David Mair, European Commission – Joint Research Centre (JRC)

Rémi Quirion, Chief Scientist,  Province of Québec, Canada

Flavia Schlegel, UNESCO Assistant Director-General for the Natural Sciences

Henrik Wegener, Executive Vice President, Chief Academic Officer, Provost at Technical University of Denmark, Chair of the EU High Level Group of Scientific Advisors

James Wilsdon, Chair of INGSA, Professor of Research Policy, Director of Impact & Engagement, University of Sheffield

The conference will be a combination of plenary lectures and topical panels in parallel (concurrent) sessions outlined below. Each session will include three speakers (15 minute address with 5 minute Q & A each) plus a 30 minute moderated discussion.

Parallel Session I: Scientific advice for global policy

The pathways of science advice are a product of a country’s own cultural history and will necessarily differ across jurisdictions. Yet, there is an increasing number of global issues that require science advice. Can scientific advice help to address issues requiring action at international level? What are the considerations for providing science advice in these contexts? What are the examples from which we can learn what works and what does not work in informing policy-making through scientific advice?

Topics to be addressed include:

Climate Change – Science for the Paris Agreement: Did it work?
Migration: How can science advice help?
Zika fever, dementia, obesity etc.; how can science advice help policy to address the global health challenges?

Parallel Session II: Getting equipped – developing the practice of providing scientific advice for policy

The practice of science advice to public policy requires a new set of skills that are neither strictly scientific nor policy-oriented, but a hybrid of both. Negotiating the interface between science and policy requires translational and navigational skills that are often not acquired through formal training and education. What are the considerations in developing these unique capacities, both in general and for particular contexts? In order to be best prepared for informing policy-making, up-coming needs for scientific advice should ideally be anticipated. Apart from scientific evidence sensu stricto, can other sources such as the arts, humanities, foresight and horizon scanning provide useful insights for scientific advice? How can scientific advice make best use of such tools and methods?

Topics to be addressed include:

How to close the gap between the need and the capacity for science advice in developing countries with limited or emerging science systems?
What skills do scientists and policymakers need for a better dialogue?
Foresight and science advice: can foresight and horizon scanning help inform the policy agenda?

Parallel Session III: Scientific advice for and with society

In many ways, the practice of science advice has become a key pillar in what has been called the ‘new social contract for science[2]’. Science advice translates knowledge, making it relevant to society through both better informed policy and by helping communities and their elected representatives to make better informed decisions about the impacts of technology. Yet providing science advice is often a distributed and disconnected practice in which academies, formal advisors, journalists, stakeholder organisations and individual scientists play an important role. The resulting mix of information can be complex and even contradictory, particularly as advocate voices and social media join the open discourse. What considerations are there in an increasingly open practice of science advice?

Topics to be addressed include:

Science advice and the media: Lost in translation?
Beyond the ivory tower: How can academies best contribute to science advice for policy?
What is the role of other stakeholders in science advice?

Parallel Session IV: Science advice crossing borders

Science advisors and advisory mechanisms are called upon not just for nationally-relevant advice, but also for issues that increasingly cross borders. In this, the importance of international alignment and collaborative possibilities may be obvious, but there may be inherent tensions. In addition, there may be legal and administrative obstacles to transnational scientific advice. What are these hurdles and how can they be overcome? To what extent are science advisory systems also necessarily diplomatic and what are the implications of this in practice?

Topics to be addressed include:

How is science advice applied across national boundaries in practice?
What support do policymakers need from science advice to implement the Sustainable Development Goals in their countries?
Science Diplomacy/Can Scientists extend the reach of diplomats?

Call for Speakers

The European Commission and INGSA are now in the process of identifying speakers for the above conference sessions. As part of this process we invite those interested in speaking to submit their ideas. Interested policy-makers, scientists and scholars in the field of scientific advice, as well as business and civil-society stakeholders are warmly encouraged to submit proposals. Alternatively, you may propose an appropriate speaker.

The conference webpage includes a form should you wish to submit yourself or someone else as a speaker.

New Scientific Advice Mechanism of the European Commission

For anyone unfamiliar with the Scientific Advice Mechanism (SAM) mentioned in the conference’s notes, once Anne Glover’s, chief science adviser for the European Commission (EC), term of office was completed in 2014 the EC president, Jean-Claude Juncker, obliterated the position. Glover, the first and only science adviser for the EC, was to replaced by an advisory council and a new science advice mechanism.

David Bruggemen describes the then situation in a May 14, 2015 posting (Note: A link has been removed),

Earlier this week European Commission President Juncker met with several scientists along with Commission Vice President for Jobs, Growth, Investment and Competitiveness [Jyrki] Katainen and the Commissioner for Research, Science and Innovation ]Carlos] Moedas. …

What details are publicly available are currently limited to this slide deck.  It lists two main mechanisms for science advice, a high-level group of eminent scientists (numbering seven), staffing and resource support from the Commission, and a structured relationship with the science academies of EU member states.  The deck gives a deadline of this fall for the high-level group to be identified and stood up.

… The Commission may use this high-level group more as a conduit than a source for policy advice.  A reasonable question to ask is whether or not the high-level group can meet the Commission’s expectations, and those of the scientific community with which it is expected to work.

David updated the information in a January 29,2016 posting (Note: Links have been removed),

Today the High Level Group of the newly constituted Scientific Advice Mechanism (SAM) of the European Union held its first meeting.  The seven members of the group met with Commissioner for Research, Science and Innovation Carlos Moedas and Andrus Ansip, the Commission’s Vice-President with responsibility for the Digital Single Market (a Commission initiative focused on making a Europe-wide digital market and improving support and infrastructure for digital networks and services).

Given it’s early days, there’s little more to discuss than the membership of this advisory committee (from the SAM High Level Group webpage),

Janusz Bujnicki

Professor, Head of the Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Warsaw

Janusz Bujnicki

Professor of Biology, and head of a research group at IIMCB in Warsaw and at Adam Mickiewicz University, Poznań, Poland. Janusz Bujnicki graduated from the Faculty of Biology, University of Warsaw in 1998, defended his PhD in 2001, was awarded with habilitation in 2005 and with the professor title in 2009.

Bujnicki’s research combines bioinformatics, structural biology and synthetic biology. His scientific achievements include the development of methods for computational modeling of protein and RNA 3D structures, discovery and characterization of enzymes involved in RNA metabolism, and engineering of proteins with new functions. He is an author of more than 290 publications, which have been cited by other researchers more than 5400 times (as of October 2015). Bujnicki received numerous awards, prizes, fellowships, and grants including EMBO/HHMI Young Investigator Programme award, ERC Starting Grant, award of the Polish Ministry of Science and award of the Polish Prime Minister, and was decorated with the Knight’s Cross of the Order of Polonia Restituta by the President of the Republic of Poland. In 2013 he won the national plebiscite “Poles with Verve” in the Science category.

Bujnicki has been involved in various scientific organizations and advisory bodies, including the Polish Young Academy, civic movement Citizens of Science, Life, Environmental and Geo Sciences panel of the Science Europe organization, and Scientific Policy Committee – an advisory body of the Ministry of Science and Higher Education in Poland. He is also an executive editor of the scientific journal Nucleic Acids Research.

Curriculum vitae  PDF icon 206 KB

Pearl Dykstra

Professor of Sociology, Erasmus University Rotterdam

Pearl Dykstra

Professor Dykstra has a chair in Empirical Sociology and is Director of Research of the Department of Public Administration and Sociology at the Erasmus University Rotterdam. Previously, she had a chair in Kinship Demography at Utrecht University (2002-2009) and was a senior scientist at the Netherlands Interdisciplinary Demographic Institute (NIDI) in The Hague (1990-2009).

Her publications focus on intergenerational solidarity, aging societies, family change, aging and the life course, and late-life well-being. She is an elected member of the Netherlands Royal Academy of Arts and Sciences (KNAW, 2004) and Vice-President of the KNAW as of 2011, elected Member of the Dutch Social Sciences Council (SWR, 2006), and elected Fellow of the Gerontological Society of America (2010). In 2012 she received an ERC Advanced Investigator Grant for the research project “Families in context”, which will focus on the ways in which policy, economic, and cultural contexts structure interdependence in families.

Curriculum vitae  PDF icon 391 KB

Elvira Fortunato

Deputy Chair

Professor, Materials Science Department of the Faculty of Science and Technology, NOVA University, Lisbon

Elvira Fortunato

Professor Fortunato is a full professor in the Materials Science Department of the Faculty of Science and Technology of the New University of Lisbon, a Fellow of the Portuguese Engineering Academy since 2009 and decorated as a Grand Officer of the Order of Prince Henry the Navigator by the President of the Republic in 2010, due to her scientific achievements worldwide. In 2015 she was appointed by the Portuguese President Chairman of the Organizing Committee of the Celebrations of the National Day of Portugal, Camões and the Portuguese Communities.

She was also a member of the Portuguese National Scientific & Technological Council between 2012 and 2015 and a member of the advisory board of DG CONNECT (2014-15).

Currently she is the director of the Institute of Nanomaterials, Nanofabrication and Nanomodeling and of CENIMAT. She is member of the board of trustees of Luso-American Foundation (Portugal/USA, 2013-2020).

Fortunato pioneered European research on transparent electronics, namely thin-film transistors based on oxide semiconductors, demonstrating that oxide materials can be used as true semiconductors. In 2008, she received in the 1st ERC edition an Advanced Grant for the project “Invisible”, considered a success story. In the same year she demonstrated with her colleagues the possibility to make the first paper transistor, starting a new field in the area of paper electronics.

Fortunato published over 500 papers and during the last 10 years received more than 16 International prizes and distinctions for her work (e.g: IDTechEx USA 2009 (paper transistor); European Woman Innovation prize, Finland 2011).

Curriculum vitae  PDF icon 339 KB

Rolf-Dieter Heuer

Director-General of the European Organization for Nuclear Research (CERN)

Rolf-Dieter Heuer

Professor Heuer is an experimental particle physicist and has been CERN Director-General since January 2009. His mandate, ending December 2015, is characterised by the start of the Large Hadron Collider (LHC) 2009 as well as its energy increase 2015, the discovery of the H-Boson and the geographical enlargement of CERN Membership. He also actively engaged CERN in promoting the importance of science and STEM education for the sustainable development of the society. From 2004 to 2008, Prof. Heuer was research director for particle and astroparticle physics at the DESY laboratory, Germany where he oriented the particle physics groups towards LHC by joining both large experiments, ATLAS and CMS. He has initiated restructuring and focusing of German high energy physics at the energy frontier with particular emphasis on LHC (Helmholtz Alliance “Physics at the Terascale”). In April 2016 he will become President of the German Physical Society. He is designated President of the Council of SESAME (Synchrotron-Light for Experimental Science and Applications in the Middle East).

Prof. Heuer has published over 500 scientific papers and holds many Honorary Degrees from universities in Europe, Asia, Australia and Canada. He is Member of several Academies of Sciences in Europe, in particular of the German Academy of Sciences Leopoldina, and Honorary Member of the European Physical Society. In 2015 he received the Grand Cross 1st class of the Order of Merit of the Federal Republic of Germany.

Curriculum vitae  PDF icon

Julia Slingo

Chief Scientist, Met Office, Exeter

Julia Slingo

Dame Julia Slingo became Met Office Chief Scientist in February 2009 where she leads a team of over 500 scientists working on a very broad portfolio of research that underpins weather forecasting, climate prediction and climate change projections. During her time as Chief Scientist she has fostered much stronger scientific partnerships across UK academia and international research organisations, recognising the multi-disciplinary and grand challenge nature of weather and climate science and services. She works closely with UK Government Chief Scientific Advisors and is regularly called to give evidence on weather and climate related issues.

Before joining the Met Office she was the Director of Climate Research in NERC’s National Centre for Atmospheric Science, at the University of Reading. In 2006 she founded the Walker Institute for Climate System Research at Reading, aimed at addressing the cross disciplinary challenges of climate change and its impacts. Julia has had a long-term career in atmospheric physics, climate modelling and tropical climate variability, working at the Met Office, ECMWF and NCAR in the USA.

Dame Julia has published over 100 peer reviewed papers and has received numerous awards including the prestigious IMO Prize of the World Meteorological Organization for her outstanding work in meteorology, climatology, hydrology and related sciences. She is a Fellow of the Royal Society, an Honorary Fellow of the Royal Society of Chemistry and an Honorary Fellow of the Institute of Physics.

Curriculum vitae  PDF icon 239 KB

Cédric Villani

Director, Henri Poincaré Institute, Paris

Cédric Villani

Born in 1973 in France, Cédric Villani is a mathematician, director of the Institut Henri Poincaré in Paris (from 2009), and professor at the Université Claude Bernard of Lyon (from 2010). In December 2013 he was elected to the French Academy of Sciences.

He has worked on the theory of partial differential equations involved in statistical mechanics, specifically the Boltzmann equation, and on nonlinear Landau damping. He was awarded the Fields Medal in 2010 for his works.

Since then he has been playing an informal role of ambassador for the French mathematical community to media (press, radio, television) and society in general. His books for non-specialists, in particular Théorème vivant (2012, translated in a dozen of languages), La Maison des mathématiques (2014, with J.-Ph. Uzan and V. Moncorgé) and Les Rêveurs lunaires (2015, with E. Baudoin) have all found a wide audience. He has also given hundreds of lectures for all kinds of audiences around the world.

He participates actively in the administration of science, through the Institut Henri Poincaré, but also by sitting in a number of panels and committees, including the higher council of research and the strategic council of Paris. Since 2010 he has been involved in fostering mathematics in Africa, through programs by the Next Einstein Initiative and the World Bank.

Believing in the commitment of scientists in society, Villani is also President of the Association Musaïques, a European federalist and a father of two.


Henrik C. Wegener


Executive Vice President, Chief Academic Officer and Provost, Technical University of Denmark

Henrik C. Wegener

Henrik C. Wegener is Executive Vice President and Chief Academic Officer at Technical University of Denmark since 2011. He received his M.Sc. in food science and technology at the University of Copenhagen in 1988, his Ph.D. in microbiology at University of Copenhagen in 1992, and his Master in Public Administration (MPA) form Copenhagen Business School in 2005.

Henrik C. Wegener was director of the National Food Institute, DTU from 2006-2011 and before that head of the Department of Epidemiology and Risk Assessment at National Food and Veterinary Research Institute, Denmark (2004-2006). From 1994-1999, he was director of the Danish Zoonosis Centre, and from 1999-2004 professor of zoonosis epidemiology at Danish Veterinary Institute. He was stationed at World Health Organization headquarters in Geneva from 1999-2000. With more than 3.700 citations (h-index 34), he is the author of over 150 scientific papers in journals, research monographs and proceedings, on food safety, zoonoses, antimicrobial resistance and emerging infectious diseases.

He has served as advisor and reviewer to national and international authorities & governments, international organizations and private companies, universities and research foundations, and he has served, and is presently serving, on several national and international committees and boards on food safety, veterinary public health and research policy.

Henrik C. Wegener has received several awards, including the Alliance for the Prudent Use of Antibiotics International Leadership Award in 2003.

That’s quite a mix of sciences and I’m happy to see a social scientist has been included.

Conference submissions

Getting back to the conference and its call for speakers, the deadline for submissions is March 25, 2016. Interestingly, there’s also this (from conference webpage),

The deadline for submissions is 25th March 2016. The conference programme committee with session chairs will review all proposals and select those that best fit the aim of each session while also representing a diverse range of perspectives. We aim to inform selected speakers within 4 weeks of the deadline to enable travel planning to Brussels.

To make the conference as accessible as possible, there is no registration fee. [emphasis mine] The European Commission will cover travel accommodation costs only for confirmed speakers for whom the travel and accommodation arrangements will be made by the Commission itself, on the basis of the speakers’ indication.

Good luck!

*Head for conference submissions added on Feb. 29, 2016 at 1155 hundred hours.

Back to the mortar and pestle for perovskite-based photovoltaics

This mechanochemistry (think mortar and pestle) story about perovskite comes from Poland. From a Jan. 14, 2016 Institute of Physical Chemistry of the Polish Academy of Sciences press release (also on EurekAlert but dated Jan. 16, 2016),

Perovskites, substances that perfectly absorb light, are the future of solar energy. The opportunity for their rapid dissemination has just increased thanks to a cheap and environmentally safe method of production of these materials, developed by chemists from Warsaw, Poland. Rather than in solutions at a high temperature, perovskites can now be synthesized by solid-state mechanochemical processes: by grinding powders.

We associate the milling of chemicals less often with progress than with old-fashioned pharmacies and their inherent attributes: the pestle and mortar. [emphasis mine] It’s time to change this! Recent research findings show that by the use of mechanical force, effective chemical transformations take place in solid state. Mechanochemical reactions have been under investigation for many years by the teams of Prof. Janusz Lewinski from the Institute of Physical Chemistry of the Polish Academy of Sciences (IPC PAS) and the Faculty of Chemistry of Warsaw University of Technology. In their latest publication, the Warsaw researchers describe a surprisingly simple and effective method of obtaining perovskites – futuristic photovoltaic materials with a spatially complex crystal structure.

“With the aid of mechanochemistry we are able to synthesize a variety of hybrid inorganic-organic functional materials with a potentially great significance for the energy sector. Our youngest ‘offspring’ are high quality perovskites. These compounds can be used to produce thin light-sensitive layers for high efficiency solar cells,” says Prof. Lewinski.

Perovskites are a large group of materials, characterized by a defined spatial crystalline structure. In nature, the perovskite naturally occurring as a mineral is calcium titanium(IV) oxide CaTiO3. Here the calcium atoms are arranged in the corners of the cube, in the middle of each wall there is an oxygen atom and at the centre of the cube lies a titanium atom. In other types of perovskite the same crystalline structure can be constructed of various organic and inorganic compounds, which means titanium can be replaced by, for example, lead, tin or germanium. As a result, the properties of the perovskite can be adjusted so as to best fit the specific application, for example, in photovoltaics or catalysis, but also in the construction of superconducting electromagnets, high voltage transformers, magnetic refrigerators, magnetic field sensors, or RAM memories.

At first glance, the method of production of perovskites using mechanical force, developed at the IPC PAS, looks a little like magic.

“Two powders are poured into the ball mill: a white one, methylammonium iodide CH3NH3I, and a yellow one, lead iodide PbI2. After several minutes of milling no trace is left of the substrates. Inside the mill there is only a homogeneous black powder: the perovskite CH3NH3PbI3,” explains doctoral student Anna Maria Cieslak (IPC PAS).

“Hour after hour of waiting for the reaction product? Solvents? High temperatures? In our method, all this turns out to be unnecessary! We produce chemical compounds by reactions occurring only in solids at room temperature,” stresses Dr. Daniel Prochowicz (IPC PAS).

The mechanochemically manufactured perovskites were sent to the team of Prof. Michael Graetzel from the Ecole Polytechnique de Lausanne in Switzerland, where they were used to build a new laboratory solar cell. The performance of the cell containing the perovskite with a mechanochemical pedigree proved to be more than 10% greater than a cell’s performance with the same construction, but containing an analogous perovskite obtained by the traditional method, involving solvents.

“The mechanochemical method of synthesis of perovskites is the most environmentally friendly method of producing this class of materials. Simple, efficient and fast, it is ideal for industrial applications. With full responsibility we can state: perovskites are the materials of the future, and mechanochemistry is the future of perovskites,” concludes Prof. Lewinski.

The described research will be developed within GOTSolar collaborative project funded by the European Commission under the Horizon 2020 Future and Emerging Technologies action.

Perovskites are not the only group of three-dimensional materials that has been produced mechanochemically by Prof. Lewinski’s team. In a recent publication the Warsaw researchers showed that by using the milling technique they can also synthesize inorganic-organic microporous MOF (Metal-Organic Framework) materials. The free space inside these materials is the perfect place to store different chemicals, including hydrogen.

This research was published back in August 2015,

Mechanosynthesis of the hybrid perovskite CH3NH3PbI3: characterization and the corresponding solar cell efficiency by D. Prochowicz, M. Franckevičius, A. M. Cieślak, S. M. Zakeeruddin, M. Grätzel and J. Lewiński. J. Mater. Chem. A, 2015,3, 20772-20777 DOI: 10.1039/C5TA04904K First published online 27 Aug 2015

This paper is behind a paywall.

Zebras, Turing patterns, and the Polish Academy of Sciences

A Feb. 6, 2015 news item on Azonano profiles some research from the Polish Academy of Sciences’ Institute of Physical Chemistry (IPC PAS),

In the world of single atoms and molecules governed by chaotic fluctuations, is the spontaneous formation of Turing patterns possible – the same ones that are responsible for the irregular yet periodic shapes of the stripes on zebras’ bodies? A Polish-Danish team of physicists has for the first time demonstrated that such a process can not only occur, but can also be used for potentially very interesting applications.

A Feb. 6, 2015 IPC PAS press release (also on EurekAlert), which originated the news item, describes Turing’s patterns and the research in more detail,

Everyone is familiar with a zebra’s stripes, but not everyone knows that these are the manifestations of chemical reactions taking place according to a process first described by the famous British mathematician Alan Turing, the creator of the basics of today’s computer science. Turing patterns, most commonly displayed in chemistry as periodic changes in the concentration of chemical substances, have hitherto only been observed in dimensions of microns or larger. It seemed that on a smaller scale – at the nanoscale, where random fluctuations rule the movement of single atoms and molecules – these patterns do not have the right to form spontaneously.

“So far, no-one has even studied the possibility of the formation of Turing patterns by single atoms or molecules. However, our results show that Turing nanostructures may exist. And since this is the case, we will be able to find very specific applications for them in nanotechnology and materials science,” says Dr. Bogdan Nowakowski from the Institute of Physical Chemistry of the Polish Academy of Sciences (IPC PAS) in Warsaw, one of the physicists in the Polish-Danish team that has recently conducted computer simulations and theoretical analyses on Turing nanostructures.

Turing patterns occur in dynamic systems far from a state of equilibrium. Under the appropriate conditions there may then be a feedback mechanism: chemical reactions taking place may influence the concentration of their own components, which in turn may change the course of the reaction itself. The process leads to the formation of periodic, but not necessarily monotonously regular patterns. In nature, these patterns play an important role, particularly in the formation of young organisms (morphogenesis). For example, in the initial phases of the development of vertebrate embryos, this is how periodic segments, somites, are formed in the dorsal mesoderm, which are later converted into, among others, vertebrae, components of the spine.

“In our studies we considered very simple reactions of two model substances with different rates of diffusion. Computer simulations carried out using molecular dynamics, in collaboration with Dr. Jesper Hansen from the Danish University of Roskilde, gave rise to a very interesting picture,” says Dr. Piotr Dziekan (IPC PAS).

Clear and permanent patterns formed spontaneously in the simulated systems (of nanometer dimensions) – periodic changes in the density of molecules, which remained stable despite the destructive influence of fluctuations. It turned out that one cycle of concentration changes within the Turing pattern could appear on a length of just 20 molecules.

For Turing nanostructures to be formed, chemical reactions satisfying certain conditions have to take place between the chemical substances. This requirement severely reduces the number of compounds that can participate in the process and, consequently, severely limits the potential applications. However, the simulations carried out by the Polish-Danish team suggest that Turing nanostructures can quite easily be transferred to other compounds, not participating directly in the main reaction.

“Turing nanostructures can only arise with carefully selected chemical substances. Fortunately, the pattern formed by them can be ‘imprinted’ in the concentration of other chemical compounds. For the pattern to be copied, these compounds must fulfill only two simple conditions: they must bind to one of the reactants of the main reaction and diffuse slowly,” explains Dr. Dziekan.

This work is theoretical as the final paragraph of the press release intimates,

The possibility of forming Turing patterns on nanometer distances opens the door to interesting applications, particularly in the field of surface modification of materials. By skillfully selecting the chemical composition of the reagents and the conditions in which the reaction occurs, it could be possible to form Turing patterns in two dimensions (on the same surface of the material), or three (also in the space adjacent to the surface). The formed patterns could then be fixed, e.g. by photopolymerisation, thereby obtaining a permanent, stable, extended surface with a complex, periodic structure.

Here’s a link to and a citation for the paper,

Nanoscale Turing structures by Piotr Dziekan. J. S. Hansen, and Bogdan Nowakowski. J. Chem. Phys. 141, 124106 (2014); http://dx.doi.org/10.1063/1.4895907

This paper is behind a paywall.

Martini with your salad? an update on Janus particles and emulsification

Close to a year since I first posted about this research (my July 8, 2013 posting about oil, electricity, and emulsification), scientists have published their latest work on using electricity to control nanoparticles. A June 26, 2014 Polish Academy of Sciences press release (also on EurekAlert) provides this summary,

Everything depends on how you look at them. Looking from one side you will see one face; and when looking from the opposite side – you will see a different one. So appear Janus capsules, miniature, hollow structures, in different fragments composed of different micro- and nanoparticles. Theoreticians were able to design models of such capsules, but a real challenge was to produce them. Now, Janus capsules can be produced easily and at low cost.

Before describing the process for producing Janus capsules, an explanation of Janus (a Roman god) and the problem the scientists were trying to solve (from the press release),

Janus, the old Roman god of beginnings and transitions, attracted believers’ attention with his two faces, each looking to different direction of the world. Janus capsules – ‘bubbles’ made up of two shells stuck one another, each composed of micro- or nanoparticles of different properties – have been for some time attracting the researchers’ attention. They see in the capsules an excellent tool for transporting drugs and a vehicle leading to innovative materials. To have, however, Janus capsules generally accessible, efficient methods for their mass production must be developed. An important step in this direction is the achievement of researchers from the Norwegian and French research institutions and the Institute of Physical Chemistry of the Polish Academy of Sciences (IPC PAS) in Warsaw, reported recently in one of the most reputable scientific journals: “Nature Communications”.

At present, it is not a problem to produce Janus spheres – round, entirely filled micro- and nanoobjects with one part having different properties than the other. Such spheres can be, for instance, produced by sticking together two drops of different substances. After merging, the new drop requires a sufficiently fast fixation only, e.g., by cooling it down or initiating polymerisation of its materials. For instance, Janus spheres are particles with white and black halves, used for image generation in electrophoretic displays incorporated in e-book reading devices.

“Janus capsules differ from Janus spheres: the former are hollow structures, and their partially permeable shell is made of colloidal particles. How to make such a ‘two-faced bubble’ using micro- and nanoparticles? Many researchers reflect on the problem. We proposed a really not complicated solution”, says Dr Zbigniew Rozynek (IPC PAS [Institute of Physical Chemistry Polish Academy of Sciences]), who experimentally studied Janus capsules during his postdoctoral training at Norwegian University of Science and Technology in Trondheim.

Here’s an illustration the researchers have provided,

Caption: These are typical capsules (mainly Janus capsules) obtained with the method described in the press release of the Institute of Physical Chemistry of the Polish Academy of Sciences in Warsaw. Credit: adopted from Nat. Commun. 5, 3945 (2014)

Caption: These are typical capsules (mainly Janus capsules) obtained with the method described in the press release of the Institute of Physical Chemistry of the Polish Academy of Sciences in Warsaw.
Credit: adopted from Nat. Commun. 5, 3945 (2014)

Here’s how the researchers solved their problem (from the press release),

In their experiments, an international team of researchers produced Janus capsules with drops of single millilitres in volume. The drops were coated, for instance, with polystyrene or glass nanoparticles with diameters of about 500 nm (billionth parts of a meter) or 1000 nm, respectively. Also differently coloured polyethylene particles were used.

The experiments were performed with oil drops suspended in another oil. To a so prepared environment micro- or nanoparticles of one type were placed and deposited on the surface of a selected drop. Then, particles of another type were brought to the surface of the second drop. Due to the action of capillary forces, the particles were durably kept on the surfaces of both drops, being approximately uniformly distributed.

When an external electric field was turned on, microflows were induced inside and outside the drops. The microflows transported the particles toward the electric ‘equator’. In this step, the packing of colloidal particles could be controlled by shaking the drops in a slowly alternating electric field. The way how the particles are packed is an important factor, as it determines the number and size of pores of the future capsule, and consequently the capsule permeability.

The microflows around the electric equators of the drops resulted in formation of a ring-shaped ribbon, composed of densely packed particles , whereas both electric ‘poles’ became particles-free regions. At the same time, the poles of each drop were acquiring opposite electric charges.

Opposite electric charges attract one another, so the drops with charged poles were heading to each other. In this step, the only thing to do was to convince both drops not only to adjoin with their poles, but actually to merge. For that purpose the long-known electrocoalescence was used: the drops were stimulated for faster merging by an electric field. Finally the drops electrocoalesced, resulting in the formation of a Janus capsule. Due to a dense packing of particles within the capsule the particles of different types virtually did not mix with each other.

It’s like the famous James Bond’s martini: it was always to be shaken, not stirred“, laughs Dr Rozynek. [emphasis mine]

The ultimate capsule appearance was determined by the number of particles deposited on the surfaces of initial drops. If the particles covered both drops with a uniform film, extending almost to the poles, the coalescence resulted in a non-spherical structure. When empty areas around the poles were suitably larger, the Janus capsules acquired a spherical shape. Finally, if the ribbons around the equators of the initial drops were narrow, the coalescence resulted in formation of a structure, which could be called a Janus ring.

The rings with two parts composed of two different types of particles provide interesting opportunities. They can be further stuck each other and produce more complex striped structures. The capsules could be then composed of alternately placed strips of particles, with each strip having different properties than its neighbours.

Janus capsules enable encapsulation of microobjects, nanoparticles or molecules, which must be protected against the environment because of their sensitivity or reactivity. Different properties of both capsule parts make it easier to control the movement of the capsules and the release of their contents. In view of these factors, Janus capsules may find numerous applications. The proposed method for producing the Janus capsules is potentially of great importance for pharmaceutical, dye or food industries, as well as for the development of materials engineering and medicine.

Here’s a link to and a citation for the paper,

Electroformation of Janus and patchy capsules by Zbigniew Rozynek, Alexander Mikkelsen, Paul Dommersnes, & Jon Otto Fossum. Nature Communications 5, Article number: 3945 doi:10.1038/ncomms4945 Published 23 May 2014

This is an open access paper,

Canada’s ‘nano’satellites to gaze upon luminous stars

The launch (from Yasny, Russia) of two car battery-sized satellites happened on June 18, 2014 at 15:11:11 Eastern Daylight Time according to a June 18, 2014 University of Montreal (Université de Montréal) news release (also on EurekAlert).

Together, the satellites are known as the BRITE-Constellation, standing for BRIght Target Explorer. “BRITE-Constellation will monitor for long stretches of time the brightness and colour variations of most of the brightest stars visible to the eye in the night sky. These stars include some of the most massive and luminous stars in the Galaxy, many of which are precursors to supernova explosions. This project will contribute to unprecedented advances in our understanding of such stars and the life cycles of the current and future generations of stars,” said Professor Moffat [Anthony Moffat, of the University of Montreal and the Centre for Research in Astrophysics of Quebec], who is the scientific mission lead for the Canadian contribution to BRITE and current chair of the international executive science team.

Here’s what the satellites (BRITE-Constellatio) are looking for (from the news release),

Luminous stars dominate the ecology of the Universe. “During their relatively brief lives, massive luminous stars gradually eject enriched gas into the interstellar medium, adding heavy elements critical to the formation of future stars, terrestrial planets and organics. In their spectacular deaths as supernova explosions, massive stars violently inject even more crucial ingredients into the mix. The first generation of massive stars in the history of the Universe may have laid the imprint for all future stellar history,” Moffat explained. “Yet, massive stars – rapidly spinning and with radiation fields whose pressure resists gravity itself – are arguably the least understood, despite being the brightest members of the familiar constellations of the night sky.” Other less-massive stars, including stars similar to our own Sun, also contribute to the ecology of the Universe, but only at the end of their lives, when they brighten by factors of a thousand and shed off their tenuous outer layers.

BRITE-Constellation is both a multinational effort and a Canadian bi-provincial effort,

BRITE-Constellation is in fact a multinational effort that relies on pioneering Canadian space technology and a partnership with Austrian and Polish space researchers – the three countries act as equal partners. Canada’s participation was made possible thanks to an investment of $4.07 million by the Canadian Space Agency. The two new Canadian satellites are joining two Austrian satellites and a Polish satellite already in orbit; the final Polish satellite will be launched in August [2014?].

All six satellites were designed by the University of Toronto Institute for Aerospace Studies – Space Flight Laboratory, who also built the Canadian pair. The satellites were in fact named “BRITE Toronto” and “BRITE Montreal” after the University of Toronto and the University of Montreal, who play a major role in the mission.  “BRITE-Constellation will exploit and enhance recent Canadian advances in precise attitude control that have opened up for space science  the domain of very low cost, miniature spacecraft, allowing a scientific return that otherwise would have had price tags 10 to 100 times higher,” Moffat said. “This will actually be the first network of satellites devoted to a fundamental problem in astrophysics.”

Is it my imagination or is there a lot more Canada/Canadian being included in news releases from the academic community these days? In fact, I made a similar comment in my June 10, 2014 posting about TRIUMF, Canada’s National Laboratory for Particle and Nuclear Physics where I noted we might not need to honk our own horns quite so loudly.

One final comment, ‘nano’satellites have been launched before as per my Aug. 6, 2012 posting,

The nanosatellites referred to in the Aug.2, 2012 news release on EurekALert aren’t strictly speaking nano since they are measured in inches and weigh approximately eight pounds. I guess by comparison with a standard-sized satellite, CINEMA, one of 11 CubeSats, seems nano-sized. From the news release,

Eleven tiny satellites called CubeSats will accompany a spy satellite into Earth orbit on Friday, Aug. 3, inaugurating a new type of inexpensive, modular nanosatellite designed to piggyback aboard other NASA missions. [emphasis mine]

One of the 11 will be CINEMA (CubeSat for Ions, Neutrals, Electrons, & MAgnetic fields), an 8-pound, shoebox-sized package which was built over a period of three years by 45 students from the University of California, Berkeley, Kyung Hee University in Korea, Imperial College London, Inter-American University of Puerto Rico, and University of Puerto Rico, Mayaguez.

This 2012 project had a very different focus from this Austrian-Canadian-Polish effort. From the University of Montreal news release,

The nanosatellites will be able to explore a wide range of astrophysical questions. “The constellation could detect exoplanetary transits around other stars, putting our own planetary system in context, or the pulsations of red giants, which will enable us to test and refine our models regarding the eventual fate of our Sun,” Moffatt explained.

Good luck!

Italians and Polish collaborate on nanoscale study of vanishing Da Vinci self-portrait

In addition to a new nondamaging technique to examine paintings (my June 2, 2014 post: Damage-free art authentication and spatially offset Raman spectroscopy [SORS]), there’s a new report in a June 3, 2014 news item on ScienceDaily about a nondamaging technique to examine paper such as the paper on which holds a Da Vinci self-portrait,

One of Leonardo da Vinci’s masterpieces, drawn in red chalk on paper during the early 1500s and widely believed to be a self-portrait, is in extremely poor condition. Centuries of exposure to humid storage conditions or a closed environment has led to widespread and localized yellowing and browning of the paper, which is reducing the contrast between the colors of chalk and paper and substantially diminishing the visibility of the drawing.

A group of researchers from Italy and Poland with expertise in paper degradation mechanisms was tasked with determining whether the degradation process has now slowed with appropriate conservation conditions — or if the aging process is continuing at an unacceptable rate.

Caption: This is Leonardo da Vinci's self-portrait as acquired during diagnostic studies carried out at the Central Institute for the Restoration of Archival and Library Heritage in Rome, Italy. Credit: M. C. Misiti/Central Institute for the Restoration of Archival and Library Heritage, Rome

Caption: This is Leonardo da Vinci’s self-portrait as acquired during diagnostic studies carried out at the Central Institute for the Restoration of Archival and Library Heritage in Rome, Italy.
Credit: M. C. Misiti/Central Institute for the Restoration of Archival and Library Heritage, Rome

The June 3, 2014 American Institute of Physics news release on EurekAlert provides more detail about the work,

… the team developed an approach to nondestructively identify and quantify the concentration of light-absorbing molecules known as chromophores in ancient paper, the culprit behind the “yellowing” of the cellulose within ancient documents and works of art.

“During the centuries, the combined actions of light, heat, moisture, metallic and acidic impurities, and pollutant gases modify the white color of ancient paper’s main component: cellulose,” explained Joanna Łojewska, a professor in the Department of Chemistry at Jagiellonian University in Krakow, Poland. “This phenomenon is known as ‘yellowing,’ which causes severe damage and negatively affects the aesthetic enjoyment of ancient art works on paper.”

Chromophores are the key to understanding the visual degradation process because they are among the chemical products developed by oxidation during aging and are, ultimately, behind the “yellowing” within cellulose. Yellowing occurs when “chromophores within cellulose absorb the violet and blue range of visible light and largely scatter the yellow and red portions — resulting in the characteristic yellow-brown hue,” said Olivia Pulci, a professor in the Physics Department at the University of Rome Tor Vergata.

To determine the degradation rate of Leonardo’s self-portrait, the team created a nondestructive approach that centers on identifying and quantifying the concentration of chromophores within paper. It involves using a reflectance spectroscopy setup to obtain optical reflectance spectra of paper samples in the near-infrared, visible, and near-ultraviolet wavelength ranges.

Once reflectance data is gathered, the optical absorption spectrum of cellulose fibers that form the sheet of paper can be calculated using special spectroscopic data analysis.

Then, computational simulations based on quantum mechanics — in particular, Time-Dependent Density Functional Theory, which plays a key role in studying optical properties in theoretical condensed matter physics — are tapped to calculate the optical absorption spectrum of chromophores in cellulose.

“Using our approach, we were able to evaluate the state of degradation of Leonardo da Vinci’s self-portrait and other paper specimens from ancient books dating from the 15th century,” said Adriano Mosca Conte, a researcher at the University of Rome Tor Vergata. “By comparing the results of ancient papers with those of artificially aged samples, we gained significant insights into the environmental conditions in which Leonardo da Vinci’s self-portrait was stored during its lifetime.”

Their work revealed that the type of chromophores present in Leonardo’s self portrait are “similar to those found in ancient and modern paper samples aged in extremely humid conditions or within a closed environment, which agrees with its documented history,” said Mauro Missori, a researcher at the Institute for Complex Systems, CNR, in Rome, Italy.

One of the most significant implications of their work is that the state of degradation of ancient paper can be measured and quantified by evaluation of the concentrations of chromophores in cellulose fibers. “The periodic repetition of our approach is fundamental to establishing the formation rate of chromophores within the self-portrait. Now our approach can serve as a precious tool to preserve and save not only this invaluable work of art, but others as well,” Conte noted.

Absolutely fascinating stuff to those of use who care about yellowing paper. (Having worked in an archives, I care deeply.) Here’s a link to and a citation for the study,

Visual degradation in Leonardo da Vinci’s iconic self-portrait: A nanoscale study by A. Mosca Conte, O. Pulci, M. C. Misiti, J. Lojewska, L. Teodonio1, C. Violante, and M. Missori. Appl. Phys. Lett. 104, 224101 (2014); http://dx.doi.org/10.1063/1.4879838

This is an open access study.

Chiral breathing at the Institute of Physical Chemistry of the Polish Academy of Sciences (IPC PAS)

An April 17, 2014 news item on ScienceDaily highlights some research about a polymer that has some special properties,

Electrically controlled glasses with continuously adjustable transparency, new polarisation filters, and even chemosensors capable of detecting single molecules of specific chemicals could be fabricated thanks to a new polymer unprecedentedly combining optical and electrical properties.

An international team of chemists from Italy, Germany, and Poland developed a polymer with unique optical and electric properties. Components of this polymer change their spatial configuration depending on the electric potential applied. In turn, the polarisation of transmitted light is affected. The material can be used, for instance, in polarisation filters and window glasses with continuously adjustable transparency. Due to its mechanical properties, the polymer is also perfectly suitable for fabrication of chemical sensors for selective detection and determination of optically active (chiral) forms of an analyte.

The research findings of the international team headed by Prof. Francesco Sannicolo from the Universita degli Studi di Milano were recently published in Angewandte Chemie International Edition.

“Until now, to give polymers chiral properties, chiral pendants were attached to the polymer backbone. In such designs the polymer was used as a scaffold only. Our polymer is exceptional, with chirality inherent to it, and with no pending groups. The polymer is both a scaffold and an optically active chiral structure. Moreover, the polymer conducts electricity,” comments Prof. Włodzimierz Kutner from the Institute of Physical Chemistry of the Polish Academy of Sciences (IPC PAS) in Warsaw, one of the initiators of the research.

An April 17, 2014 IPC PAS news release (also on EurrekAlert), which originated the news item, describes chirality and the breathing metaphor with regard to this new polymer,

Chirality can be best explained by referring to mirror reflection. If two varieties of the same object look like their mutual mirror images, they differ in chirality. Human hands provide perhaps the most universal example of chirality, and the difference between the left and right hand becomes obvious if we try to place a left-handed glove on a right hand. The same difference as between the left and right hand is between two chiral molecules with identical chemical composition. Each of them shows different optical properties, and differently rotates plane-polarised light. In such a case, chemists refer to one chemical compound existing as two optical isomers called enantiomers.

The polymer presented by Prof. Sannicolo’s team was developed on the basis of thiophene, an organic compound composed of a five-member aromatic ring containing a sulphur atom. Thiophene polymerisation gives rise to a chemically stable polymer of high conductivity. The basic component of the new polymer – its monomer – is made of a dimer with two halves each made of two thiophene rings and one thianaphthene unit. The halves are connected at a single point and can partially be rotated with respect to each other by applying electric potential. Depending on the orientation of the halves, the new polymer either assumes or looses chirality. This behaviour is fully reversible and resembles a breathing system, whereas the “chiral breathing” is controlled by an external electric potential.

The development of a new polymer was initiated thanks to the research on molecular imprinting pursued at the Institute of Physical Chemistry of the PAS. The research resulted, for instance, in the development of polymers used as recognising units (receptors) in chemosensors, capable of selective capturing of molecules of various analytes, for instance nicotine, and also melamine, an ill-reputed chemical detrimental to human health, used as an additive to falsify protein content in milk and dairy products produced in China.

Generally, molecular imprinting consists in creating template-shaped cavities in polymer matrices with molecules of interest used first as cavity templates. Subsequently these templates are washed out from the polymer. As a result, the polymer contains traps with a shape and size matching those of molecules of the removed template. To be used as a receptor in chemosensor to recognize analyte molecules similar to templates or templates themselves, the polymer imprinted with these cavities must show a sufficient mechanical strength.

“Three-dimensional networks we attempted to build at the IPC PAS using existing two-dimensional thiophene derivatives just collapsed after the template molecules were removed. That’s why we asked for assistance our Italian partners, specialising in the synthesis of thiophene derivatives. The problem was to design and synthesise a three-dimensional thiophene derivative that would allow us for cross-linking of our polymers in three dimensions. The thiophene derivative synthesised in Milan has a stable three-dimensional structure, and the controllable chiral properties of the new polymer obtained after the derivative was polymerised, turned out a nice surprise for all of us”, explains Prof. Kutner.

Here’s a link to and a citation for the paper,

Potential-Driven Chirality Manifestations and Impressive Enantioselectivity by Inherently Chiral Electroactive Organic Films by  Prof. Francesco Sannicolò1, Serena Arnaboldi, Prof. Tiziana Benincori, Dr. Valentina Bonometti, Dr. Roberto Cirilli, Prof. Lothar Dunsch, Prof. Włodzimierz Kutner, Prof. Giovanna Longhi, Prof. Patrizia R. Mussini, Dr. Monica Panigati, Prof. Marco Pierini, and Dr. Simona Rizzo. Angewandte Chemie International Edition Volume 53, Issue 10, pages 2623–2627, March 3, 2014. Article first published online: 5 FEB 2014 DOI: 10.1002/anie.201309585

© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This article is behind a paywall.