Tag Archives: Pythagoras

Antikythera: a new Berggruen Institute program and a 2,000 year old computer

Starting with the new Antikythera program at the Berggruen Institute before moving onto the Antikythera itself, one of my favourite scientific mysteries.

Antikythera program at the Berggruen Institute

An October 5, 2022 Berggruen Institute news release (also received via email) announces a program exploring the impact of planetary-scale computation and invites applications for the program’s first ‘studio’,

Antikythera is convening over 75 philosophers, technologists, designers, and scientists in seminars, design research studios, and global salons to create new models that shift computation toward more viable long-term futures: https://antikythera.xyz/

Applications are now open for researchers to join Antikythera’s fully-funded five month Studio in 2023, launching at the Berggruen Institute in Los Angeles: https://antikythera.xyz/apply/

Today [October 5, 2022] the Berggruen Institute announced that it will incubate Antikythera, an initiative focused on understanding and shaping the impact of computation on philosophy, global society, and planetary systems. Antikythera will engage a wide range of thinkers at the intersections of software, speculative thought, governance, and design to explore computation’s ultimate pitfalls and potentials. Research will range from the significance of machine intelligence and the geopolitics of AI to new economic models and the long-term project of composing a healthy planetary society.

“Against a background of rising geopolitical tensions and an accelerating climate crisis, technology has outpaced our theory. As such, we are less interested in applying philosophy to the topic of computation than generating new ideas from a direct encounter with it.” said Benjamin Bratton, Professor at the University of California, San Diego, and director of the new program. “The purpose of Antikythera is to reorient the question “what is computation for?” and to model what it may become. That is a project that is not only technological but also philosophical, political, and ecological.”

Antikythera will begin this exploration with its Studio program, applications for which are now open at antikythera.xyz/apply/. The Studio program will take place over five months in spring 2023 and bring together researchers from across the world to work in multidisciplinary teams. These teams will work on speculative design proposals, and join 75+ Affiliate Researchers for workshops, talks, and design sprints that inform thinking and propositions around Antikythera’s core research topics. Affiliate Researchers will include philosophers, technologists, designers, scientists, and other thinkers and practitioners. Applications for the program are due November 11, 2022.

Program project outcomes will include new combinations of theory, cinema, software, and policy. The five initial research themes animating this work are:

Synthetic Intelligence: the longer-term implications of machine intelligence, particularly as seen through the lens of artificial language

Hemispherical Stacks: the multipolar geopolitics of planetary computation

Recursive Simulations: the emergence of simulation as an epistemological technology, from scientific simulation to VR/AR

Synthetic Catallaxy: the ongoing organization of computational economics, pricing, and planning

Planetary Sapience: the evolutionary emergence of natural/artificial intelligence, and its role in composing a viable planetary condition

The program is named after the Antikythera Mechanism, the world’s first known computer, used more than 2,000 years ago to predict the movements of constellations and eclipses decades in advance. As an origin point for computation, it combined calculation, orientation and cosmology, dimensions of practice whose synergies may be crucial in setting our planetary future on a better course than it is on today.

Bratton continues, “The evolution of planetary intelligence has also meant centuries of destruction; its future must be radically different. We must ask, what future would make this past worth it? Taking the question seriously demands a different sort of speculative and practical philosophy and a corresponding sort of computation.”

Bratton is a philosopher of technology and Professor at the University of California, San Diego, and author of many books including The Stack: On Software and Sovereignty (MIT Press). His most recent book is The Revenge of the Real: Politics for a Post-Pandemic World (Verso Books), exploring the implications for political philosophy of COVID-19. Associate directors are Ben Cerveny, technologist, speculative designer, and director of the Amsterdam-based Foundation for Public Code, and Stephanie Sherman, strategist, writer, and director of the MA Narrative Environments program at Central St. Martins, London. The Studio is directed by architect and creative director Nicolay Boyadjiev.

In addition to the Studio, program activities will include a series of invitation-only planning salons inviting philosophers, designers, technologists, strategists, and others to discuss how to best interpret and intervene in the future of planetary-scale computation, and the historic philosophical and geopolitical force that it represents. These salons began in London in October 2022 and will continue in locations across the world including in Berlin; Amsterdam; Los Angeles; San Francisco; New York; Mexico City; Seoul; and Venice.

The announcement of Antikythera at the Berggruen Institute follows the recent spinoff of the Transformations of the Human school, successfully incubated at the Institute from 2017-2021.

“Computational technology covering the planet represents one of the largest and most urgent philosophical opportunities of our time,” said Nicolas Berggruen, Chairman and Co-Founder of the Berggruen Institute. “It is with great pleasure that we invite Antikythera to join our work at the Institute. Together, we can develop new ways of thinking to support planetary flourishing in the years to come.”

Web: Antikythera.xyz
Social: Antikythera_xyz on Twitter, Instagram, and Linkedin.
Email: contact@antikythera.xyz

Applications were opened on October, 4, 2022, the deadline is November 11, 2022 followed by interviews. Participants will be confirmed by December 11, 2022. Here are a few more details from the application portal,

Who should apply to the Studio?

Antikythera hopes to bring together a diverse cohort of researchers from different backgrounds, disciplines, perspectives, and levels of experience. The Antikythera research themes engage with global challenges that necessitate harnessing a diversity of thought and expertise. Anyone who is passionate about the research themes of the Antikythera program is strongly encouraged to apply. We accept applications from every discipline and background, from established to emerging researchers. Applicants do not need to meet any specific set of educational or professional experience.

Is the program free?

Yes, the program is free. You will be supported to cover the cost of housing, living expenses, and all program-related fieldwork travel along with a monthly stipend. Any other associated program costs will also be covered by the program.

Is the program in person and full-time?

Yes, the Studio program requires a full-time commitment (PhD students must also be on leave to participate). There is no part-time participation option. Though we understand this commitment may be challenging logistically for some individuals, we believe it is important for the Studio’s success. We will do our best to enable an environment that is comfortable and safe for participants from all backgrounds. Please do not hesitate to contact us if you may require any accommodations or have questions regarding the full-time, in-person nature of the program.

Do I need a Visa?

The Studio is a traveling program with time spent between the USA, Mexico, and South Korea. Applicable visa requirements set by these countries will apply and will vary depending on your nationality. We are aware that current visa appointment wait times may preclude some individuals who would require a brand new visa from being able to enter the US by January, and we are working to ensure access to the program for all (if not for January 2023, then for future Studio cohorts). We will therefore ask you to identify your country of origin and passport/visa status in the application form so we can work to enable your participation. Anyone who is passionate about the research themes of the Antikythera program is strongly encouraged to apply.

For those who like to put a face to a name, you can find out more about the program and the people behind it on this page.

Antikythera, a 2000 year old computer & 100 year old mystery

As noted in the Berggruen Institute news release, the Antikythera Mechanism is considered the world’s first computer (as far as we know). The image below is one of the best known illustrations of the device as visualized by researchers,

Exploded model of the Cosmos gearing of the Antikythera Mechanism. ©2020 Tony Freeth.

Briefly, the Antikythera mechanism was discovered at the turn of the twentieth century in 1901 by sponge divers off the coast of Greece. Philip Chrysopoulos’s September 21, 2022 article for The Greek Reporter gives more details in an exuberant style (Note: Links have been removed),

… now—more than 120 years later—the astounding machine has been recreated once again, using 3-D imagery, by a brilliant group of researchers from University College London (UCL).

Not only is the recreation a thing of great beauty and amazing genius, but it has also made possible a new understanding of how it worked.

Since only eighty-two fragments of the original mechanism are extant—comprising only one-third of the entire calculator—this left researchers stymied as to its full capabilities.

Until this moment [in 2020 according to the copyright for the image], the front of the mechanism, containing most of the gears, has been a bit of a Holy Grail for marine archeologists and astronomers.

Professor Tony Freeth says in an article published in the periodical Scientific Reports: “Ours is the first model that conforms to all the physical evidence and matches the descriptions in the scientific inscriptions engraved on the mechanism itself.”

“The sun, moon and planets are displayed in an impressive tour de force of ancient Greek brilliance,” Freeth said.

The largest surviving piece of the mechanism, referred to by researchers as “Fragment A,” has bearings, pillars, and a block. Another piece, known as “Fragment D,” has a mysterious disk along with an extraordinarily intricate 63-toothed gear and a plate.

The inscriptions—just discovered recently by researchers—on the back cover of the mechanism have a description of the cosmos and the planets, shown by beads of various colors, and move on rings set around the inscriptions.

By employing the information gleaned from recent x-rays of the computer and their knowledge of ancient Greek mathematics, the UCL researchers have now shown that they can demonstrate how the mechanism determined the cycles of the planets Venus and Saturn.

Evaggelos Vallianatos, author of many books on the Antikythera Mechanism writing at Greek Reporter said that it was much more than a mere mechanism. It was a sophisticated, mind-bogglingly complex astronomical computer, he said “and Greeks made it.”

They employed advanced astronomy, mathematics, metallurgy, and engineering to do so, constructing the astronomical device 2,200 years ago. These scientific facts of the computer’s age and its flowless high-tech nature profoundly disturbed some of the scientists who studied it.

A few Western scientists of the twentieth century were shocked by the Antikythera Mechanism, Vallianatos said. They called it an astrolabe for several decades and refused to call it a computer. The astrolabe, a Greek invention, is a useful instrument for calculating the position of the Sun and other prominent stars. Yet, its technology is rudimentary compared to that of the Antikythera device.

In 2015, Kyriakos Efstathiou, a professor of mechanical engineering at the Aristotle University of Thessaloniki and head of the group which studied the Antikythera Mechanism said: “All of our research has shown that our ancestors used their deep knowledge of astronomy and technology to construct such mechanisms, and based only on this conclusion, the history of technology should be re-written because it sets its start many centuries back.”

The professor further explained that the Antikythera Mechanism is undoubtedly the first machine of antiquity which can be classified by the scientific term “computer,” because “it is a machine with an entry where we can import data, and this machine can bring and create results based on a scientific mathematical scale.

In 2016, yet another astounding discovery was made when an inscription on the device was revealed—something like a label or a user’s manual for the device.

It included a discussion of the colors of eclipses, details used at the time in the making of astrological predictions, including the ability to see exact times of eclipses of the moon and the sun, as well as the correct movements of celestial bodies.

Inscribed numbers 76, 19 and 223 show maker “was a Pythagorean”

On one side of the device lies a handle that begins the movement of the whole system. By turning the handle and rotating the gauges in the front and rear of the mechanism, the user could set a date that would reveal the astronomical phenomena that would potentially occur around the Earth.

Physicist Yiannis Bitsakis has said that today the NASA [US National Aeronautics and Space Adiministration] website can detail all the eclipses of the past and those that are to occur in the future. However, “what we do with computers today, was done with the Antikythera Mechanism about 2000 years ago,” he said.

The stars and night heavens have been important to peoples around the world. (This September 18, 2020 posting highlights millennia old astronomy as practiced by indigenous peoples in North America, Australia, and elsewhere. There’s also this March 17, 2022 article “How did ancient civilizations make sense of the cosmos, and what did they get right?” by Susan Bell of University of Southern California on phys.org.)

I have covered the Antikythera in three previous postings (March 17, 2021, August 3, 2016, and October 2, 2012) with the 2021 posting being the most comprehensive and the one featuring Professor Tony Freeth’s latest breakthrough.

However, 2022 has blessed us with more as this April 11, 2022 article by Jennifer Ouellette for Ars Technica reveals (Note: Links have been removed)

The mysterious Antikythera mechanism—an ancient device believed to have been used for tracking the heavens—has fascinated scientists and the public alike since it was first recovered from a shipwreck over a century ago. Much progress has been made in recent years to reconstruct the surviving fragments and learn more about how the mechanism might have been used. And now, members of a team of Greek researchers believe they have pinpointed the start date for the Antikythera mechanism, according to a preprint posted to the physics arXiv repository. Knowing that “day zero” is critical to ensuring the accuracy of the device.

“Any measuring system, from a thermometer to the Antikythera mechanism, needs a calibration in order to [perform] its calculations correctly,” co-author Aristeidis Voulgaris of the Thessaloniki Directorate of Culture and Tourism in Greece told New Scientist. “Of course it wouldn’t have been perfect—it’s not a digital computer, it’s gears—but it would have been very good at predicting solar and lunar eclipses.”

Last year, an interdisciplinary team at University College London (UCL) led by mechanical engineer Tony Freeth made global headlines with their computational model, revealing a dazzling display of the ancient Greek cosmos. The team is currently building a replica mechanism, moving gears and all, using modern machinery. The display is described in the inscriptions on the mechanism’s back cover, featuring planets moving on concentric rings with marker beads as indicators. X-rays of the front cover accurately represent the cycles of Venus and Saturn—462 and 442 years, respectively. 

The Antikythera mechanism was likely built sometime between 200 BCE and 60 BCE. However, in February 2022, Freeth suggested that the famous Greek mathematician and inventor Archimedes (sometimes referred to as the Leonardo da Vinci of antiquity) may have actually designed the mechanism, even if he didn’t personally build it. (Archimedes died in 212 BCE at the hands of a Roman soldier during the siege of Syracuse.) There are references in the writings of Cicero (106-43 BCE) to a device built by Archimedes for tracking the movement of the Sun, Moon, and five planets; it was a prized possession of the Roman general Marcus Claudius Marcellus. According to Freeth, that description is remarkably similar to the Antikythera mechanism, suggesting it was not a one-of-a-kind device.

Voulgaris and his co-authors based their new analysis on a 223-month cycle called a Saros, represented by a spiral inset on the back of the device. The cycle covers the time it takes for the Sun, Moon, and Earth to return to their same positions and includes associated solar and lunar eclipses. Given our current knowledge about how the device likely functioned, as well as the inscriptions, the team believed the start date would coincide with an annular solar eclipse.

“This is a very specific and unique date [December 22, 178 BCE],” Voulgaris said. “In one day, there occurred too many astronomical events for it to be coincidence. This date was a new moon, the new moon was at apogee, there was a solar eclipse, the Sun entered into the constellation Capricorn, it was the winter solstice.”

Others have made independent calculations and arrived at a different conclusion: the calibration date would more likely fall sometime in the summer of 204 BCE, although Voulgaris countered that this doesn’t explain why the winter solstice is engraved so prominently on the device.

“The eclipse predictions on the [device’s back] contain enough astronomical information to demonstrate conclusively that the 18-year series of lunar and solar eclipse predictions started in 204 BCE,” Alexander Jones of New York University told New Scientist, adding that there have been four independent calculations of this. “The reason such a dating is possible is because the Saros period is not a highly accurate equation of lunar and solar periodicities, so every time you push forward by 223 lunar months… the quality of the prediction degrades.”

Read Ouellette’s April 11, 2022 article for a pretty accessible description of the work involved in establishing the date. Here’s a link to and a citation for the latest attempt to date the Antikythera,

The Initial Calibration Date of the Antikythera Mechanism after the Saros spiral mechanical Apokatastasis by Aristeidis Voulgaris, Christophoros Mouratidis, Andreas Vossinakis. arXiv > physics > arXiv:2203.15045 Submission history: From: Aristeidis Voulgaris Mr [view email] [v1] Mon, 28 Mar 2022 19:17:57 UTC (1,545 KB)

It’s open access. The calculations are beyond me otherwise, it’s quite readable.

Getting back to the Berggruen Institute and its Antikythera program/studio, good luck to all the applicants (the Antikythera application portal).

Geometry and art, an exhibition in Toronto (Canada)

I received this notice from ArtSci Salon mailing (on February 7, 2020 via email),

Geometry is Life

Robin Kingsburgh

February 5 — 16, 2020
Opening Reception: Saturday, February 8, 2 — 5 pm​

Cicada (detail), Robin Kingsburgh (Acrylic on MDF board, 36″ x 38″, 2018)

My work takes inspiration from geometry. For me the square and the circle are starting points. And ending points. The square, defined by the horizontal and the vertical: it’s all you need. The circle: a snake biting its tail; the beginning and end; the still point. Geometric archetypes. But there is no perfect circle; there is no perfect square. The beauty of Pythagoras is within our minds. Rendered by the human hand, the square becomes imperfect, and becomes a part of the human world – where imperfection reigns. The rhythm of imperfection is beauty, where order and chaos dance, and sometimes balance.

Robin Kingsburgh is a trained astronomer (Ph.D. in Astronomy, 1992, University College London). Her artistic education comes from studies at University of Toronto, as well as in the U.K. and France, and has paralleled her scientific development. She currently teaches various Natural Science courses at York University, Toronto. Her scientific background influences her artwork in an indirect, subconscious way, where she employs geometric motifs as a frequent theme. She is a member of Propeller Gallery, where she shows her artwork on a regular basis. She has recently been elected to the Ontario Society of Artists.

There you have it. Have a nice weekend!

ETA February 10, 2020: I’m sorry I forgot to include the address: Propeller Gallery, 30 Abell St Toronto. Wed-Sat 12-6pm, Sun 12-5pm

Mathematicians get illustrative

Frank A. Farris, an associate Professor of Mathematics at Santa Clara University (US), writes about the latest in mathematicians and data visualization in an April 4, 2017 essay on The Conversation (Note: Links have been removed),

Today, digital tools like 3-D printing, animation and virtual reality are more affordable than ever, allowing mathematicians to investigate and illustrate their work at the same time. Instead of drawing a complicated surface on a chalkboard, we can now hand students a physical model to feel or invite them to fly over it in virtual reality.

Last year, a workshop called “Illustrating Mathematics” at the Institute for Computational and Experimental Research in Mathematics (ICERM) brought together an eclectic group of mathematicians and digital art practitioners to celebrate what seems to be a golden age of mathematical visualization. Of course, visualization has been central to mathematics since Pythagoras, but this seems to be the first time it had a workshop of its own.

Visualization plays a growing role in mathematical research. According to John Sullivan at the Technical University of Berlin, mathematical thinking styles can be roughly categorized into three groups: “the philosopher,” who thinks purely in abstract concepts; “the analyst,” who thinks in formulas; and “the geometer,” who thinks in pictures.

Mathematical research is stimulated by collaboration between all three types of thinkers. Many practitioners believe teaching should be calibrated to connect with different thinking styles.

Borromean Rings, the logo of the International Mathematical Union. John Sullivan

Sullivan’s own work has benefited from images. He studies geometric knot theory, which involves finding “best” configurations. For example, consider his Borromean rings, which won the logo contest of the International Mathematical Union several years ago. The rings are linked together, but if one of them is cut, the others fall apart, which makes it a nice symbol of unity.

Apparently this new ability to think mathematics visually has influenced mathematicians in some unexpected ways,

Take mathematician Fabienne Serrière, who raised US$124,306 through Kickstarter in 2015 to buy an industrial knitting machine. Her dream was to make custom-knit scarves that demonstrate cellular automata, mathematical models of cells on a grid. To realize her algorithmic design instructions, Serrière hacked the code that controls the machine. She now works full-time on custom textiles from a Seattle studio.

In this sculpture by Edmund Harriss, the drill traces are programmed to go perpendicular to the growth rings of the tree. This makes the finished sculpture a depiction of a concept mathematicians know as ‘paths of steepest descent.’ Edmund Harriss, Author provided

Edmund Harriss of the University of Arkansas hacked an architectural drilling machine, which he now uses to make mathematical sculptures from wood. The control process involves some deep ideas from differential geometry. Since his ideas are basically about controlling a robot arm, they have wide application beyond art. According to his website, Harriss is “driven by a passion to communicate the beauty and utility of mathematical thinking.”

Mathematical algorithms power the products made by Nervous System, a studio in Massachusetts that was founded in 2007 by Jessica Rosenkrantz, a biologist and architect, and Jess Louis-Rosenberg, a mathematician. Many of their designs, for things like custom jewelry and lampshades, look like naturally occurring structures from biology or geology.

Farris’ essay is a fascinating look at mathematics and data visualization.

YBC 7289: a 3,800-year-old mathematical text and 3D printing at Yale University

1,300 years before Pythagoras came up with the theorem associated with his name, a school kid in Babylon formed a disc out of clay and scratched out the theorem when the surface was drying.  According to an April 12, 2016 news item on phys.org the Bablyonians got to the theorem first, (Note: A link has been removed),

Thirty-eight hundred years ago, on the hot river plains of what is now southern Iraq, a Babylonian student did a bit of schoolwork that changed our understanding of ancient mathematics. The student scooped up a palm-sized clump of wet clay, formed a disc about the size and shape of a hamburger, and let it dry down a bit in the sun. On the surface of the moist clay the student drew a diagram that showed the people of the Old Babylonian Period (1,900–1,700 B.C.E.) fully understood the principles of the “Pythagorean Theorem” 1300 years before Greek geometer Pythagoras was born, and were also capable of calculating the square root of two to six decimal places.

Today, thanks to the Internet and new digital scanning methods being employed at Yale, this ancient geometry lesson continues to be used in modern classrooms around the world.

Just when you think it’s all about the theorem, the story which originated in an April 11, 2016 Yale University news release by Patrick Lynch takes a turn,

“This geometry tablet is one of the most-reproduced cultural objects that Yale owns — it’s published in mathematics textbooks the world over,” says Professor Benjamin Foster, curator of the Babylonian Collection, which includes the tablet. It’s also a popular teaching tool in Yale classes. “At the Babylonian Collection we have a very active teaching and learning function, and we regard education as one of the core parts of our mission,” says Foster. “We have graduate and undergraduate groups in our collection classroom every week.”

The tablet, formally known as YBC 7289, “Old Babylonian Period Mathematical Text,” came to Yale in 1909 as part of a much larger collection of cuneiform tablets assembled by J. Pierpont Morgan and donated to Yale. In the ancient Mideast cuneiform writing was created by using a sharp stylus pressed into the surface of a soft clay tablet to produce wedge-like impressions representing pictographic words and numbers. Morgan’s donation of tablets and other artifacts formed the nucleus of the Yale Babylonian Collection, which now incorporates 45,000 items from the ancient Mesopotamian kingdoms.

Discoverying [sic] the tablet’s mathematical significance

The importance of the geometry tablet was first recognized by science historians Otto Neugebauer and Abraham Sachs in their 1945 book “Mathematical Cuneiform Texts.”

“Ironically, mathematicians today are much more fascinated with the Babylonians’ ability to accurately calculate irrational numbers like the square root of two than they are with the geometry demonstrations,” notes associate Babylonian Collection curator Agnete Lassen.

“The Old Babylonian Period produced many tablets that show complex mathematics, but it also produced things you might not expect from a culture this old, such as grammars, dictionaries, and word lists,” says Lassen “One of the two main languages spoken in early Babylonia  was dying out, and people were careful to document and save what they could on cuneiform tablets. It’s ironic that almost 4,000 years ago people were thinking about cultural preservation, [emphasis mine] and actively preserving their learning for future generations.”.

This business about ancient peoples trying to preserve culture and learning for future generations suggests that the efforts in Palmyra, Syria (my April 6, 2016 post about 3D printing parts of Palmyra) are born of an age-old impulse. And then the story takes another turn and becomes a 3D printing story (from the Yale University news release),

Today, however, the tablet is a fragile lump of clay that would not survive routine handling in a classroom. In looking for alternatives that might bring the highlights of the Babylonian Collection to a wider audience, the collection’s curators partnered with Yale’s Institute for the Preservation of Cultural Heritage (IPCH) to bring the objects into the digital world.

Scanning at the IPCH

The IPCH Digitization Lab’s first step was to do reflectance transformation imaging (RTI) on each of fourteen Babylonian Collection objects. RTI is a photographic technique that enables a student or researcher to look at a subject with many different lighting angles. That’s particularly important for something like a cuneiform tablet, where there are complex 3D marks incised into the surface. With RTI you can freely manipulate the lighting, and see subtle surface variations that no ordinary photograph would reveal.

Chelsea Graham of the IPCH Digitization Lab and her colleague Yang Ying Yang of the Yale Computer Graphics Group then did laser scanning of the tablet to create a three-dimensional geometric model that can be freely rotated onscreen. The resulting 3D models can be combined with many other types of digital imaging to give researchers and students a virtual tablet onscreen, and the same data can be use to create a 3D printed facsimile that can be freely used in the classroom without risk to the delicate original.
3D printing digital materials

While virtual models on the computer screen have proved to be a valuable teaching and research resource, even the most accurate 3D model on a computer screen doesn’t convey the tactile  impact, and physicality of the real object. Yale’s Center for Engineering Innovation and Design has collaborated with the IPCH on a number of cultural heritage projects, and the center’s assistant director, Joseph Zinter, has used its 3D printing expertise on a wide range of engineering, basic science, and cultural heritage projects.

“Whether it’s a sculpture, a rare skull, or a microscopic neuron or molecule highly magnified, you can pick up a 3D printed model and hold it, and it’s a very different and important way to understand the data. Holding something in your hand is a distinctive learning experience,” notes Zinter.

Sharing cultural heritage projects in the digital world

Once a cultural artifact has entered the digital world there are practical problems with how to share the information with students and scholars. IPCH postdoctoral fellows Goze Akoglu and Eleni Kotoula are working with Yale computer science faculty member Holly Rushmeier to create an integrated collaborative software platform to support the research and sharing of cultural heritage artifacts like the Babylonian tablet.

“Right now cultural heritage professionals must juggle many kinds of software, running several types of specialized 2D and 3D media viewers as well as conventional word processing and graphics programs. Our vision is to create a single virtual environment that accommodates many kinds of media, as well as supporting communication and annotation within the project,” says Kotoula.

The wide sharing and disseminating of cultural artifacts is one advantage of digitizing objects, notes professor Rushmeier, “but the key thing about digital is the power to study large virtual collections. It’s not about scanning and modeling the individual object. When the scanned object becomes part of a large collection of digital data, then machine learning and search analysis tools can be run over the collection, allowing scholars to ask questions and make comparisons that aren’t possible by other means,” says Rushmeier.

Reflecting on the process that brings state-of-the-art digital tools to one of humanity’s oldest forms of writing, Graham said “It strikes me that this tablet has made a very long journey from classroom to classroom. People sometimes think the digital or 3D-printed models are just a novelty, or just for exhibitions, but you can engage and interact much more with the 3D printed object, or 3D model on the screen. I think the creators of this tablet would have appreciated the efforts to bring this fragile object back to the classroom.”

There is also a video highlighting the work,