Tag Archives: Pulickel M. Ajayan

The brittleness of molybdenum diselenide

With the finding that molybdenum diselenide is not as strong as previously believed, industry may want to reconsider 2D materials before incorporating them in new products according to a Rice University (Texas, US) scientist. From a Nov. 14, 2016 news item on Nanowerk,

Scientists at Rice University have discovered that an atom-thick material being eyed for flexible electronics and next-generation optical devices is more brittle than they expected.

The Rice team led by materials scientist Jun Lou tested the tensile strength of two-dimensional, semiconducting molybdenum diselenide and discovered that flaws as small as one missing atom can initiate catastrophic cracking under strain.

The finding may cause industry to look more carefully at the properties of 2-D materials before incorporating them in new technologies, he said.


A Nov. 14, 2016 Rice University news release (also on EurekAlert), which originated the news item, provides more insight into the research,

“It turns out not all 2-D crystals are equal,” said Lou, a Rice professor of materials science and nanoengineering. “Graphene is a lot more robust compared with some of the others we’re dealing with right now, like this molybdenum diselenide. We think it has something to do with defects inherent to these materials.”

The defects could be as small as a single atom that leaves a vacancy in the crystalline structure, he said. “It’s very hard to detect them,” he said. “Even if a cluster of vacancies makes a bigger hole, it’s difficult to find using any technique. It might be possible to see them with a transmission electron microscope, but that would be so labor-intensive that it wouldn’t be useful.”

Molybdenum diselenide is a dichalcogenide, a two-dimensional semiconducting material that appears as a graphene-like hexagonal array from above but is actually a sandwich of metallic atoms between two layers of chalcogen atoms, in this case, selenium. Molybdenum diselenide is being considered for use as transistors and in next-generation solar cells, photodetectors and catalysts as well as electronic and optical devices.

Lou and colleagues measured the material’s elastic modulus, the amount of stretching a material can handle and still return to its initial state, at 177.2 (plus or minus 9.3) gigapascals. Graphene is more than five times as elastic. They attributed the large variation to pre-existing flaws of between 3.6 and 77.5 nanometers.

Its fracture strength, the amount of stretching a material can handle before breaking, was measured at 4.8 (plus or minus 2.9) gigapascals. Graphene is nearly 25 times stronger.

Part of the project led by Rice postdoctoral researcher Yingchao Yang required moving molybdenum diselenide from a growth chamber in a chemical vapor deposition furnace to a microscope without introducing more defects. Yang solved the problem using a dry transfer process in place of a standard acid washing that would have ruined the samples.

To test samples, Yang placed rectangles of molybdenum diselenide onto a sensitive electron microscope platform invented by the Lou group. Natural van der Waals forces held the samples in place on springy cantilever arms that measured the applied stress.

Lou said the group attempted to measure the material’s fracture toughness, an indicator of how likely cracks are to propagate, as they had in an earlier study on graphene. But they found that pre-cutting cracks into molybdenum diselenide resulted in it shattering before stress could be applied, he said.

“The important message of this work is the brittle nature of these materials,” Lou said. “A lot of people are thinking about using 2-D crystals because they’re inherently thin. They’re thinking about flexible electronics because they are semiconductors and their theoretical elastic strength should be very high. According to our calculations, they can be stretched up to 10 percent.

“But in reality, because of the inherent defects, you rarely can achieve that much strength. The samples we have tested so far broke at 2 to 3 percent (of the theoretical maximum) at most,” Lou said. “That should still be fine for most flexible applications, but unless they find a way to quench the defects, it will be very hard to achieve the theoretical limits.”


When seen from above, the atoms in two-dimensional molybdenum diselenide resemble a hexagonal grid, like graphene. But in reality, the darker molybdenum atoms are sandwiched between top and bottom layers of selenide atoms. Rice University researchers tested the material for its tensile strength. Courtesy of the Lou Group

When seen from above, the atoms in two-dimensional molybdenum diselenide resemble a hexagonal grid, like graphene. But in reality, the darker molybdenum atoms are sandwiched between top and bottom layers of selenide atoms. Rice University researchers tested the material for its tensile strength. Courtesy of the Lou Group

Here’s a link to and a citation for the paper,


Brittle Fracture of 2D MoSe2 by Yingchao Yang, Xing Li, Minru Wen, Emily Hacopian, Weibing Chen, Yongji Gong, Jing Zhang, Bo Li, Wu Zhou, Pulickel M. Ajayan, Qing Chen, Ting Zhu, and Jun Lou. Advanced Materials DOI: 10.1002/adma.201604201 Version of Record online: 3 NOV 2016

© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This paper is behind a paywall.

A new graphene-based contrast agent for magnetic resonance imaging (MRI)

After teaching a continuing studies course on bioelectronics for Simon Fraser University (Vancouver, Canada), I’ve developed a mild interest in magnetic resonance imaging and contrast agents which this Nov. 11, 2016 news item on phys.org satisfies,

Graphene, the atomically thin sheets of carbon that materials scientists are hoping to use for everything from nanoelectronics and aircraft de-icers to batteries and bone implants, may also find use as contrast agents for magnetic resonance imaging (MRI), according to new research from Rice University.

“They have a lot of advantages compared with conventionally available contrast agents,” Rice researcher Sruthi Radhakrishnan said of the graphene-based quantum dots she has studied for the past two years. “Virtually all of the widely used contrast agents contain toxic metals, but our material has no metal. It’s just carbon, hydrogen, oxygen and fluorine, and in all of our tests so far it has shown no signs of toxicity.”

The initial findings for Rice’s nanoparticles—disks of graphene that are decorated with fluorine atoms and simply organic molecules that make them magnetic—are described in a new paper in the journal Particle and Particle Systems characterization.

A Nov. 10, 2016 Rice University (Texas, US) news release, which originated the news item, describes the work in more detail,

Pulickel Ajayan, the Rice materials scientist who is directing the work, said the fluorinated graphene oxide quantum dots could be particularly useful as MRI contrast agents because they could be targeted to specific kinds of tissues.

“There are tried-and-true methods for attaching biomarkers to carbon nanoparticles, so one could easily envision using these quantum dots to develop tissue-specific contrast agents,” Ajayan said. “For example, this method could be used to selectively target specific types of cancer or brain lesions caused by Alzheimer’s disease. That kind of specificity isn’t available with today’s contrast agents.”

MRI scanners make images of the body’s internal structures using strong magnetic fields and radio waves. As diagnostic tests, MRIs often provide greater detail than X-rays without the harmful radiation, and as a result, MRI usage has risen sharply over the past decade. More than 30 million MRIs are performed annually in the U.S.

Radhakrishnan said her work began in 2014 after Ajayan’s research team found that adding fluorine to either graphite or graphene caused the materials to show up well on MRI scans.

All materials are influenced by magnetic fields, including animal tissues. In MRI scanners, a powerful magnetic field causes individual atoms throughout the body to become magnetically aligned. A pulse of radio energy is used to disrupt this alignment, and the machine measures how long it takes for the atoms in different parts of the body to become realigned. Based on these measures, the scanner can build up a detailed image of the body’s internal structures.

MRI contrast agents shorten the amount of time it takes for tissues to realign and significantly improve the resolution of MRI scans. Almost all commercially available contrast agents are made from toxic metals like gadolinium, iron or manganese.

“We worked with a team from MD Anderson Cancer Center to assess the cytocompatibility of fluorinated graphene oxide quantum dots,” Radhakrishnan said. “We used a test that measures the metabolic activity of cell cultures and detects toxicity as a drop in metabolic activity. We incubated quantum dots in kidney cell cultures for up to three days and found no significant cell death in the cultures, even at the highest concentrations.”

The fluorinated graphene oxide quantum dots Radhakrishnan studies can be made in less than a day, but she spent two years perfecting the recipe for them. She begins with micron-sized sheets of graphene that have been fluorinated and oxidized. When these are added to a solvent and stirred for several hours, they break into smaller pieces. Making the material smaller is not difficult, but the process for making small particles with the appropriate magnetic properties is exacting. Radhakrishnan said there was no “eureka moment” in which she suddenly achieved the right results by stumbling on the best formula. Rather, the project was marked by incremental improvements through dozens of minor alterations.

“It required a lot of optimization,” she said. “The recipe matters a lot.”

Radhakrishnan said she plans to continue studying the material and hopes to eventually have a hand in proving that it is safe and effective for clinical MRI tests.

“I would like to see it applied commercially in clinical ways because it has a lot of advantages compared with conventionally available agents,” she said.

Here’s a link to and a citation for the paper,

Metal-Free Dual Modal Contrast Agents Based on Fluorographene Quantum Dots by Sruthi Radhakrishnan, Atanu Samanta, Parambath M. Sudeep, Kiersten L. Maldonado, Sendurai A. Mani, Ghanashyam Acharya, Chandra Sekhar Tiwary, Abhishek K. Singh, and Pulickel M. Ajayan. Particle & Particle Systems Characterization DOI: 10.1002/ppsc.201600221 Version of Record online: 21 OCT 2016

This paper is behind a paywall.

Graphene in the bone

An international team of US, Brazilian, and Indian scientists has developed a graphene-based material they believe could be used in bone implants. From a Sept. 2, 2016 news item on ScienceDaily,

Flakes of graphene welded together into solid materials may be suitable for bone implants, according to a study led by Rice University scientists.

The Rice lab of materials scientist Pulickel Ajayan and colleagues in Texas, Brazil and India used spark plasma sintering to weld flakes of graphene oxide into porous solids that compare favorably with the mechanical properties and biocompatibility of titanium, a standard bone-replacement material.

A Sept. 2, 2016 Rice University news release (also on EurekAlert), which originated the news item, explains the work in more detail,

The researchers believe their technique will give them the ability to create highly complex shapes out of graphene in minutes using graphite molds, which they believe would be easier to process than specialty metals.

“We started thinking about this for bone implants because graphene is one of the most intriguing materials with many possibilities and it’s generally biocompatible,” said Rice postdoctoral research associate Chandra Sekhar Tiwary, co-lead author of the paper with Dibyendu Chakravarty of the International Advanced Research Center for Powder Metallurgy and New Materials in Hyderabad, India. “Four things are important: its mechanical properties, density, porosity and biocompatibility.”

Tiwary said spark plasma sintering is being used in industry to make complex parts, generally with ceramics. “The technique uses a high pulse current that welds the flakes together instantly. You only need high voltage, not high pressure or temperatures,” he said. The material they made is nearly 50 percent porous, with a density half that of graphite and a quarter of titanium metal. But it has enough compressive strength — 40 megapascals — to qualify it for bone implants, he said. The strength of the bonds between sheets keeps it from disintegrating in water.

The researchers controlled the density of the material by altering the voltage that delivers the highly localized blast of heat that makes the nanoscale welds. Though the experiments were carried out at room temperature, the researchers made graphene solids of various density by raising these sintering temperatures from 200 to 400 degrees Celsius. Samples made at local temperatures of 300 C proved best, Tiwary said. “The nice thing about two-dimensional materials is that they give you a lot of surface area to connect. With graphene, you just need to overcome a small activation barrier to make very strong welds,” he said.

With the help of colleagues at Hysitron in Minnesota, the researchers measured the load-bearing capacity of thin sheets of two- to five-layer bonded graphene by repeatedly stressing them with a picoindenter attached to a scanning electron microscope and found they were stable up to 70 micronewtons. Colleagues at the University of Texas MD Anderson Cancer Center successfully cultured cells on the material to show its biocompatibility. As a bonus, the researchers also discovered the sintering process has the ability to reduce graphene oxide flakes to pure bilayer graphene, which makes them stronger and more stable than graphene monolayers or graphene oxide.

“This example demonstrates the possible use of unconventional materials in conventional technologies,” Ajayan said. “But these transitions can only be made if materials such as 2-D graphene layers can be scalably made into 3-D solids with appropriate density and strength.

“Engineering junctions and strong interfaces between nanoscale building blocks is the biggest challenge in achieving such goals, but in this case, spark plasma sintering seems to be effective in joining graphene sheets to produce strong 3-D solids,” he said.

The researchers have produced an animation depicting of graphene oxide layers being stacked,

A molecular dynamics simulation shows how graphene oxide layers stack when welded by spark plasma sintering. The presence of oxygen molecules at left prevents the graphene layers from bonding, as they do without oxygen at right. Courtesy of the Ajayan and Galvão groups

Here’s a link to and a citation for the paper,

3D Porous Graphene by Low-Temperature Plasma Welding for Bone Implants by Dibyendu Chakravarty, Chandra Sekhar Tiwary, Cristano F. Woellner, Sruthi Radhakrishnan4, Soumya Vinod, Sehmus Ozden, Pedro Alves da Silva Autreto, Sanjit Bhowmick, Syed Asif, Sendurai A Mani, Douglas S. Galvao, and Pulickel M. Ajayan. Advanced Materials DOI: 10.1002/adma.201603146 Version of Record online: 26 AUG 2016

© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This paper is behind a paywall.

‘Scotch-tape’ technique for isolating graphene

The ‘scotch-tape’ technique is mythologized in the graphene origins story which has scientists, Andre Geim and Konstantin Novoselov, first isolating the material by using adhesive (aka ‘sticky’ tape or ‘scotch’ tape) as per my Oct. 7, 2010 posting,

The technique that Geim and Novoselov used to create the first graphene sheets both amuses and fascinates me (from the article by Kit Eaton on the Fast Company website),

The two scientists came up with the technique that first resulted in samples of graphene–peeling individual atoms-deep sheets of the material from a bigger block of pure graphite. The science here seems almost foolishly simple, but it took a lot of lateral thinking to dream up, and then some serious science to investigate: Geim and Novoselo literally “ripped” single sheets off the graphite by using regular adhesive tape. Once they’d confirmed they had grabbed micro-flakes of the material, Geim and Novoselo were responsible for some of the very early experiments into the material’s properties. Novel stuff indeed, but perhaps not so unexpected from a scientist (Geim) who the Nobel Committe notes once managed to make a frog levitate in a magnetic field.

A May 21, 2014 article about Geim who has won both a Nobel and an Ig Nobel (the only scientist to do so) and graphene by Sarah Lewis for Fast Company offers more details about the discovery,

The graphene FNE [Friday Night Experiments] began when Geim asked Da Jiang, a doctoral student from China, to polish a piece of graphite an inch across and a few millimeters thick down to 10 microns using a specialized machine. Partly due to a language barrier, Jiang polished the graphite down to dust, but not the ultimate thinness Geim wanted.

Helpfully, the Geim lab was also observing graphite using scanning tunneling microscopy (STM). The experimenters would clean the samples beforehand using Scotch tape, which they would then discard. “We took it out of the trash and just used it,” Novoselov said. The flakes of graphite on the tape from the waste bin were finer and thinner than what Jiang had found using the fancy machine. They weren’t one layer thick—that achievement came by ripping them some more with Scotch tape.

They swapped the adhesive for Japanese Nitto tape, “probably because the whole process is so simple and cheap we wanted to fancy it up a little and use this blue tape,” Geim said. Yet “the method is called the ‘Scotch tape technique.’ I fought against this name, but lost.”

Scientists elsewhere have been inspired to investigate the process in minute detail as per a June 27, 2014 news item on Nanowerk,

The simplest mechanical cleavage technique using a primitive “Scotch” tape has resulted in the Nobel-awarded discovery of graphenes and is currently under worldwide use for assembling graphenes and other two-dimensional (2D) graphene-like structures toward their utilization in novel high-performance nanoelectronic devices.

The simplicity of this method has initiated a booming research on 2D materials. However, the atomistic processes behind the micromechanical cleavage have still been poorly understood.

A June 27, 2014 MANA (International Center for Materials Nanoarchitectoinics) news release, which originated the news item, provides more information,

A joined team of experimentalists and theorists from the International Center for Young Scientists, International Center for Materials Nanoarchitectonics and Surface Physics and Structure Unit of the National Institute for Materials Science, National University of Science and Technology “MISiS” (Moscow, Russia), Rice University (USA) and University of Jyväskylä (Finland) led by Daiming Tang and Dmitri Golberg for the first time succeeded in complete understanding of physics, kinetics and energetics behind the regarded “Scotch-tape” technique using molybdenum disulphide (MoS2) atomic layers as a model material.

The researchers developed a direct in situ probing technique in a high-resolution transmission electron microscope (HRTEM) to investigate the mechanical cleavage processes and associated mechanical behaviors. By precisely manipulating an ultra-sharp metal probe to contact the pre-existing crystalline steps of the MoS2 single crystals, atomically thin flakes were delicately peeled off, selectively ranging from a single, double to more than 20 atomic layers. The team found that the mechanical behaviors are strongly dependent on the number of layers. Combination of in situ HRTEM and molecular dynamics simulations reveal a transformation of bending behavior from spontaneous rippling (< 5 atomic layers) to homogeneous curving (~ 10 layers), and finally to kinking (20 or more layers).

By considering the force balance near the contact point, the specific surface energy of a MoS2 monoatomic layer was calculated to be ~0.11 N/m. This is the first time that this fundamentally important property has directly been measured.

After initial isolation from the mother crystal, the MoS2 monolayer could be readily restacked onto the surface of the crystal, demonstrating the possibility of van der Waals epitaxy. MoS2 atomic layers could be bent to ultimate small radii (1.3 ~ 3.0 nm) reversibly without fracture. Such ultra-reversibility and extreme flexibility proves that they could be mechanically robust candidates for the advanced flexible electronic devices even under extreme folding conditions.

Here’s a link to and a citation for the research paper,

Nanomechanical cleavage of molybdenum disulphide atomic layers by Dai-Ming Tang, Dmitry G. Kvashnin, Sina Najmaei, Yoshio Bando, Koji Kimoto, Pekka Koskinen, Pulickel M. Ajayan, Boris I. Yakobson, Pavel B. Sorokin, Jun Lou, & Dmitri Golberg. Nature Communications 5, Article number: 3631 doi:10.1038/ncomms4631 Published 03 April 2014

This paper is behind a paywall but there is a free preview available through ReadCube Access.

Harvest water from desert air with carbon nanotube cups (competition for NBD Nano?)

It’s been a while since I’ve seen Pulickel Ajayan’s name in a Rice University (Texas) news release and I wonder if this is the beginning of a series. I’ve noticed that researchers often publish a series of papers within a few months and then become quiet for two or more years as they work in their labs to gather more information.

This time the research from Pulickel’s lab has focused on the use of carbon nanotubes to harvest water from desert air. From a June 12, 2014 news item on Azonano,

If you don’t want to die of thirst in the desert, be like the beetle. Or have a nanotube cup handy.

New research by scientists at Rice University demonstrated that forests of carbon nanotubes can be made to harvest water molecules from arid desert air and store them for future use.

The invention they call a “hygroscopic scaffold” is detailed in a new paper in the American Chemical Society journal Applied Materials and Interfaces.

Researchers in the lab of Rice materials scientist Pulickel Ajayan found a way to mimic the Stenocara beetle, which survives in the desert by stretching its wings to capture and drink water molecules from the early morning fog.

Here’s more about the research from a June 11, 2014 Rice University news release (by Mike Williams?), which originated the news item,

They modified carbon nanotube forests grown through a process created at Rice, giving the nanotubes a superhydrophobic (water-repelling) bottom and a hydrophilic (water loving) top. The forest attracts water molecules from the air and, because the sides are naturally hydrophobic, traps them inside.

“It doesn’t require any external energy, and it keeps water inside the forest,” said graduate student and first author Sehmus Ozden. “You can squeeze the forest to take the water out and use the material again.”

The forests grown via water-assisted chemical vapor deposition consist of nanotubes that measure only a few nanometers (billionths of a meter) across and about a centimeter long.

The Rice team led by Ozden deposited a superhydrophobic layer to the top of the forest and then removed the forest from its silicon base, flipped it and added a layer of hydrophilic polymer to the other side.

In tests, water molecules bonded to the hydrophilic top and penetrated the forest through capillary action and gravity. (Air inside the forest is compressed rather then expelled, the researchers assumed.) Once a little water bonds to the forest canopy, the effect multiplies as the molecules are drawn inside, spreading out over the nanotubes through van der Waals forces, hydrogen bonding and dipole interactions. The molecules then draw more water in.

The researchers tested several variants of their cup. With only the top hydrophilic layer, the forests fell apart when exposed to humid air because the untreated bottom lacked the polymer links that held the top together. With a hydrophilic top and bottom, the forest held together but water ran right through.

But with a hydrophobic bottom and hydrophilic top, the forest remained intact even after collecting 80 percent of its weight in water.

The amount of water vapor captured depends on the air’s humidity. An 8 milligram sample (with a 0.25-square-centimeter surface) pulled in 27.4 percent of its weight over 11 hours in dry air, and 80 percent over 13 hours in humid air. Further tests showed the forests significantly slowed evaporation of the trapped water.

If it becomes possible to grow nanotube forests on a large scale, the invention could become an efficient, effective water-collection device because it does not require an external energy source, the researchers said.

Ozden said the production of carbon nanotube arrays at a scale necessary to put the invention to practical use remains a bottleneck. “If it becomes possible to make large-scale nanotube forests, it will be a very easy material to make,” he said.

This is not the first time researchers have used the Stenocara beetle (also known as the Namib desert beetle) as inspiration for a water-harvesting material. In a Nov. 26, 2012 posting I traced the inspiration  back to 2001 while featuring the announcement of a new startup company,

… US startup company, NBD Nano, which aims to bring a self-filling water bottle based on Namib desert beetle to market,

NBD Nano, which consists of four recent university graduates and was formed in May [2012], looked at the Namib Desert beetle that lives in a region that gets about half an inch of rainfall per year.

Using a similar approach, the firm wants to cover the surface of a bottle with hydrophilic (water-attracting) and hydrophobic (water-repellent) materials.

The work is still in its early stages, but it is the latest example of researchers looking at nature to find inspiration for sustainable technology.

“It was important to apply [biomimicry] to our design and we have developed a proof of concept and [are] currently creating our first fully-functional prototype,” Miguel Galvez, a co-founder, told the BBC.

“We think our initial prototype will collect anywhere from half a litre of water to three litres per hour, depending on local environments.”

You can find out more about NBD Nano here although they don’t give many details about the material they’ve developed. Given that MIT (Massachusetts Institute of Technology) researchers published a  paper about a polymer-based material laced with silicon nanoparticles inspired by the Namib beetle in 2006 and that NBD Nano is based Massachusetts, I believe NBD Nano is attempting to commercialize the material or some variant developed at MIT.

Getting back to Rice University and carbon nanotubes, this is a different material attempting to achieve the same goal, harvesting water from desert air. Here’s a link to and a citation for the latest paper inspired by the Stenocara beetle (Namib beetle),

Anisotropically Functionalized Carbon Nanotube Array Based Hygroscopic Scaffolds by Sehmus Ozden, Liehui Ge , Tharangattu N. Narayanan , Amelia H. C. Hart , Hyunseung Yang , Srividya Sridhar , Robert Vajtai , and Pulickel M Ajayan. ACS Appl. Mater. Interfaces, DOI: 10.1021/am5022717 Publication Date (Web): June 4, 2014

Copyright © 2014 American Chemical Society

This paper is behind a paywall.

One final note, the research at MIT was funded by DARPA (US Defense Advanced Research Projects Agency). According to the news release the Rice University research held interest for similar agencies,

The U.S. Department of Defense and the U.S. Air Force Office of Scientific Research Multidisciplinary University Research Initiative supported the research.

Graphene euphoria, heat sinks, diamonds, and Rice University’s Ajayan Group

Pulickel Ajayan, at Rice University (Texas), must have one of the most active laboratories in the US where nanotechnology-based research and announcements about it are concerned and I imagine it’s an exciting place to work. Whoever wrote the May 28, 2013 Rice University news release on EurekAlert seems to have caught some of the Ajayan Group’s excitement,

What may be the ultimate heat sink is only possible because of yet another astounding capability of graphene. The one-atom-thick form of carbon can act as a go-between that allows vertically aligned carbon nanotubes to grow on nearly anything.

That includes diamonds. A diamond film/graphene/nanotube structure was one result of new research carried out by scientists at Rice University and the Honda Research Institute USA, reported today in Nature’s online journal Scientific Reports.

The heart of the research is the revelation that when graphene is used as a middleman, surfaces considered unusable as substrates for carbon nanotube growth now have the potential to do so. Diamond happens to be a good example, according to Rice materials scientist Pulickel Ajayan and Honda chief scientist Avetik Harutyunyan.

Here’s an image the team has provided,

Rice University and the Honda Research Institute use single-layer graphene to grow forests of nanotubes on virtually anything. The image shows freestanding carbon nanotubes on graphene that has been lifted off of a quartz substrate. One hybrid material created by the labs combines three allotropes of carbon – graphene, nanotubes and diamond – into a superior material for thermal management. (Credit: Honda Research Institute)

Rice University and the Honda Research Institute use single-layer graphene to grow forests of nanotubes on virtually anything. The image shows freestanding carbon nanotubes on graphene that has been lifted off of a quartz substrate. One hybrid material created by the labs combines three allotropes of carbon – graphene, nanotubes and diamond – into a superior material for thermal management. (Credit: Honda Research Institute)

The news release provides more information about the diamond-carbon nanotube-graphene hybrid material,

Diamond conducts heat very well, five times better than copper. But its available surface area is very low. By its very nature, one-atom-thick graphene is all surface area. The same could be said of carbon nanotubes, which are basically rolled-up tubes of graphene. A vertically aligned forest of carbon nanotubes grown on diamond would disperse heat like a traditional heat sink, but with millions of fins. Such an ultrathin array could save space in small microprocessor-based devices.

“Further work along these lines could produce such structures as patterned nanotube arrays on diamond that could be utilized in electronic devices,” Ajayan said. Graphene and metallic nanotubes are also highly conductive; in combination with metallic substrates, they may also have uses in advanced electronics, he said.

To test their ideas, the Honda team grew various types of graphene on copper foil by standard chemical vapor deposition. They then transferred the tiny graphene sheets to diamond, quartz and other metals for further study by the Rice team.

They found that only single-layer graphene worked well, and sheets with ripples or wrinkles worked best. The defects appeared to capture and hold the airborne iron-based catalyst particles from which the nanotubes grow. The researchers think graphene facilitates nanotube growth by keeping the catalyst particles from clumping.

Ajayan thinks the extreme thinness of graphene does the trick. In a previous study, the Rice lab found graphene shows materials coated with graphene can get wet, but the graphene provides protection against oxidation. “That might be one of the big things about graphene, that you can have a noninvasive coating that keeps the property of the substrate but adds value,” he said. “Here it allows the catalytic activity but stops the catalyst from aggregating.”

Testing found that the graphene layer remains intact between the nanotube forest and the diamond or other substrate. On a metallic substrate like copper, the entire hybrid is highly conductive.

Such seamless integration through the graphene interface would provide low-contact resistance between current collectors and the active materials of electrochemical cells, a remarkable step toward building high-power energy devices, said Rice research scientist and co-author Leela Mohana Reddy Arava.

Here’s a link to and a citation for the paper,

Graphene as an atomically thin interface for growth of vertically aligned carbon nanotubes by Rahul Rao, Gugang Chen, Leela Mohana Reddy Arava, Kaushik Kalaga, Masahiro Ishigami, Tony F. Heinz, Pulickel M. Ajayan, & Avetik R. Harutyunyan. Scientific Reports 3, Article number: 1891 doi:10.1038/srep01891 Published 28 May 2013

Scientific Reports, a Nature publication, provides open access to its papers.

Mad about Madder in lithium-ion batteries

It hasn’t happened yet but it looks like the future might hold greener lithium-ion (Li-ion) batteries. According to the Dec. 11, 2012 news release on EurekAlert,

Scientists at Rice University and the City College of New York have discovered that the madder plant, aka Rubia tinctorum, is a good source of purpurin, an organic dye that can be turned into a highly effective, natural cathode for lithium-ion batteries. The plant has been used since ancient times to create dye for fabrics.

The goal, according to lead author Arava Leela Mohana Reddy, a research scientist in the Rice lab of materials scientist Pulickel Ajayan, is to create environmentally friendly batteries that solve many of the problems with lithium-ion batteries in use today.

Purpurin, left, extracted from madder root, center, is chemically lithiated, right, for use as an organic cathode in batteries. The material was developed as a less expensive, easier-to-recycle alternative to cobalt oxide cathodes now used in lithium-ion batteries. Credit: Ajayan Lab/Rice University

The Dec. 11, 2012 Rice University news release by Mike Williams, the origin for the one on EurekAlert, describes why the researchers are so interested in a more environmentally-friendly cathode,

While lithium-ion batteries have become standard in conventional electronics since their commercial introduction in 1991, the rechargeable units remain costly to manufacture, Reddy said. “They’re not environmentally friendly. They use cathodes of lithium cobalt oxide, which are very expensive. You have to mine the cobalt metal and manufacture the cathodes in a high-temperature environment. There are a lot of costs.

“And then, recycling is a big issue,” he said. “In 2010, almost 10 billion lithium-ion batteries had to be recycled, which uses a lot of energy. Extracting cobalt from the batteries is an expensive process.”

Reddy and his colleagues came across purpurin while testing a number of organic molecules for their ability to electrochemically interact with lithium and found purpurin most amenable to binding lithium ions. With the addition of 20 percent carbon to add conductivity, the team built a half-battery cell with a capacity of 90 milliamp hours per gram after 50 charge/discharge cycles. The cathodes can be made at room temperature, he said.

“It’s a new mechanism we are proposing with this paper, and the chemistry is really simple,” Reddy said. He suggested agricultural waste may be a source of purpurin, as may other suitable molecules, which makes the process even more economical.

Innovation in the battery space is needed to satisfy future demands and counter environmental issues like waste management, “and hence we are quite fascinated by the ability to develop alternative electrode technologies to replace conventional inorganic materials in lithium-ion batteries,” said Ajayan, Rice’s Benjamin M. and Mary Greenwood Anderson Professor in Mechanical Engineering and Materials Science and of chemistry.

“We’re interested in developing value-added chemicals, products and materials from renewable feedstocks as a sustainable technology platform,” said co-lead author George John, a professor of chemistry at the City College of New York-CUNY and an expert on bio-based materials and green chemistry. “The point has been to understand the chemistry between lithium ions and the organic molecules. Now that we have that proper understanding, we can tap other molecules and improve capacity.”

For anyone who’s interested, you can read the researchers’ article (open access),

Lithium storage mechanisms in purpurin based organic lithium ion battery electrodes by Arava Leela Mohana Reddy,  Subbiah Nagarajan, Porramate Chumyim, Sanketh R. Gowda, Padmanava Pradhan, Swapnil R. Jadhav, Madan Dubey,  George John & Pulickel M. Ajayan in Scientific Reports 2 Article number: 960 doi:10.1038/srep00960

You might also want to check out Dexter Johnson’s Nov. 26, 2012 posting (on Nanoclast, an IEEE [Institute of Electrical and Electronics Engineers] blog)where he mentions a technical deficiency (recharging becomes increasingly difficult) with the current Li-ion batteries in the context of his description of a new imaging technique.