Tag Archives: Project on Emerging Nanotechnologies

Crypton and NANO-TEX together at last

A Jan. 6, 2014 news item on Nanowerk notes that Crypton Fabrics has purchased NANO-TEX,

CRYPTON INC. has acquired NANO-TEX®, announced Randy Rubin, Chairman of The Crypton Companies. The privately held, 20-year-old Crypton Fabrics, based in Bloomfield Hills, Michigan, recently purchased NANO-TEX from private equity and venture capital investors; WL Ross and Co. LLC as major stockholders, in addition to Norwest Venture Partners, Masters Capital Nanotechnology Fund, Firelake Capital Management and Masters Capital Management.

NANO-TEX is a textile technology company whose performance finishes have enhanced leading consumer brands such as GAP, TARGET, MAIDENFORM, BASS PRO SHOPS, NORDSTROM, LAND’S END, FISHER-PRICE and many more.

The Jan. 6, 2014 Crypton (there has to be a Superman or inert gas enthusiast in that company) press release, which can be found on this page under this title: Silicon Valley to Motown, Performance Textile Leader Crypton Purchases Nano-Tex, explains why the NANO-TEX acquisition was so attractive and what it means to NANO-TEX’s major stockholders,

NANO‐TEX employs a proprietary nanotechnology approach to enhance textiles at the molecular level that provides permanent performance attributes such as stain and water resistance, moisture wicking, odor control, static elimination and wrinkle free properties. The end result is performance fabrics that maintain the original comfort, look and feel of the fabric and perform for the life of the product.

In 2013, NANO‐TEX technologies were on $280 million in branded finished products at retail worldwide.

Wilbur Ross, Jr., Chairman of WL Ross said, “We are extremely pleased by Crypton’s acquisition. This assures that NANO‐TEX will continue on a strong growth trajectory. Its expanding market reach and prominence will further enhance the competitiveness of WL Ross’s companies in the consumer and industrial fabrics industries, too; the goal that sparked our initial investment interest in NANO‐TEX eight years ago.”

It seems there was a specific product which attracted the Crypton team’s attention,

“This is a strategic acquisition as we extend our market share with apparel throughout the world. The intellectual properties and latest development, Aquapel®, a non‐fluorinated repellency treatment, is very exciting to our research team,” said Rubin.

There’s more about this product on the NANO-TEX Aquapel® page.

On a completely other note, at least one NANO-TEX product has silver in it according to a 2007 entry on the Consumer Products Inventory (Project on Emerging Nanotechnologies),

They Say:

“Nano-Tex™’s revolutionary technology fundamentally transforms fabric at the nano-level to dramatically improve your favorite everyday clothing.”

Nanomaterials:

Silver

Potential Exposure Pathways:

Dermal

How much we know:

Category 4 (Unsupported claim)

Additional Information:

Generic Product

Crypton too has silver in at least one product (from the INCASE Fabric Protection FAQs),

Q:  How does INCASE™ resist bacterial growth?
A: Silver Ion technology is used in INCASE to inhibit the growth of a broad spectrum of medically relevant microorganisms, including bacteria. Silver is one of nature’s original antimicrobials. Used thousands of years ago by Greeks in vessels to preserve water and wine, the natural benefits of silver have now been tapped to keep fabrics odor-free.

Cyrpton’s INCASE product uses sliver ions, which according to some research at Rice University (based in Texas, US), are more toxic than silver nanoparticles, from my July 13, 2012 posting,

He [Pedro Alvarez, George R. Brown Professor and chair of Rice’s Civil and Environmental Engineering Department] said the finding should shift the debate over the size, shape and coating of silver nanoparticles. [emphasis mine] “Of course they matter,” Alvarez said, “but only indirectly, as far as these variables affect the dissolution rate of the ions. The key determinant of toxicity is the silver ions. So the focus should be on mass-transfer processes and controlled-release mechanisms.”

Crypton’s About page strongly suggests an environmentally friendly and health conscious company (Note: Links have been removed),

Innovation. Industry leadership. A deep commitment to product excellence. These core elements are at the heart of the Crypton DNA – a labor of love that began in 1993 when founders Craig and Randy Rubin set out to create a new generation of stylish fabrics that were moisture-resistant and easy-to-clean, yet soft, comfortable and breathable.

From the basement of their Michigan home, a textile revolution was born.

Now based in West Bloomfield Michigan, with a green manufacturing facility in Kings Mountain, North Carolina, Crypton is the only textile solution in the world offering complete stain, moisture, mildew, bacteria and odor-resistant protection thanks to a patented process developed by some of the leading minds in the textile industry.

Early on, by offering a fabric – not a vinyl or plastic – that was capable of resisting stains, moisture, odors and bacteria, Crypton proved to be the perfect solution for the health care market. Following this initial success, Crypton solutions rapidly expanded into some of the finest restaurants, hotels, cruise ships around the world, as well as government complexes, schools and health care facilities.

Now trusted and relied on by over 90% of contract designers, there are more than 20,000 patterns of Crypton fabric available today. Crypton is the only fabric deemed a non-porous surface and can be disinfected when used in conjunction with our U.S. EPA-approved Crypton Disinfectant & Deodorizer.

From fabric, carpet, leather, wall and mattress to pet beds, home accessories, bags and luggage – our mission is to give customers more ways to live healthy, live beautifully and Live Clean®.

While there is no incontrovertible proof that silver nanoparticles and/or silver ions are a serious threat to the environment, it would be nice to see companies acknowledge some of the concerns.

Nanosilver—US Environmental Protection Agency (EPA) gets wrist slapped over nanosilver decision in textiles while Canadian Broadcasting Corporation (CBC) publishes article about nanosilver

I have two pieces about nanosilver today (Nov. 11 ,2013). The first concerns a Nov. 7, 2013 court ruling in favour of the Natural Resources Defense Council (NRDC) stating that the US Environmental Protection Agency (EPA) failed to follow its own rules when it accorded HeiQ Materials (a Swiss textile company) permission to market and sell its nanosilver-based antimicrobial fabric treatment in the US. From the NRDC’s Nov. 7, 2013 press release,

Court Ruling in NRDC’s Favor Should Limit Pesticide Nanosilver in Textiles

In a decision handed down today, the court said the EPA had improperly approved the use of nanosilver by one U.S. textile manufacturer [HeiQ Materials; headquarteed in Switzerland]. The court vacated the approval and sent it back to the agency for reevaluation. The lawsuit has been closely watched as a test case for the growing use of nanotechnology in consumer products.

“The court’s ruling puts us a step closer toward removing nanosilver from textiles,” said Mae Wu, an attorney in NRDC’s Health Program. “EPA shouldn’t have approved nanosilver in the first place. This is just one of a long line of decisions by the agency treating people and our environment as guinea pigs and laboratories for these untested pesticides.”

NRDC sued the U.S. Environmental Protection Agency in early 2012 to limit the use of nanosilver out of a concern for public health. Today the 9th U.S. Circuit Court of Appeals agreed with a key point NRDC raised: that the EPA didn’t follow its own rules for determining whether the pesticide’s use in products would be safe.

Beginning in December 2011, EPA approved the company HeiQ Materials to sell nanosilver used in fabrics for the next four years and required the company to provide data on toxicity for human health and aquatic organisms. In early 2012, NRDC filed a lawsuit against EPA seeking to block nanosilver’s use, contending, among several points, that the agency had ignored its own rules for determining the safety of nanosilver.

The key part of today’s Ninth Circuit ruling addressed EPA’s determination that there is no risk concern for toddlers exposed to nanosilver-treated textiles. The agency’s rules state that if there’s an aggregate exposure to the skin or through ingestion at or below a specific level, there is a risk of health concerns. But the Ninth Circuit found that the EPA had data showing that nanosilver was right at the level that should have triggered a finding of potential risk, but approved the pesticide anyway. That led to the Ninth Circuit vacating EPA’s approval and sending it back down to the agency for reevaluation.

Published in July 2013 (?), Nate Seltenrich’s article, Nanosilver: Weighing the Risks and BenefitsNanosilver: Weighing the Risks and Benefits, for the journal, Environmental Health Perspectives (EHP) [published with support from the National Institute of Environmental Health Sciences, National Institutes of Health, U.S. Department of Health and Human Services]) provides some insight into the court case and the issues,

It takes a special sort of case to spur attorneys into a debate over the drooling habits of toddlers. Yet that’s where lawyers from the Natural Resources Defense Council (NRDC), the U.S. Environmental Protection Agency (EPA), and Swiss chemicals company HeiQ found themselves in January 2013 as they debated in a federal appeals court the extent to which 1-year-olds and 3-year-olds chew, salivate, and swallow.1

At issue in the NRDC’s suit against the EPA, which is still awaiting ruling, was whether the agency was right in granting a conditional registration in December 2011 to a nanosilver-based antimicrobial fabric treatment manufactured by HeiQ.2 The EPA’s risk assessment was based in part on assumptions about exposure of 3-year-olds by sucking or chewing on nanosilver-laced textiles such as clothing, blankets, and pillowcases.

NRDC lawyer Catherine Rahm, however, begged to differ with the agency’s methods. In the January hearing, she argued that the agency record shows infants are more likely than any other subset of children to chew on fabrics that could contain the pesticide, and that if the agency were to recalculate its risk assessment based on the body weight of a 1-year-old, nanosilver concentrations in HeiQ’s product could result in potentially harmful exposures.

It’s an obscure but critical distinction as far as risk assessment goes. And given the implications for HeiQ and other companies looking to follow in its footsteps, the case has landed at the center of a prolonged conflict over the regulation of nanosilver and the growing deployment of this antimicrobial ingredient in a variety of commercial and consumer products.

Yet regardless of which side prevails in the case, the truth about nanosilver is not black and white. Even the loudest voices joining the NRDC’s call for strict regulation of nanosilver concede that context is key.

Seltenrich goes on to recount a little of the history of nanosilver and provide a brief a relatively balanced overview of the research. At the end of the article, he lists 37 reference documents and offers links, should you wish to research further. For anyone interested in HeiQ, here’s the company website.

The second nanosilver news item is from the CBC (Canadian Broadcasting Corporation( online. In an article by Evelyn Boychuk titled, Silver nanoparticle use spurs U.S. consumer database; Database tracks growing number of consumer goods containing nanomaterials, these nanoparticles are discussed within the context of a resuscitated Project on Emerging Nanotechnologies (PEN) Consumer Products Inventory (CPI), which was mentioned in my Oct. 28, 2013 posting titled: Rising from the dead: the inventory of nanotechnology-based consumer products. The articles offers an easy introduction to the topic and refers to a database of silver,nanotechnology in commercial products (complementary to the larger CPI).

Rising from the dead: the inventory of nanotechnology-based consumer products

The inventory of nanotechnology-based consumer products or the Consumer Products Inventory (CPI) is still cited in articles about nanotechnology and its pervasive use in consumer products despite the fact that the inventory was effectively rendered inactive (i.e., dead) in 2009 and that  it was a voluntary system with no oversight, meaning whoever made the submission to the inventory could make any claims they wanted. Now that it’s 2013, things are about to change according to an Oct. 28, 2013 news item on ScienceDaily,

As a resource for consumers, scientists, and policy makers, the Virginia Tech Center for Sustainable Nanotechnology (VTSuN) has joined the Woodrow Wilson International Center for Scholars to renew and expand the Nanotechnology Consumer Product Inventory, an important source of information about products using nanomaterials.

“We want people to appreciate the revolution, such as in electronics and medicine. But we also want them to be informed,” said Nina Quadros, a research scientist at Virginia Tech’s Institute for Critical Technology and Applied Science and associate director of VTSuN, who leads a team of Virginia Tech faculty members and students on this project. Todd Kuiken, senior program associate, and David Rajeski, director of the science and technology innovation program, lead this project at the Wilson Center.

The Oct. 28, 2013 Virginia Tech (Virginia Polytechnic Institute and State University) news release by Susan Trulove (which originated the news item),provides a brief history of the inventory and a description of its revivification,

The Wilson Center and the Project on Emerging Nanotechnology created the inventory in 2005. It grew from 54 to more than 1,000 products, many of which have come and gone. The inventory became the most frequently cited resource, showcasing the widespread applications of nanotechnology. However, in 2009, the project was no longer funded.

“I used it in publications and presentations when talking about all the ways nano is part of people’s lives in consumer products,” said Matthew Hull, who manages the Institute for Critical Technology and Applied Science’s investment portfolio in nanoscale science and engineering, which includes the Center for Sustainable Nanotechnology. “But the inventory was criticized by researchers, regulators, and manufacturers for the lack of scientific information available to support product claims.”

In a meeting with his friend, Andrew Maynard, director of the University of Michigan Risk Science Center, who had initiated the inventory when he was at the Wilson Center, Hull proposed leveraging Institute for Critical Technology and Applied Science and Center for Sustainable Nanotechnology resources to improve the inventory.

“My role was to ask ‘what if’ and [the Virginia Tech Center for Sustainable Nanotechnology] ran with it,” said Hull.

A partnership was formed and, with funding from the Virginia Tech institute, the Center for Sustainable Nanotechnology restructured the inventory to improve the reliability, functionality, and scientific credibility of the database.

“Specifically, we added scientific significance and usefulness by including qualitative and quantitative descriptors for the products and the nanomaterials contained in these products, such as size, concentration, and potential exposure routes,” said Quadros. For example, an intentional exposure route would be the way a medicine is administered. An unintentional exposure would be when a child chews on a toy that has been treated with silver nanoparticles that are used as an antimicrobial. The potential health effect of nanomaterials on children was Quadros doctoral research and she used the inventory to find products designed for children that use nanomaterials, such as plush toys.

“One of the best things about the new version of the inventory is the additional information and the ability to search by product type or the type of nanomaterial,” she said. “When researchers were first attempting to assess the potential environmental impacts of nanotechnology, one main challenge was understanding how these nanomaterials might end up in the environment in the first place. After searching the CPI and seeing the vast applications of nanotechnologies in consumer products it was easier to narrow down scenarios.”

For example, Quadros said many silver nanoparticles are used in clothing for antimicrobial protection, so we can infer that some silver nanoparticles may end up in wastewater treatment plants after clothes washing. This helped justify some of the research on the effects of silver nanoparticle in the biological wastewater treatment processes. Currently, the inventory lists 188 products under the ‘clothing’ category.”

This team also included published scientific data related to those products, where available, and developed a metric to assess the reliability of the data on each inventory entry.

The team interviewed more than 50 nanotechnology experts with more than 350 combined years of experience in nanotechnology, Quadros said. “Their answers provided valuable guidance to help us address diverse stakeholder needs.”

In addition, the site’s users can log in and add information based on their own expertise. “Anyone can suggest edits. The curator and reviewer will approve the edits, and then the new information will go live,” Quadros said.

“We’ve added the horsepower of [the Center for Sustainable Nanotechnology], but opened it by means of crowdsourcing to new information, such as refuting or supporting claims made about products,” Hull said.

“The goal of this work is to create a living, growing inventory for the exchange of accurate information on nano­enabled consumer products,” Quadros said. “Improved information sharing will allow citizens, manufacturers, scientists, policymakers, and others to better understand how nanotechnology is being used in the consumer marketplace,” she said.

As of October 2013,

The inventory currently lists more than 1,600 consumer products that claim to contain nanotechnology or have been found to contain nanomaterials.

Quadros will give a presentation about the inventory at the Sustainable Nanotechnology Organization conference in Santa Barbara on Nov. 3-5 and will present to the U.S. Environmental Protection Agency and the National Science Foundation in the spring.

Key collaborators at Virginia Tech are Sean McGinnis, an associate research professor in the materials science and engineering department; Linsey Marr, professor of civil and environmental engineering; her postdoc, Eric Vejerano, who was instrumental in development of product categories; and Michael Hochella, a university distinguished professor in the geosciences department and Virginia Tech Center for Sustainable Nanotechnology director.

You can find the Consumer Products Inventory here where it is still hosted by the Woodrow Wilson Center’s Project on Emerging Nanotechnologies. The website for the Second Sustainable Nanotechnology Organization Conference where Quadros will be presenting can be found here and is where this conference description can be found,

The objective of this conference is to bring together scientific experts from academia, industry, and government agencies from around the world to present and discuss current research findings on the subject of nanotechnology and sustainability.

The conference program will address the critical aspects of sustainable nanotechnology such as life cycle assessment, green synthesis, green energy, industrial partnerships, environmental and biological fate, and the overall sustainability of engineered nanomaterials. In principle, this involves the fundamental/applied research on the chemistry of producing new green nanomaterials; eco-manufacturing processing of nanomaterials and products, using nanotechnology to benefit society, and examining possible harmful effects of nanotechnology.

The conference will also foster new collaborations between academic and industrial participants. This community of users, researchers and developers of engineered nanomaterials will provide a long-term, scientific assessment of where the science is for sustainable nano, where it should be heading, and what steps academics, government agencies and others can take now to reach targeted goals. In addition, the conference will serve as the platform to initiate the formation of the Sustainable Nanotechnology Organization (SNO), a non-profit, international professional society dedicated to advancing sustainable nanotechnology through education, research, and promotion of responsible development of nanotechnology.

Finally because I can resist no longer, especially so near to Hallowe’en, I guess you could call the ‘renewed’ CPI, a zombie CPI as it’s back from the dead and it needs brains,

Zombies in Moscow, 26 April 2009 Credit: teujene [downloaded from http://en.wikipedia.org/wiki/File:Zombies_in_Moscow.jpg]

Zombies in Moscow, 26 April 2009 Credit: teujene [downloaded from http://en.wikipedia.org/wiki/File:Zombies_in_Moscow.jpg]

Danish nanotechnology-enabled product database

It’s called the Nanodatabase according to the Nov. 30, 2012 news item on Nanowerk (Note: I have removed a link),

The Danish Consumer Council and the Danish Ecological Council has in cooperation with DTU Environment developed a database, which help consumers identify more than 1,200 products that may contain nanomaterials. The Nanodatabase gives consumers a choice. [emphasis mine]

”Most consumers have no idea if there are nanomaterials or not in the goods they’re buying. And they have no way of finding out, so that they can avoid the products if they are worried about the potentially harmful effects” says Claus Jørgensen, Senior Advisor at the Danish Consumer Council.

This is why the Danish Ecological Council and the Danish Consumer Council in cooperation with experts from DTU [Technical University of Denmark] Environment has decided to launch the Nanodatabase. Now consumers can search the database to see if a certain product contains nanomaterials or is marketed as ‘nano’. This way the consumers can choose if they want the nanomaterials or not.

The database contains more than 1,200 products which contain nanomaterials or are marketed using the nano-claim. [emphasis mine]

“Until we know for sure that the use of nanotechnology is safe and the legislation is in place, we need a label that can help consumers make informed choices”, says Lone Mikkelsen [chemical expert from the Danish Ecological Council].

The two organisations hope that the English version of the database will help consumers in other countries. The hope is that consumers will report products that contain ‘nano’ or claim to be a nano product to the database.

This project reminds me of the Project on Emerging Nanotechnologies (PEN) and their consumer products inventory. I don’t believe they’re adding to that inventory any moreas the March 10, 2011 news release announcing over 1300 nanotechnology-enabled products (as claimed by manufacturers) in the inventory appears to have been PEN’s last. I think they, like the Danish Consumer Council and the Danish Ecological Council, were hoping to raise awareness.

Globe and Mail discovers nanomedicine

Business writer, Nick Rockel, has an October 4, 2011 article titled, Nano-technology [sic] coming to the doctor’s office, in The Globe and Mail newspaper. Dr. Jillian Buriak and her colleague, Dr.Lori West (my latest posting about their work was April 28, 2011) were heavily featured in it. From the Oct. 4, 2011 article in The Globe and Mail,

One of Dr. Buriak’s key collaborators on the transplantation project is Lori West, a U of A [University of Alberta] professor of pediatrics, surgery and immunology. Dr. West, a renowned cardiac transplant expert, is known for her discovery that children younger than two will not reject a heart from a donor with a different blood type.

That’s because the immune system is still developing during infancy. Even more remarkably, if a baby with Type A blood gets a Type B heart, it will develop a lifelong tolerance for B and AB blood.

The U of A team “functionalized” so-called stealth nano-particles with the antigens, or markers, that blood cells use to recognize each other. In animal tests, it introduced these particles into the bloodstream in an attempt to teach the body to tolerate every blood type.

Dr. Buriak, who hopes to move to more advanced models by 2015, says the nano-particles could eventually join the standard set of shots that children receive. “Later, if you ever had to have an organ transplant or a transfusion, you wouldn’t have to wait for the right one – you could just take any of them.”

Buriak’s and West’s strategy for avoiding organ rejection contrasts with the strategy used by a joint (Swedish/UK/US) team, which I featured in an August 2, 2011 posting about their work transplanting a synthetic windpipe coated with stem cells harvested from the patient receiving the new organ.

Rockel’s article goes on to provide descriptions of other nanomedicine initiatives (a mix of Canadian- and US-based projects). He employs the usual ‘war against disease’ rhetorical style common to articles about any kind of medicine even when he’s including a ‘kinder, gentler’ quote such as,

People keep asking when her field will deliver a killer app like the cure for cancer, Dr. Buriak says. “But what nanotechnology has done more than anything else is bring people together who normally would never talk to each other,” she explains. [emphases mine]

As one would expect from a business writer, the article concludes with a list of three commercially available nanomedicne products. I wish Rockel had stated whether or not he’s done additional research into these products since this list is culled from the Project on Emerging Nanotechnologies (PEN) database. As I’ve noted before (my July 26, 2011 posting) there is no oversight provided by PEN nor does the organization require any description of how the product is nanotechnology-enable, as they openly admit.

I’m glad to see more coverage of nanotechnology and that writers from many specialties are learning about it. As for why I described Nick Rockel as a business writer, here’s his description of his work,

Market forces are one thing, but you can’t force somebody to read about the markets. Nick Rockel helps you connect with your audience. A veteran writer and editor, Nick knows how to grab people’s attention by giving them access to the financial and investment world. Whether it’s hedge funds or herding behaviour, he presents complex subjects in clear and simple terms, without any jargon or bafflegab. Most important, Nick finds the story behind the numbers and makes it resonate with readers.

He advertizes himself as providing Financial Wrting, Editing & Research.

Misunderstanding the data or a failure to research? Georgia Straight article about nanoparticles

It’s good to see articles about nanotechnology. The recent, Tiny nanoparticles could be a big problem, article written by Alex Roslin for the Georgia Straight (July 21, 2011 online or July 21-28, 2011 paper edition) is the first I’ve seen on that topic in that particular newspaper. Unfortunately, there are  some curious bits of information included in the article, which render it, in my opinion, difficult to trust.

I do agree with Roslin that nanoparticles/nanomaterials could constitute a danger and there are a number of studies which indicate that, at the least, extreme caution in a number of cases should be taken if we choose to proceed with developing nanotechnology-enabled products.

One of my difficulties with the article is the information that has been left out. (Perhaps Roslin didn’t have time to properly research?) At the time (2009) I did read with much concern the reports Roslin mentions about the Chinese workers who were injured and/or died after working with nanomaterials. As Roslin points out,

Nanotech already appears to be affecting people’s health. In 2009, two Chinese factory workers died and another five were seriously injured in a plant that made paint containing nanoparticles.

The seven young female workers developed lung disease and rashes on their face and arms. Nanoparticles were found deep in the workers’ lungs.

“These cases arouse concern that long-term exposure to some nanoparticles without protective measures may be related to serious damage to human lungs,” wrote Chinese medical researchers in a 2009 study on the incident in the European Respiratory Journal.

Left undescribed by Roslin are the working conditions; the affected people were working in an unventilated room. From the European Respiratory Journal article (ERJ September 1, 2009 vol. 34 no. 3 559-567, free access), Exposure to nanoparticles is related to pleural effusion, pulmonary fibrosis and granuloma,

A survey of the patients’ workplace was conducted. It measures ∼70 m2, has one door, no windows and one machine which is used to air spray materials, heat and dry boards. This machine has three atomising spray nozzles and one gas exhauster (a ventilation unit), which broke 5 months before the occurrence of the disease. The paste material used is an ivory white soft coating mixture of polyacrylic ester.

Eight workers (seven female and one male) were divided into two equal groups each working 8–12 h shifts. Using a spoon, the workers took the above coating material (room temperature) to the open-bottom pan of the machine, which automatically air-sprayed the coating material at the pressure of 100–120 Kpa onto polystyrene (PS) boards (organic glass), which can then be used in the printing and decorating industry. The PS board was heated and dried at 75–100°C, and the smoke produced in the process was cleared by the gas exhauster. In total, 6 kg of coating material was typically used each day. The PS board sizes varied from 0.5–1 m2 and ∼5,000 m2 were handled each workday. The workers had several tasks in the process including loading the soft coating material in the machine, as well as clipping, heating and handling the PS board. Each worker participated in all parts of this process.

Accumulated dust particles were found at the intake of the gas exhauster. During the 5 months preceding illness the door of the workspace was kept closed due to cold outdoor temperatures. The workers were all peasants near the factory, and had no knowledge of industrial hygiene and possible toxicity from the materials they worked with. The only personal protective equipment used on an occasional basis was cotton gauze masks. According to the patients, there were often some flocculi produced during air spraying, which caused itching on their faces and arms. It is estimated that the airflow or turnover rates of indoor air would be very slow, or quiescent due to the lack of windows and the closed door. [emphases mine]

Here’s the full text from the researchers’ conclusion,

In conclusion, these cases arouse concern that long-term exposure to some nanoparticles without protective measures may be related to serious damage to human lungs. It is impossible to remove nanoparticles that have penetrated the cell and lodged in the cytoplasm and caryoplasm of pulmonary epithelial cells, or that have aggregated around the red blood cell membrane. Effective protective methods appear to be extremely important in terms of protecting exposed workers from illness caused by nanoparticles.

There is no question that serious issues about occupational health and safety with regards to nanomaterials were raised. But, we work with dangerous and hazardous materials all the time; precautions are necessary whether you’re working with hydrochloric acid or engineered nanoparticles. (There are naturally occurring nanoparticles too.)

Dr. Andrew Maynard (at the time he was the Chief Science Advisor for the Project on Emerging Nanotechnologies, today he is the Director of the University of Michigan’s Risk Science Center) on his 2020 Science blog wrote a number of posts dated Aug. 18, 2009 about this tragic industrial incident, including this one where he culled comments from six other researchers noting some of the difficulties the Chinese researchers experienced running a clinical study after the fact.

The material on silver nanoparticles and concerns about their use in consumer products and possible toxic consequences with their eventual appearance in the water supply seem unexceptionable to me. (Note:  I haven’t drilled down into the material and the writer cites studies unknown to me but they parallel information I’ve seen elsewhere).

The material on titanium dioxide as being asbestos-like was new to me, the only nanomaterial I’d previously heard described as being similar to asbestos is the long carbon nanotube. I am surprised Roslin didn’t mention that occupational health and safety research which is also quite disturbing, it’s especially surprising since Roslin does mention carbon nanotubes later in the article.

There is a Canadian expert, Dr. Claude Ostiguy, who consults internationally on the topic of nanotechnology and occupational health and safety. I wonder why he wasn’t consulted. (Note: He testified before Canada’s House of Commons Standing Committee on Health meeting in June 2010 on this topic. You can find more about this in my June 23, 2011 posting, Nanomaterials, toxicity, and Canada’s House of Commons Standing Committee on Health.)

Quoted quite liberally throughout the article is researcher, Dr.Robert Schiestl (professor of pathology and radiation oncology at the University of California at Los Angeles [UCLA]). This particular passage referencing Schiestl is a little disconcerting,

Schiestl said nanoparticles could also be helping to fuel a rise in the rates of some cancers. He wouldn’t make a link with any specific kind of cancer, but data from the U.S. National Cancer Institute show that kidney and renal-pelvis cancer rates rose 24 percent between 2000 and 2007 in the U.S., while the rates for melanoma of the skin went up 29 percent and thyroid cancer rose 54 percent.

Since Schiestl isn’t linking the nanoparticles to any specific cancers, why mention those statistics? Using that kind of logic I could theorize that the increase in the number and use of cell phones (mobiles) may have something to do with these cancers. Perhaps organic food has caused this increase? You see the problem?

As for the number of nanotechnology-enabled products in use, I’m not sure why Roslin chose to cite the Project on Emerging Nanotechnologies’ inventory which is not scrutinized, i. e., anyone can register any product as nanotechnology-enabled. The writer also mentioned a Canadian inventory listing over 1600 products  cited in an ETC Group report, The Big Downturn? Nanogeopolitics,

Has anyone ever seen this inventory? I’ve been chasing it for years and the only time the Canadian government reports on this inventory is in the Organization for Economic Cooperation and Development (OECD) report (cited by the ETC Group [no. 79 in their list of references] and noted in both my Feb. 1, 2011 posting and my April 12, 2010 posting). Here’s the OECD report, if you’d like to see it for yourself. The top three questions I keep asking myself is where is the report/inventory, how did they determine their terms of reference, and why don’t Canadian taxpayers have easy access to it? I’d best return to my main topic.

As for the material Roslin offers about nanosunscreens I was surprised given the tenor of the article to see that the Environmental Working Group (EWG) was listed as an information source since they recommend mineral sunscreens containing nanoscale ingredients such as titanium dioxide and/or zinc oxide as preferable to sunscreens containing hormone disruptors.  From the EWG page on sunscreens and nanomaterials,

Sunscreen makers offer mineral and non-mineral formulations, as well as products that combine both mineral and non-mineral active ingredients. Mineral formulations incorporate zinc oxide or titanium dioxide in nano- and micro-sized particles that can be toxic if they penetrate the skin. Most studies show that these ingredients do not penetrate through skin to the bloodstream, but research continues. These constitute one in five sunscreens on the market in 2010 and offer strong UVA protection that is rare in non-mineral sunscreens.

The most common ingredients in non-mineral sunscreens are oxybenzone, octisalate, octinoxate, and avobenzone found in 65, 58, 57, and 56 percent of all non-mineral sunscreens on the market, respectively. The most common, oxybenzone, can trigger allergic reactions, is a potential hormone disruptor and penetrates the skin in relatively large amounts. Some experts caution that it should not be used on children. Three of every five sunscreens rated by EWG are non-mineral, and one in five sunscreens combines both mineral and non-mineral active ingredients.

EWG reviewed the scientific literature on hazards and efficacy (UVB and UVA protection) for all active ingredients approved in the U.S. Though no ingredient is without hazard or perfectly effective, on balance our ratings tend to favor mineral sunscreens because of their low capacity to penetrate the skin and the superior UVA protection they offer. [emphasis mine]

(I did find some information (very little) about Health Canada and sunscreens which I discuss in June 3, 2011 posting [if you're impatient, scroll down about 1/2 way].)

There was some mention of Health Canada in Roslin’s article but no mention of last year’s public consultation, although to be fair, it seemed a clandestine operation. (My latest update on the Health Canada public consultation about a definition for nanomaterials is May 27, 2011.)

I find some aspects of the article puzzling as Roslin is an award-winning investigative reporter. From the kitco bio page,

Alex Roslin is a leading Canadian investigative journalist and active trader based in Montreal. He has won a Canadian Association of Journalists award for investigative reporting and is a five-time nominee for investigative and writing prizes from the CAJ and the National Magazine Awards. He has worked on major investigations for Canada’s premier investigative television program, the fifth estate, and the CBC’s Disclosure program. His writing has appeared in Technical Analysis of Stocks & Commodities, The Financial Post, Toronto Star and Montreal Gazette. He regularly writes about investing for The Montreal Gazette.

I notice there’s no mention of writing in either science or health matters so I imagine this is an early stage piece in this aspect of Roslin’s career, which may explain some of the leaps in logic and misleading information. Happily, I did learn a few things from reading the article and while I don’t trust much of the information in it, I will investigate further as time permits.

In general, I found the tenor of the article more alarmist than informational and I’m sorry about that as I would like to see more information being shared and, ultimately, public discussion in Canada about nanotechnology and other emerging technologies.

Green-nano zero valent iron (G-nZVI)

I’m quite interested in patents and their possible impact on nanotechnology innovation so this item caught my attention. VeruTEK Technologies, Inc. just received notice of a patent allowance for the Green-nano zero valent iron (G-nZVI) product which was developed in collaboration with the US Environmental Protection Agency (EPA).

From the June 15, 2011 news item on Nanowerk,

The product is ideal for a broad range of remediation applications including treating produced water (wastewater) generated during oil and gas and other chemical production processes.

G-nZVI works more efficiently than conventional iron catalysts, significantly increasing the rate of oxidant activity and can be used under a wide range of conditions.  Unlike other catalysts which are typically sensitive to changes in pH, G-nZVI consistently delivers high performance over a wide pH range. G-nZVI is highly effective as an activator for VeruTEK’s patent-pending Surfactant-enhanced In Situ Chemical Oxidation (S-ISCO®) treatment of hydrocarbon and chlorinated solvent contamination. The product can also be used with conventional in situ chemical oxidation (ISCO) to improve the effectiveness of traditional remediation chemistry.

The EPA works with VeruTEK on a variety of projects, concentrating on new field-proven approaches to address difficult environmental issues. According to John Leazer, Director of the Sustainable Technology Division at EPA’s National Risk Management Research Laboratory in Cincinnati, “Patent awards are superb examples of what can be accomplished through collaborative research and development.” [emphases mine]

I have previously written about nano zero valent iron (nZVI) and site remediation in my March 30, 2011 posting which concerned a benchmarking study for nZVI and briefly in my March 4, 2010 posting (towards the end) where I summarized a Project on Emerging Nanotechnologies webcast (approximately 54 min.) on the topic.

As I understand it, the process (green or environmentally friendly) by which the nano zero valent iron is derived is the reason the VeruTek product has been awarded a patent and not because its remediation capabilities are superior to other nano zero valent iron products. From the VeruTEK’s G-nZVI product page,

GnZVI is a green synthesized nanoscale zero valent iron catalyst invented by VeruTEK and the US EPA. During the green synthesis process iron salts are exposed to naturally reductive plant material, the resultant nanoscale particles are coated in iron oxide and plant polyphenols which confer advantageous properties.  Research conducted by VeruTEK, the EPA and the University of Connecticut, published in peer reviewed journals, demonstrate the efficacy of the product and its unique chemical design.

So, in addition to being used to remove contamination, this product itself is manufactured in a relatively environmentally friendly fashion. Nice!

Of course, there’s a fair amount of discussion about how patenting impedes innovation. From Mike Masnick’s Feb. 17, 2011 article on Techdirt,

As with any “hot” technology area, it doesn’t take long for a massive, innovation hindering patent thicket to spring up. It effectively makes it impossible to bring anything to market unless you’ve got a huge patent portfolio yourself and deep pockets. Yet another example of patents harming the smaller players in the market. A new report is suggesting that the latest “hot” area to get patent crazy is nanotechnology.

However, the really worrying thing about the report is that it notes that the single largest “patent patron” in nanotechnology… is the federal government. [emphasis mine]

The report, The Big Downturn; Nanogeopolitics, that Masnick is referring to is from The ETC Group who released it on Dec. 17, 2010 so the material in it is relatively recent. They provide the only overview of the nanotechnology patent scene (Chapter 12, p. 43 PDF version and p. 36 print version) that I’ve come across so far. I find the reference to the federal government (US in this case) as being the largest patent patron interesting in light of the EPA’s collaborative relationship with VeruTEK.

One comment before you rush off to read The ETC Group’s report, the tone is very much ‘we are on the side of the angels; capitalists and governments and ‘anyone who disagrees with us in any way’ are not.”

Nano zero valent iron and groundwater remediation

My interest in nano zero valent iron (nZVI) and site remediation was piqued by a webcast from the Project on Emerging Nanotechnologies (PEN). (I commented on the ‘cast in my March 4, 2010 posting [http://www.frogheart.ca/?p=792 {scroll down}]). Yesterday(March 29, 2011), I came across a news item on Business Wire (http://www.businesswire.com/news/home/20110329005424/en/AECOM-University-California-Santa-Barbara-UCSB-Continue) about a collaboration between AECOM and the University of California at Santa Barbara for benchmark testing of nZVI. From the news item,

The new AECOM and UCSB bench-scale studies will test use of several zero valent iron (ZVI) products, including nano zero valent iron (nZVI), on the remediation of chlorinated volatile organic compounds (CVOCs) a common contaminant at groundwater remediation sites. nZVI products were selected for the study because they have a much greater surface area than conventional iron powders, which make them more effective in certain site remediation scenarios.

The bench-scale studies will use samples of these new products on groundwater and geologic materials collected from a former manufacturing site to evaluate the morphology or structure of the products as well as their mobility, persistence, and toxicity to aquatic organisms.

According to Dr. Dora Chiang, P.E. Project Design Engineer with AECOM’s environmental practice in Atlanta, “We have had an in situ bioremediation system in place for several years and will be using an nZVI or other ZVI products to supplement biodegradation of the CVOCs. Enhanced non-biological degradation, coupled with ongoing biodegradation of CVOCs, will likely result in a reduction in treatment time by remediating CVOCs to below their respective federal drinking water maximum contaminant levels (MCLs). This new treatment technology may save significant life-cycle cleanup costs while ensuring protection of human health and the environment.”

Dr. Arturo A. Keller, Co-Director of UC Center for Environmental Implications of Nanotechnology, will direct the research at UCSB, in coordination with Prof. Hunter Lenihan. Prof. Keller states that “there is great potential in using nZVI and related technologies to solve a wide range of contamination issues. However, we need to determine the potential risks to achieve safe implementation of this important technology.”

Nano zero valent iron is currently being used in site remediation in the US and elsewhere in the world. PEN has an interactive nanoremediation map here (http://www.nanotechproject.org/inventories/remediation_map/). Just click on one of the ‘balloons’ to get a full description of where, which contaminant, and which type of nanomaterial (e.g. the site in Ontario, Canada lists nZVI) is being used for the cleanup operation.

You can find out more about AECOM here (http://www.aecom.com) from their About page,

AECOM (NYSE: ACM) is a global provider of professional technical and management support services to a broad range of markets, including transportation, facilities, environmental, energy, water and government.

With approximately 45,000 employees around the world, AECOM is a leader in all of the key markets that it serves. AECOM provides a blend of global reach, local knowledge, innovation, and technical excellence in delivering solutions that create, enhance and sustain the world’s built, natural, and social environments.

A Fortune 500 company, AECOM serves clients in more than 100 countries and had revenue of $7.0 billion during the 12 months ended Dec. 31, 2010.

AECOM is ranked by Ethisphere as one of the world’s 110 most ethical companies for 2011.

That’s a very big company. As for their ethics, I like to see what they do when the going gets tough. After all, BP Oil had a very good reputation at one point and then they had the oil spill in the Gulf of Mexico and destroyed that reputation with their subsequent actions.

Interview with Julie Freeman about her nano art show at the UK’s House of Lords

An invitation arrived in my email box from the BioCentre in the UK for a nanotechnology workshop and reception featuring some ‘nanotechnology’ art work at the House of Lords. I was pleased to notice that the artist, Julie Freeman, was someone I met a few years ago at the 2009 International Symposium on Electronic Arts (ISEA) in Belfast. As attending the event was not possible, I decided to approach Julie for an interview and she kindly answered my questions.

Before launching into the interview, here’s a little more information about the BioCentre’s 2nd workshop in a series titled, Revolution, Regulation and Responsibilities; Technology & Democracy in the 21st Century (from the PDF) ,

Products, Privacy & People: Regulating on the Nanoscale Monday 28th February 2011, 14:00, House of Lords, Committee Room 3

The manipulation of matter at the nanoscale represents a ‘rebound revolution’ reframing our understanding and engagement with science and technology. As nanotechnologies continue to evolve the promised nano structures which offer novel and new properties currently present unknown hazards. Nanoparticles have been found to pass through the skin, offering exciting possibilities of targeted drug delivery. Conversely, given their size nanoparticles could also interfere with the functioning of proteins on the surface of cells, or be taken up into cells and bind to intercellular proteins. How crucial is public awareness of these issues? Should there be a mandatory labelling system for nano products? This becomes all the more important as nanomaterials are adopted commercially and taken up into global supply chains.

Nanotechnology will present new possibilities for collecting new data and intensifying debate and discussion surrounding ongoing questions of privacy. There is the potential for tiny senses to be embedded in clothes, products or even bodies which could record and collect a multitude of data, including the movement of people, products, health and financial details.

Increasingly, it appears that the distinction between human and machine could become blurred through the convergence of biology, nanotechnology, information technology and even neuroscience. If some of the grander ideas which nanotechnology would seemingly promise are believed to be true, then fusion between people and technology could occur like never before. Yet public and civil society debate remains limited despite dramatic efforts to frame the significance of such developments ranging from Eric Drexler’s ‘grey goo’ scenario, to technology guru Bill Joy’s Why the Future Doesn’t Need Us, to Ray Kurzweil’s imminent expectation of the sci‐fi “singularity”.

As attempts are made to develop effective and proportional regulation in response there is also the inevitable tension between divergent approaches to risk management on the national, regional and global level. One thing is for certain, transdisciplinary discussion, fresh thinking and understanding is essential if we are to avoid a repeat of the GM foods debacle and re‐emergence of the ‘yuck’ factor. Through short expert presentations, panel and Q&A discussions you are invited to join us as we discuss and examine the regulatory issues at the nanoscale.

A drinks reception will follow the symposium during which the work of Julie Freeman, Artist‐in‐residence at Microsystems and Nanotechnology Centre, Cranfield University, will be on display. [emphasis mine]

Now, here is the interview with Julie Freeman,

a) Which work (or works are) is being shown at the House of Lords on Feb. 28, 2011? [if you have any images of the piece or pieces, I would be happy to include them.]

A set of 16 A3 prints from the Nano Novel collection, which are part of the In Particular project.

(b) How did your work come to be selected for this display? Was it specifically created for this show or was it chosen as something that would be relevant to the workshop themes “of revolution, regulation and responsibilities surrounding the issue of emerging technologies?”

Each of the works are accompanied by two pieces of text, one factual, one fictional. The factual texts describe a process, issue or reaction that is related to the nanoscale, so although there is a broad range – from how nanoparticles are moved to the future of self-diagnostic implants – some of them address issues of regulation and revolution. The director of a UK think tank called BioCentre asked me if I would like to exhibit the work at the seminar. I had been previously asked to show work at a BioCentre event, but it was too complicated to install just for a few hours. As the Nano Novels work are framed prints they are the most portable piece of work I have ever created, so are ideal for an exhibition with a quick turnover!

(c) Could you discuss some of the challenges of representing the invisible (that which occurs at the nanoscale) and some of the specific challenges, technical and/or conceptual, that you encountered with the work being shown at the reception?

The work shown, as I mentioned, were digital prints. The prints are the first stage in the In Particular project, kind of a way for me to contextualise nanotechnology in a way that I could understand it. I have prototype works in progress that are proving tricky to realise – at the nanoscale materials take on different properties and behaviours. Stresses and strains that act at the macro level are different at the nanoscale so even creating something as seemingly simple as a rigid nanothin film is very complex. I think the challenge for artists working in the realm is how to avoid the obvious, how to depict something that is beyond our sensory perception, and how to create work that is true to a nanoprocess or material without simply showing it at a macro scale.

(d) How does someone with an MA in Digital Arts from the Lansdown Centre for Electronic Arts, Middlesex University, London come to be associated with the Microsystems and Nanotechnology Centre at Cranfield University?

I knew when I started my MA that I wanted to work with life and technology – life in terms of living biology. My MA show consisted of a fish tank containing 4 rudd that were tracked and created a soundscape (a precursor to a future larger project called The Lake**), so although it took ten years, it was a natural progression for me to end up working in a laboratory with scientists.

The residency was instigated by Professor Jeremy Ramsden, Chair of Nanotechnology at Cranfield University. He says “I’d read a very interesting book by Cyril Smith* in which he argues that the primary motivation for new technology was aesthetic” so he thought an artist on his team would push the technology in a new direction. He approached a local arts agency, HAPPEN, who had visited my work The Lake, which is another piece of work that involved much scientific collaboration, and they brokered the relationship. We quickly ascertained that we had a lot of common curiousity, so we collaborated on a funding proposal and were very fortunate to be successful.

*C.S. Smith, The Search for Structure: Selected Essays on Science, Art and History, MIT Press, Cambridge (Mass.) (1981).

**http://www.juliefreeman.co.uk/lake/

(e) What are you currently working on now (nanotechnology-influenced or not)?

I have been working on ideas that bring my love of data together with the bionanotech area, the fusion of biology and technology at the ‘invisible’ level. Consequently I’m working on some new kinetic objects that incorporate nanomaterials and utilise conversational network activity to give them dynamic actions. I can’t say much more, but it’s an ambitious one!

(f) Is there anything you’d like to add?

Thanks for being in touch. Great blog!

You’re welcome and glad you enjoy the blog.

You can find out more about Julie Freeman and her work at her website, Translating Nature.

ETA Mar. 8, 2011:  Julie Freeman sent two pictures from her show at the House of Lords.

Nano Novels at UK's House of Lords, Feb. 28, 2011. Photo: Julie Freeman

And then, the crowd arrived.

Feb. 28, 2011 reception at UK's House of Lords where Nano Novels shown. Photo: Julie Freeman

Canada’s Bill C-494, Nanotechnology Safety in Canada: an update

Peter Julian, MP Burnaby-New Westminster, has kindly sent an update about Bill C-494’s progress (the bill on nanotechnology safety that he introduced in Canada’s House of Commons in March 2010).

One comment, I’m not entirely certain how some of conclusions in this update were reached  but my concerns are nits rather than picks and more about those after you read Peter Julian’s update,

Progress continues on Bill C-494, An Act to Amend the Canadian Environmental Protection Act 1999 (nanotechnology), with growing support towards nanotechnology’s safe introduction in Canada, including from the Canadian Environmental Law Association (CELA). Exciting developments in Europe towards consumer product labeling and increased precaution for nanomaterials, such as the Swiss recommendation for a precautionary 1-500nm approach to risk assessment, coupled with improved workplace safety measures in the United States, are key drivers for change.

Over 1,000 nano-enabled products have now been released into the global marketplace, from toothpaste to socks, computers to cars, aeronautics to cement, and health care.

Although most nanotechnology applications are believed to be safe, the number of nano-enabled products or nanomaterials in use in Canada is not known, as there still is no public inventory to either monitor nanotechnology or assure its safety for Canadians. Testimonies and evidence presented to the House of Commons Health Committee raise additional concern and alarm towards the government’s slow response to emerging risk science and precautionary regulatory actions now implemented in other countries.

The Government of Canada now acknowledges regulatory “limitations” towards nanomaterials safety, and promises “possible amendments” to government policies that may be placing nanotechnology and Canadians at increased risk. Canada’s expected economic and societal benefit from this “platform” technology, across the 21st century, includes the automotive, construction, defence, energy, foods, health, and textile sectors. The federal government also acknowledged the importance of having a public inventory as advocated in bill C-494.

Canada must keep pace with international measures towards nanotechnology safety.

I will continue to work towards safe nanotechnology in Canada, through Bill C-494 and by encouraging the Harper government to fix both policy and regulatory “limitations”.

As for the nits, that “Over 1,000 nano-enabled products … ” comment is a stab in the dark. No one really knows how many nano-enabled products are out there and this number sounds like it’s based on a database maintained by the Project on Emerging Nanotechnologies (PEN). The PEN database (the best known and most respected) is voluntary and not vetted, in other words, anybody can claim and register a nano-enabled product.

ETA Feb.2.11: I received an email from Peter’s office citing the source of the statistic. From the email,

“In collaboration with Environment Canada, in February 2009 Industry Canada collected data on the number of consumer products on the Canadian market that incorporated nanotechnology-based components or technologies. These were estimated at over 1600 products, with 68% being imported into Canada from more than 11 different countries.”

Thank you, I’d forgotten about this source. This data is from an OECD report than I commented on in an April 12, 2010 posting. Here are the comments I made at the time,

Over 1600 ‘nano’ products are being imported into Canada? They know this because, from the report, p. 31,

In collaboration with Environment Canada, in February 2009 Industry Canada collected data on the number of consumer products on the Canadian market that incorporated nanotechnology-based components or technologies.

This data collection seems a bit odd given that Environment Canada’s definition of nanomaterials that need to be reported specifically excludes nano titanium dioxide which is a very popular nano material. (I have more about definitions in section following in this post.) Plus, I wonder where else this information about the number of products with nanomaterials is available and how many Canadians know about it?

I think my comments about the data still stand and this business about where we get data and how we get and whether or not it’s valid points to the difficulties anybody, no matter how hard they try,  has discussing nanotechnology-enabled products in Canada and elsewhere.

The June 2010 hearing of the House of Commons Health Committee (mentioned in the paragraph after the ‘1000 products’) which ” … raise[d] additional concern and alarm towards the government’s slow response to emerging risk science and precautionary regulatory actions now implemented in other countries,” I’d like to know more about that concern and the hearing. I did send some email interview questions last summer to the hearing’s chair, Joyce Murray, MP Vancouver Quadra and, later, to one of the members, Cathy McLeod, MP Kamloops-Thompson-Cariboo, and have yet to hear back. After reading the June 10, 2010 evidence from the hearing, I did post my impressions and thoughts  on June 23, 2010.

I’m glad to hear that Peter Julian is persisting in his efforts and hope that this bill might open up a larger discussion (I know I’m being idealistic) on emerging technologies and sciences and how Canadians will be grappling with the implications as a society. In short,  I’d like to see some imagination, discussion, and engagement rather than a single-minded rush to legislation and hope that Julian’s bill will act as a catalyst to that end.