Tag Archives: QNano

NanoValid invites you to a Sept. 2013 workshop on the Advanced Characterization of Nanomaterial

I received (Aug. 5, 2013) an announcement, which I’m passing on here, about a workshop taking place in Spain this coming September (2013),

The EC-funded NanoValid Project (www.nanovalid.eu) invites you to register for the last remaining places at the “Advanced Characterization of Nanomaterials” workshop organised by the University of Zaragoza and the Institute of Nanoscience of Aragon (INA).

When: September 16th – 20th 2013

Where: University of Zaragoza, Institute of Nanoscience of Aragon

BACKGROUND:

The characterization of nanomaterials is a challenging topic that requires in-depth knowledge of physicochemical techniques and state-of-the-art devices. This workshop contributes to continuous training of analytical procedures at the nanoscale for enhancing current knowledge and developing novel materials and procedures in nanotechnology.

FEATURES AND BENEFITS:

•             Addresses both PhD students and Post-Doc researchers

•             Access to advanced techniques of nanotechnology

•             Fully qualified scientific and technical personnel

•             Open poster and oral communication sessions

FEE:

€ 525:    This includes workshop fees, a welcome reception, lunches, coffee-breaks & booklet.

Optional banquet in a traditional Aragonese cuisine venue (€50)

PROGRAMME:

The full programme includes theory sessions, practical demonstrations and training sessions, as well as oral and poster presentations (…).

REGISTER HERE:

http://www.nanovalid.eu/events/ws/registration.htm

FURTHER INFORMATION:

infogroup@unizar.es

M. Pilar Lobera, PhD (plobera@unizar.es); Francisco Balas, PhD (fbalas@unizar.es)

http://ina.unizar.es

Not having previously investigated the NanoValid project, I checked out the homepage,

The EU FP7 large-scale integrating project NanoValid (contract: 263147) has been launched on the 1st of November 2011, as one of the “flagship” nanosafety projects. The project consists of 24 European partners from 14 different countries and 6 partners from Brazil, Canada, India and the US and will run from 2011 to 2015, with a total budget of more than 13 mio EUR (EC contribution 9.6 mio EUR). [emphasis mine] Main objective of NanoValid is to develop a set of reliable reference methods and materials for the fabrication, physicochemical (pc) characterization, hazard identification and exposure assessment of engineered nanomaterials (EN), including methods for dispersion control and labelling of ENs. Based on newly established reference methods, current approaches and strategies for risk and life cycle assessment will be improved, modified and further developed, and their feasibility assessed by means of practical case studies.

In cooperation with other relevant projects, such as MARINA and QNano, and relevant standardization bodies, such as the OECD [Organization for Economic Cooperation and Development] WPMN [Working Party on Manufactured Nanomaterials], existing industrial or newly designed ENs will be subjected to a rigid and comprehensive inter-laboratory validation campaign that includes the currently most advanced methods and instruments for measuring and characterizing of ENs, to generate accurate and reproducible material data and standardized method protocols, also for tracing and quantifying nanoparticles (NP) in complex matrices. The stability and behaviour of selected NP will be monitored and tested in a variety of relevant environmental samples and test media to derive optimum and reproducible fabrication, measurement and test conditions.

The validated characterization methods will be used to design well-defined certified reference materials, which in turn will help to validate, adapt, modify and further develop current biological approaches (in vitro, in vivo and in silico) for assessing hazard and exposure of ENs, and associated risks to human health and the environment. Effects of chronic and accumulative exposure and of exposure under real-life conditions, where ENPs [engineered nanoparticles] are likely to act as components of complex mixtures, will be duly taken into account.

It was a little surprising to find Canada listed as one of the project partners. I also found this map of the consortium participants which lists McGill University specifically as the Canadian participant.

I briefly mentioned NanoValid in a June 19, 2012 posting which featured a listing of Environmental, Health and Safety projects being funded by the European Union’s 7th Framework Programme.

Nanopore instruments, femtomolar concentrations, Ireland, and New Zealand

It was the word femtomolar that did it for me. While I have somehow managed to conceptualize the nanoscale, the other scales (pico, femto, atto, zetto, and yocto) continue to  elude me. If my experience with the ‘nanoscale ‘ is any guide, the only solution will be to find as much information as I can on these other ones and immerse myself in them. With that said, here’s more from the July 19, 2012 Izon press release,

Researchers at the Lee Bionanosciences Laboratory at UCD [University College Dublin] School of Chemistry and Chemical Biology in Dublin have demonstrated the detection and measurement of biological analytes down to femtomolar concentration levels using an off the shelf qNano instrument. This ultra low level biodetection capability has implications for biomedical research and clinical development as trace amounts of a biological substance in a sample can now be detected amd quantfied using standard commercially available equipment.

Platt [Dr Mark Platt] and colleagues’ [Professor Gil Lee and Dr Geoff Willmott] method for femtomolar-level detection uses magnetic particle systems and can be applied to any biological particle or protein for which specific aptamers or antibodies exist. Resistive pulse sensing, the underlying technology of the qNano [Izon product], was used to monitor individual and aggregated rod-shaped nanoparticles as they move through tunable pores in elastomeric membranes.

Dr Platt says, “The strength of using the qNano is the ability to interrogate individual particles through a nanopore. This allowed us to establish a very sensitive measurement of concentration because we could detect the interactions occurring down to individual particle level.

”The unique and technically innovative approach of the authors was to detect a molecule’s presence by a process that results in end on end or side by side aggregation of rod shaped nickel-gold particles. The rods were designed so that the aptamers could be attached to one end only.

“By comparing particles of similar dimensions we demonstrated that the resistive pulse signal is fundamentally different for rod and sphere-shaped particles, and for rod shaped particles of different lengths. We could exploit these differences in a new agglutina¬tion assay to achieve these low detection levels,” says Dr Platt.

In the agglutination assay particles with a particular aspect ratio can be distinguished by two measurements: the measured drop in current as particles traverse the pore (∆ip), which reveals the particle’s size; and the full width at half maximum (FWHM) duration of the resistive pulse, which relates to the particle’s speed and length. Limits of detection down to femtomolar levels were thus able to be demonstrated.

I’m a little unclear as to what qNano actually is. I did find this description on the qNano product page,

qNano uses unique nanopore-based detection to enable the physical properties of a wide range of particle types to be measured with unsurpassed accuracy.

Detailed Multi-Parameter Analysis.

Particle-by-particle measurement through qNano enables detailed determination of:

Nanopore-based detection allows thousands of particles to be measured individually, providing far greater detail and accuracy than light-based techniques.

Applications & Particle Types

A wide range of biological and synthetic particle types, spanning 50 nm – 10 μm, can be measured, across a broad range of research fields.

qNano Package

qNano is sold as a full system ready for use including the base instrument, variable pressure module, fluid cell and a starter kit of nanopores, buffer solution and standard particle sets.

Here’s what the product looks like,

qNano (from the Izon website)

As for what this all might mean to those of us who exist at the macroscale (from the Izon press release),

Izon Science will continue to work with Dr Platt at Loughborough, and with University College Dublin and various customers to develop a series of diagnostic kits that can be used with the qNano to identify and measure biomolecules, viruses, and microvesicles.“This is a real milestone for Izon’s technology as being able to measure biomolecules down to these extremely low levels opens up new bio-analysis options for researchers. 10 femtomolar was achieved, which is the equivalent dilution to 1 gram in 3.3 billion litres, or 1 gram in 1300 Olympic sized swimming pools,” says Hans van der Voorn, Executive Chairman of Izon Science.

For those interested in finding out about nanopores, these were mentioned in my July 18, 2012 posting while aptamers were discussed in my interview (Oct. 25, 2011 posting) with Dr. Maria DeRosa who researches them in her Carleton University laboratory (Ottawa, Canada).

Summary of EHS studies on nanotechnology funded through Europe’s 7th Framework Programme

I was a little shocked to see how many EHS (environment, health, and safety) projects focussed on nanotechnology that the European Union (EU) funded as part of its overarching science funding efforts, the 7th Framework Program, due to be superseded in the near future (2013)) by the Horizon 2020 program. The June 18, 2012 Nanowerk Spotlight article submitted by NanoTrust, Austrian Academy of Sciences provides the reasoning for the EU  effort (Note: I have removed footnotes.),

The Action Plan, presented by the EU Commission in 2004, envisioned integrating “the social dimension into a responsible technology development” and strengthening efforts related to “health, safety, environmental aspects and consumer protection“.

This encompassed (1) the systematic study of safety-relevant aspects at the earliest possible date, (2) integrating health- and environment-relevant aspect in research and development, (3) conducting targeted studies on toxicology and ecotoxicology and, finally, (4) adapting risk assessment approaches to nano-specific aspects in all phases of product life-cycles.

The primary goal was to improve the competitiveness of European industry. The draft presented in mid-2011 for the planned research priorities continues this strategic focus.

The EU Parliament had already discussed the Nano Action Plan developed by the Commission before the start of the current Framework Program. From the onset, the relevant parliamentary resolution called for an improved coordination with the Member States and more risk research, consideration of the precautionary principle and a deepened dialogue with citizens.

The EU Parliament clearly felt that the rules require urgent adaptations in order to adequately consider nano-risks: In the resolution of April 2009 the parliamentarians underlined the existence of a considerable “lack of information about the use and safety of nanomaterials that are already on the market”.

The overall scope of the projects on nanotechnology, materials and production (NMP) funded by the 7th RP is listed at about 3.475 mill. €. According to EU sources, about 102 mill. € were earmarked for safety aspects (nanosafety research).The comparison with the much more modest Nano-EHS-budget in the past clearly shows the change here (5th RP: about 2.5 mill. €, 6th RP 6 about 30 mill. €).

The publication from where this information was drawn is no.30 in the NanoTrust Dossier series. It was published in May 2012 (from pp. 2-6),

ENNSATOX

Title: Engineered Nanoparticle Impact on Aquatic Environments: Structure, Activity and Toxicology

Coordinator: Andrew Nelson,
Centre for Molecular Nanosciences (CMNS), School of Chemistry, University of Leeds, UK
Duration: July 2009 to July 2012
Project costs: 3,655 mill. €
EU funding: 2,816 mill. €
Homepage: www.ennsatox.eu

The goal of ENNSATOX is to investigate the environmental effects of various synthetic nanoparticles from the time of their release to their potential uptake by organisms, particularly in rivers and lakes. …

ENPRA

Title: Risk Assessment of Engineered Nanoparticles

Coordinator: Lang Tran,
Institute of Occupational Medicine (IOM), Edinburg, UK
Duration: July 2009 to July 2012
Project costs: 5,13 mill. €
EU funding: 3,7 mill. €
Homepage: www.enpra.eu

ENPRA is examining the impacts of selected and commercially used nanomaterials, whereby the different target organs (lungs, cardiovascular system, kidneys etc.) and different mechanisms of damage (see Nano Trust-Dossier 012en) are being determined. …

HINAMOX

Title: Health Impact of Engineered Metal and Metal Oxide Nanoparticles Response, Bioimaging and Distribution at Cellular and Body Level

Coordinator: Sergio E. Moya,
Centro de Investigación Cooperativa en Biomateriales (Spanien)
Duration: October 2009 to October 2012
Project costs: 2.93 mill. €
EU funding: 2.3 mill. €
Homepage: www.hinamox.eu

HINAMOX deals with the impacts of several metal-oxide nanoparticles – TiO2, ZnO, Al2O3, CeO2 etc. – on human health and on biological systems. …

InLiveTox

Title: Intestinal, Liver and Endothelial Nanoparticle Toxicity – development and evaluation of a novel tool for high-throughput data generation

Coordinator: Martha Liley,
CSEM (Centre Suisse d’Electronique et de Microtechnique SA)
Duration: May 2009 to July 2012
Project costs: 3.42 mill. €
EU funding: 2.4 mill. €
Homepage: www.inlivetox.eu

In InLiveTox, an improved in-vitro model is being developed to describe the effects of nanoparticles taken up via food, especially effects on the gastrointestinal tract and the liver.  …

MARINA

Title: Managing Risks of Nanomaterials

Coordinator: Lang Tran,
IOM (Institute of Occupational Medicine) Edinburgh, UK
Duration: November 2011 to November 2015
Project costs: 12.48 Mio. €
EU funding: 9.0 mill. €
Homepage: www.marina-fp7.eu and http://www.iom-world.org

A total of almost 50 industrial companies (including BASF) and scientific facilities are combined in the very large joint project MARINA, coordinated by the Institute of Occupational Medicine of the University of Edinburgh; other organizations that are involved in employee protection and occupational safety are also participating (FIOH/Finland, IST/Switzerland, RIVM/The Netherlands). …

ModNanoTox

Title: Modelling nanoparticle toxicity: principles, methods, novel approaches Toxicology

Coordinator: Eugenia Valsami-Jones,
Natural History Museum, London, UK
Duration: November 2011 to November 2013
Project costs: 1.28 mill. €
EU funding: 1.0 mill. €
Homepage: (under construction) lib.bioinfo.pl/projects/view/32734

The goal of ModNanoTox is to develop welldocumented models on the long-term behavior of synthetic nanoparticles in organisms and in the environment. …

NanEx

Title: Development of Exposure Scenarios for Manufactured Nanomaterials

Coordinator: Martie van Tongeren,
Institute of Occupational Medicine (IOM), Edinburgh UK
Duration: December 2009 to November 2010
Project costs: 1.01 mill. €
EU funding: 0.95 mill. €
Homepage: www.nanex-project.eu, lib.bioinfo.pl/projects/view/12016

In NanEx, a catalog of realistic scenarios is being developed for potential impacts of synthetic nanoparticles at industrial workplaces, of various uses by consumers as well as of delayed releases into the environment. …

NANODEVICE

Title: Modelling Novel Concepts, Methods and Technologies for the Production of Portable, Easy-to-Use Devices for the Measurement and Analysis of Airborne Nanoparticles in Workplace Air

Coordinator: Kai Savolainen,
Finnish Institute for Occupational Health (FIOH), Finland
Duration: April 2009 to April 2013
Project costs: 12.28 mill. €
EU funding: 9.49 mill. €
Homepage: www.nano-device.eu

Due to the lack of robust and inexpensive instruments, the nanoparticle concentrations in the air at the workplace cannot be measured at the present time. NANODEVICE is devoted to studying innovative concepts and practicable methods for identifying synthetic nanomaterials, methods that can also be used at the workplace. …

NanoFATE

Title: Nanoparticle Fate Assessment and Toxicity in the Environment

Coordinator: Klaus Svendsen,
NERC (Centre for Ecology and Hydrology),
Wallingford, UK
Duration: April 2010 to April 2014
Project costs: 3.25 mill. €
EU funding: 2.50 mill. €
Homepage: www.nanofate.eu

NanoFATE is devoted to systematically deepening our knowledge about the behavior and the fate of synthetic nanoparticles that enter the environment. …

Nanogenotox

Title: Towards a method for detecting the potential genotoxicity of nanomaterials

Coordinator: Anses – French Agency for Food, Environmental and Occupational Health Safety
Duration: March 2010 to March 2014
Project costs: 6.0 mill. € EU funding: 2.90 mill. € (as co-funding though the program
EU-Health & Consumers)
Homepage: www.nanogenotox.eu/

Nanogenotox is not directly a part of the 7th RP but rather a Joint Action, about half of which is funded by the participating European states. The task of this project is to study the gene toxicity (i.e. the damaging effect on the genetic material of organisms) of selected nanomaterials. …

NanoHouse

Title: Cycle of Nanoparticle-Based Products used in House-Coating

Coordinator: Francois Tardif,
CEA (Commissariat à l’Énergie Atomique et aux Energies Alternatives), Grenoble, Frankreich
Duration: January 2010 to July 2013
Project costs: 3.1 mill. €
EU funding: 2.4 mill. €
Homepage: www-nanohouse.cea.fr

The task of NanoHouse is to comprehensively evaluate environmentally relevant and health-related effects of nanoproducts used in house construction; the focus is on paints and coatings with TiO2- and nanosilver components, whose impacts and fates are being more closely examined. …

NanoImpactNet

Title: The European Network on the Health and Environmental Impact of Nanomaterials

Coordinator: Michael Riediker,
Institut universitaire romand der Santé au Travail, Schweiz (IST)
Duration: April 2008 to April 2012
Project costs: 3.19 mill. €
EU funding: 2.0 mill. €
Homepage: www.nanoimpactnet.eu

This large network of partner institutes from numerous countries is designed mainly to exchange information about new knowledge as well as knowledge gaps in the health- and environment-related impacts of nanoparticles. …

NanoLyse

Title: Nanoparticles in Food: Analytical Methods for Detection and Characterisation

Coordinator: Stefan Weigel,
RIKILT – Institute of Food Safety, Niederlande
Duration: January 2010 to October 2013
Project costs: 4.05 mill. €
EU funding: 2.95 mill. €
Homepage: www.nanolyse.eu

The goal of NanoLyse is to develop approved methods for analyzing synthetic nanomaterials in food and drinks. …

NANOMMUNE

Title: Comprehensive Assessment of Hazardous Effects of Engineered Nanomaterials on the Immune System Toxicology

Coordinator: Bengt Fadeel,
Karolinsk  Institutet, Stockholm
Duration: September 2008 to September 2011 (completed)
Project costs: 4.31 mill. €
EU funding: 3.36 mill. €
Homepage: www.nanommune.eu

NANOMMUNE examined the influence of synthetic nanomaterials on the immune system and their potential negative health effects. …

NanoPolyTox

Title: Toxicological impact of nanomaterials derived from processing, weathering and recycling of polymer nanocomposites used in various industrial applications

Coordinator: Socorro Vázquez-Campos,
LEITAT Technological Centre, Barcelona, Spain
Duration: May 2010 to May 2013
Project costs: 3.30 mill. €
EU funding: 2.43 mill. €
Homepage: www.nanopolytox.eu

NanoPolyTox is tasked with determining the changes in the physical and toxic properties of three different nanomaterials (nanotubes, nano-clay minerals, metal-oxide nanoparticles) that are used in combination with polymers as filling materials.  …

NanoReTox

Title: The reactivity and toxicity of engineered nanoparticles: risks to the environment and human health

Coordinator: Eugenia Valsami-Jones,
Natural History Museum, London, UK
Duration: December 2008 to December 2012
Project costs: 5.19 mill. €
EU funding: 3.19 mill. €
Homepage: www.nanoretox.eu

NanoReTox is designed to better describe the EHS-risks of synthetic nanomaterials based on new research results. …

NanoSustain

Title: Development of sustainable solutions for nanotechnology-based products based on hazard characterization and LCA

Coordinator: Rudolf Reuther,
NordMilijö AB, Sweden
Duration: May 2010 to May 2013
Project costs: 3.2 mill. €
EU funding: 2.5 mill. €
Homepage: www.nanosustain.eu

NanoSustain is designed to develop innovative solutions for all phases in dealing with nanotechnology products – up until the landfill or recycling stage. Four nanomaterials are being examined in greater detail: nano-cellulose, CNT, nano-TiO2, as well as nano-ZnO. …

NanoTransKinetics

Title: Modelling basis and kinetics of nanoparticle interaction with membranes, uptake into cells, and sub-cellular and inter-compartmental transport

Coordinator: Kenneth Dawson,
University College, Dublin, Ireland
Duration: November 2011 to November 2014
Project costs: 1.3 mill. €
EU funding: 0.99 mill. €
Homepage: www.nanotranskinetics.eu

The aim of NanoTransKinetics is to substantially improve the models used to describe biological (and therefore also toxic) interrelationships between nanoparticles and living organisms.  …

NanoValid

Title: Development of reference methods for hazard identification, risk assessment and LCA of engineered nanomaterials

Coordinator: Rudolf Reuther,
NordMiljö AB, Sweden
Duration: November 2011 to November 2015
Project costs: 13.4 mill. €
EU funding: 9.6 mill. €
Homepage: www.nanovalid.eu

The aim of NanoValid is to develop reference methods and materials to identify and assess the risks of synthetic nanomaterials in close cooperation with the similarly oriented project MARINA (see above). …

NEPHH

Title: Nanomaterials-related environmental pollution and health hazards throughout their life-cycle

Coordinator: EKOTEK S.L. (Spanien)
Duration: September 2009 to September 2012
Project costs: 3.1 mill. €
EU funding: 2.5 mill. €
Homepage: www.nephh-fp7.eu

NEPHH seeks to better estimate the environmental and health-related risks of nanostructures over the course of their use. …

NeuroNano

Title: Do nanoparticles induce neurodegenerative diseases? Understanding the origin of reactive oxidative species and protein aggregation and mis-folding phenomena in the presence of nanoparticles

Coordinator: Kenneth Dawson,
University College, Dublin, Ireland
Duration: February 2009 toFebruary 2012
Project costs: 4.8 mill. €
EU funding: 2.5 mill. €
Homepage: www.neuronano.eu

To date, the full details on the factors that allow nanoparticles to pass the blood-brain barrier are unknown15. NeuroNano examines the effect of nanoparticle size, shape and composition, along with the role of the adsorbed corona of biomolecules (see above). …

QNano

Title: A pan-european infrastructure for quality in nanomaterials safety testing

Coordinator: Kenneth Dawson,
University College, Dublin, Ireland
Duration: February 2011 to February 2015
Project costs: 9.2 mill. €
EU funding: 7.0 mill. €
Homepage: www.qnano-ri.eu

Rather than being devoted to a separate research topic, QNano is designed to interlink and support facilities that provide the necessary infrastructure for investigating and characterizing nanosubstances. …

That’s quite the list, eh?

Sharing resources: QNano

This is kind of interesting. There’s a consortium of 15 facilities in several countries in Europe offering access to eligible parties interested in safety testing of nanomaterials. Their second call for transnational access is open until July 31, 2012. From the May 1, 2012 news item on Nanowerk,

The Transnational Access (TA) component for QNano is dedicated to providing Users from the European nanosafety community access to nanomaterials processing, characterisation and exposure assessment facilities (TAFs). Access to 15 major European research sites () is via a single application and evaluation process. Collectively, these sites will enable Users to access small to medium scale equipment and facilities (with the appropriate knowledge to apply them in this context) through to some of the most highly equipped nano-characterization centres in Europe. The central principle of access provision is to offer the Users a full range of services from standard nanomaterials, tuition in best practice, laboratory support and training, and a suite of protocols for all aspects of nanomaterials processing and characterisation in a biological context.

You can find out more about who is and isn’t eligible to use the facilities and exactly where those facilities are at the QNano Transnational Access Facilities webpage. You can respond to this 2nd call by applying for access here (although you do need register for an account if you don’t already have one).

I am a little puzzled by their arithmetic as they state there are 15 facilities in nine countries but I count 10 countries although the UK could be considered a region (except all of those facilities are in England).

Despite the numbers issue (in my mind anyway), it’s nice to see the international cooperation.