Tag Archives: quantum computers

‘Nano-hashtags’ for Majorana particles?

The ‘nano-hashtags’ are in fact (assuming a minor leap of imagination) nanowires that resemble hashtags.

Scanning electron microscope image of the device wherein clearly a ‘hashtag’ is formed. Credit: Eindhoven University of Technology

An August 23, 2017 news item on ScienceDaily makes the announcement,

In Nature, an international team of researchers from Eindhoven University of Technology [Netherlands], Delft University of Technology [Netherlands] and the University of California — Santa Barbara presents an advanced quantum chip that will be able to provide definitive proof of the mysterious Majorana particles. These particles, first demonstrated in 2012, are their own antiparticle at one and the same time. The chip, which comprises ultrathin networks of nanowires in the shape of ‘hashtags’, has all the qualities to allow Majorana particles to exchange places. This feature is regarded as the smoking gun for proving their existence and is a crucial step towards their use as a building block for future quantum computers.

An August 23, 2017 Eindhoven University press release (also on EurekAlert), which originated the news item, provides some context and information about the work,

In 2012 it was big news: researchers from Delft University of Technology and Eindhoven University of Technology presented the first experimental signatures for the existence of the Majorana fermion. This particle had been predicted in 1937 by the Italian physicist Ettore Majorana and has the distinctive property of also being its own anti-particle. The Majorana particles emerge at the ends of a semiconductor wire, when in contact with a superconductor material.

Smoking gun

While the discovered particles may have properties typical to Majoranas, the most exciting proof could be obtained by allowing two Majorana particles to exchange places, or ‘braid’ as it is scientifically known. “That’s the smoking gun,” suggests Erik Bakkers, one of the researchers from Eindhoven University of Technology. “The behavior we then see could be the most conclusive evidence yet of Majoranas.”

Crossroads

In the Nature paper that is published today [August 23, 2017], Bakkers and his colleagues present a new device that should be able to show this exchanging of Majoranas. In the original experiment in 2012 two Majorana particles were found in a single wire but they were not able to pass each other without immediately destroying the other. Thus the researchers quite literally had to create space. In the presented experiment they formed intersections using the same kinds of nanowire so that four of these intersections form a ‘hashtag’, #, and thus create a closed circuit along which Majoranas are able to move.

Etch and grow

The researchers built their hashtag device starting from scratch. The nanowires are grown from a specially etched substrate such that they form exactly the desired network which they then expose to a stream of aluminium particles, creating layers of aluminium, a superconductor, on specific spots on the wires – the contacts where the Majorana particles emerge. Places that lie ‘in the shadow’ of other wires stay uncovered.

Leap in quality

The entire process happens in a vacuum and at ultra-cold temperature (around -273 degree Celsius). “This ensures very clean, pure contacts,” says Bakkers, “and enables us to make a considerable leap in the quality of this kind of quantum device.” The measurements demonstrate for a number of electronic and magnetic properties that all the ingredients are present for the Majoranas to braid.

Quantum computers

If the researchers succeed in enabling the Majorana particles to braid, they will at once have killed two birds with one stone. Given their robustness, Majoranas are regarded as the ideal building block for future quantum computers that will be able to perform many calculations simultaneously and thus many times faster than current computers. The braiding of two Majorana particles could form the basis for a qubit, the calculation unit of these computers.

Travel around the world

An interesting detail is that the samples have traveled around the world during the fabrication, combining unique and synergetic activities of each research institution. It started in Delft with patterning and etching the substrate, then to Eindhoven for nanowire growth and to Santa Barbara for aluminium contact formation. Finally back to Delft via Eindhoven for the measurements.

Here’s a link to and a citation for the paper,

Epitaxy of advanced nanowire quantum devices by Sasa Gazibegovic, Diana Car, Hao Zhang, Stijn C. Balk, John A. Logan, Michiel W. A. de Moor, Maja C. Cassidy, Rudi Schmits, Di Xu, Guanzhong Wang, Peter Krogstrup, Roy L. M. Op het Veld, Kun Zuo, Yoram Vos, Jie Shen, Daniël Bouman, Borzoyeh Shojaei, Daniel Pennachio, Joon Sue Lee, Petrus J. van Veldhoven, Sebastian Koelling, Marcel A. Verheijen, Leo P. Kouwenhoven, Chris J. Palmstrøm, & Erik P. A. M. Bakkers. Nature 548, 434–438 (24 August 2017) doi:10.1038/nature23468 Published online 23 August 2017

This paper is behind a paywall.

Dexter Johnson has some additional insight (interview with one of the researchers) in an Aug. 29, 2017 posting on his Nanoclast blog (on the IEEE [institute of Electrical and Electronics Engineers] website).

Formation of a time (temporal) crystal

It’s a crystal arranged in time according to a March 8, 2017 University of Texas at Austin news release (also on EurekAlert), Note: Links have been removed,

Salt, snowflakes and diamonds are all crystals, meaning their atoms are arranged in 3-D patterns that repeat. Today scientists are reporting in the journal Nature on the creation of a phase of matter, dubbed a time crystal, in which atoms move in a pattern that repeats in time rather than in space.

The atoms in a time crystal never settle down into what’s known as thermal equilibrium, a state in which they all have the same amount of heat. It’s one of the first examples of a broad new class of matter, called nonequilibrium phases, that have been predicted but until now have remained out of reach. Like explorers stepping onto an uncharted continent, physicists are eager to explore this exotic new realm.

“This opens the door to a whole new world of nonequilibrium phases,” says Andrew Potter, an assistant professor of physics at The University of Texas at Austin. “We’ve taken these theoretical ideas that we’ve been poking around for the last couple of years and actually built it in the laboratory. Hopefully, this is just the first example of these, with many more to come.”

Some of these nonequilibrium phases of matter may prove useful for storing or transferring information in quantum computers.

Potter is part of the team led by researchers at the University of Maryland who successfully created the first time crystal from ions, or electrically charged atoms, of the element ytterbium. By applying just the right electrical field, the researchers levitated 10 of these ions above a surface like a magician’s assistant. Next, they whacked the atoms with a laser pulse, causing them to flip head over heels. Then they hit them again and again in a regular rhythm. That set up a pattern of flips that repeated in time.

Crucially, Potter noted, the pattern of atom flips repeated only half as fast as the laser pulses. This would be like pounding on a bunch of piano keys twice a second and notes coming out only once a second. This weird quantum behavior was a signature that he and his colleagues predicted, and helped confirm that the result was indeed a time crystal.

The team also consists of researchers at the National Institute of Standards and Technology, the University of California, Berkeley and Harvard University, in addition to the University of Maryland and UT Austin.

Frank Wilczek, a Nobel Prize-winning physicist at the Massachusetts Institute of Technology, was teaching a class about crystals in 2012 when he wondered whether a phase of matter could be created such that its atoms move in a pattern that repeats in time, rather than just in space.

Potter and his colleague Norman Yao at UC Berkeley created a recipe for building such a time crystal and developed ways to confirm that, once you had built such a crystal, it was in fact the real deal. That theoretical work was announced publically last August and then published in January in the journal Physical Review Letters.

A team led by Chris Monroe of the University of Maryland in College Park built a time crystal, and Potter and Yao helped confirm that it indeed had the properties they predicted. The team announced that breakthrough—constructing a working time crystal—last September and is publishing the full, peer-reviewed description today in Nature.

A team led by Mikhail Lukin at Harvard University created a second time crystal a month after the first team, in that case, from a diamond.

Here’s a link to and a citation for the paper,

Observation of a discrete time crystal by J. Zhang, P. W. Hess, A. Kyprianidis, P. Becker, A. Lee, J. Smith, G. Pagano, I.-D. Potirniche, A. C. Potter, A. Vishwanath, N. Y. Yao, & C. Monroe. Nature 543, 217–220 (09 March 2017) doi:10.1038/nature21413 Published online 08 March 2017

This paper is behind a paywall.

Seeing the future with quantum computing

Researchers at the University of Sydney (Australia) have demonstrated the ability to see the ‘quantum future’ according to a Jan. 16, 2017 news item on ScienceDaily,

Scientists at the University of Sydney have demonstrated the ability to “see” the future of quantum systems, and used that knowledge to preempt their demise, in a major achievement that could help bring the strange and powerful world of quantum technology closer to reality.

The applications of quantum-enabled technologies are compelling and already demonstrating significant impacts — especially in the realm of sensing and metrology. And the potential to build exceptionally powerful quantum computers using quantum bits, or qubits, is driving investment from the world’s largest companies.

However a significant obstacle to building reliable quantum technologies has been the randomisation of quantum systems by their environments, or decoherence, which effectively destroys the useful quantum character.

The physicists have taken a technical quantum leap in addressing this, using techniques from big data to predict how quantum systems will change and then preventing the system’s breakdown from occurring.

A Jan. 14, 2017 University of Sydney press release (also on EurekAlert), which originated the news item, expands on the theme,

“Much the way the individual components in mobile phones will eventually fail, so too do quantum systems,” said the paper’s senior author Professor Michael J.  Biercuk.

“But in quantum technology the lifetime is generally measured in fractions of a second, rather than years.”

Professor Biercuk, from the University of Sydney’s School of Physics and a chief investigator at the Australian Research Council’s Centre of Excellence for Engineered Quantum Systems, said his group had demonstrated it was possible to suppress decoherence in a preventive manner. The key was to develop a technique to predict how the system would disintegrate.

Professor Biercuk highlighted the challenges of making predictions in a quantum world: “Humans routinely employ predictive techniques in our daily experience; for instance, when we play tennis we predict where the ball will end up based on observations of the airborne ball,” he said.

“This works because the rules that govern how the ball will move, like gravity, are regular and known.  But what if the rules changed randomly while the ball was on its way to you?  In that case it’s next to impossible to predict the future behavior of that ball.

“And yet this situation is exactly what we had to deal with because the disintegration of quantum systems is random. Moreover, in the quantum realm observation erases quantumness, so our team needed to be able to guess how and when the system would randomly break.

“We effectively needed to swing at the randomly moving tennis ball while blindfolded.”

The team turned to machine learning for help in keeping their quantum systems – qubits realised in trapped atoms – from breaking.

What might look like random behavior actually contained enough information for a computer program to guess how the system would change in the future. It could then predict the future without direct observation, which would otherwise erase the system’s useful characteristics.

The predictions were remarkably accurate, allowing the team to use their guesses preemptively to compensate for the anticipated changes.

Doing this in real time allowed the team to prevent the disintegration of the quantum character, extending the useful lifetime of the qubits.

“We know that building real quantum technologies will require major advances in our ability to control and stabilise qubits – to make them useful in applications,” Professor Biercuk said.

Our techniques apply to any qubit, built in any technology, including the special superconducting circuits being used by major corporations.

“We’re excited to be developing new capabilities that turn quantum systems from novelties into useful technologies. The quantum future is looking better all the time,” Professor Biercuk said.

Here’s a link to and a  citation for the paper,

Prediction and real-time compensation of qubit decoherence via machine learning by Sandeep Mavadia, Virginia Frey, Jarrah Sastrawan, Stephen Dona, & Michael J. Biercuk. Nature Communications 8, Article number: 14106 (2017) doi:10.1038/ncomms14106 Published online: 16 January 2017

This paper is open access.

A method for producing two-dimensional quasicrystals from metal organic networks

A July 13, 2016 news item on ScienceDaily highlights an advance where quasicrystals are concerned,

Unlike classical crystals, quasicrystals do not comprise periodic units, even though they do have a superordinate structure. The formation of the fascinating mosaics that they produce is barely understood. In the context of an international collaborative effort, researchers at the Technical University of Munich (TUM) have now presented a methodology that allows the production of two-dimensional quasicrystals from metal-organic networks, opening the door to the development of promising new materials.

A July 13, 2016 TUM press release (also on EurekAlert), which originated the news item, explains further,

Physicist Daniel Shechtman [emphasis mine] merely put down three question marks in his laboratory journal, when he saw the results of his latest experiment one day in 1982. He was looking at a crystalline pattern that was considered impossible at the time. According to the canonical tenet of the day, crystals always had so-called translational symmetry. They comprise a single basic unit, the so-called elemental cell, that is repeated in the exact same form in all spatial directions.

Although Shechtman’s pattern did contain global symmetry, the individual building blocks could not be mapped onto each other merely by translation. The first quasicrystal had been discovered. In spite of partially stark criticism by reputable colleagues, Shechtman stood fast by his new concept and thus revolutionized the scientific understanding of crystals and solid bodies. In 2011 he ultimately received the Nobel Prize in Chemistry. To this day, both the basic conditions and mechanisms by which these fascinating structures are formed remain largely shrouded in mystery.

A toolbox for quasicrystals

Now a group of scientists led by Wilhelm Auwärter and Johannes Barth, both professors in the Department of Surface Physics at TU Munich, in collaboration with Hong Kong University of Science and Technology (HKUST, Prof. Nian Lin, et al) and the Spanish research institute IMDEA Nanoscience (Dr. David Écija), have developed a new basis for producing two-dimensional quasicrystals, which might bring them a good deal closer to understanding these peculiar patterns.

The TUM doctoral candidate José Ignacio Urgel made the pioneering measurements in the course of a research fellowship at HKUST. “We now have a new set of building blocks that we can use to assemble many different new quasicrystalline structures. This diversity allows us to investigate on how quasicrystals are formed,” explain the TUM physicists.

The researchers were successful in linking europium – a metal atom in the lanthanide series – with organic compounds, thereby constructing a two-dimensional quasicrystal that even has the potential to be extended into a three-dimensional quasicrystal. To date, scientists have managed to produce many periodic and in part highly complex structures from metal-organic networks, but never a quasicrystal.

The researchers were also able to thoroughly elucidate the new network geometry in unparalleled resolution using a scanning tunnelling microscope. They found a mosaic of four different basic elements comprising triangles and rectangles distributed irregularly on a substrate. Some of these basic elements assembled themselves to regular dodecagons that, however, cannot be mapped onto each other through parallel translation. The result is a complex pattern, a small work of art at the atomic level with dodecagonal symmetry.

Interesting optical and magnetic properties

In their future work, the researchers are planning to vary the interactions between the metal centers and the attached compounds using computer simulation and experiments in order to understand the conditions under which two-dimensional quasicrystals form. This insight could facilitate the future development of new tailored quasicrystalline layers.

These kinds of materials hold great promise. After all, the new metal-organic quasicrystalline networks may have properties that make them interesting in a wide variety of application. “We have discovered a new playing field on which we can not only investigate quasicrystallinity, but also create new functionalities, especially in the fields of optics and magnetism,” says Dr. David Écija of IMDEA Nanoscience.

For one, scientists could one day use the new methodology to create quasicrystalline coatings that influence photons in such a manner that they are transmitted better or that only certain wavelengths can pass through the material.

In addition, the interactions of the lanthanide building blocks in the new quasicrystals could facilitate the development of magnetic systems with very special properties, so-called “frustrated systems”. Here, the individual atoms in a crystalline grid interfere with each other in a manner that prevents grid points from achieving a minimal energy state. The result: exotic magnetic ground states that can be investigated as information stores for future quantum computers.

The researchers have made an image available,

The quasicrystalline network built up with europium atoms linked with para-quaterphenyl–dicarbonitrile on a gold surface (yellow) - Image: Carlos A. Palma / TUM

The quasicrystalline network built up with europium atoms linked with para-quaterphenyl–dicarbonitrile on a gold surface (yellow) – Image: Carlos A. Palma / TUM

Here’s a link to and a citation for the paper,

Quasicrystallinity expressed in two-dimensional coordination networks by José I. Urgel, David Écija, Guoqing Lyu, Ran Zhang, Carlos-Andres Palma, Willi Auwärter, Nian Lin, & Johannes V. Barth. Nature Chemistry 8, 657–662 (2016) doi:10.1038/nchem.2507 Published online 16 May 2016

This paper is behind a paywall.

For anyone interested in more about the Daniel Schechter story and how he was reviled for his discovery of quasicrystals, there’s more in my Dec. 24, 2013 posting (scroll down about 60% of the way).

Handling massive digital datasets the quantum way

A Jan. 25, 2016 news item on phys.org describes a new approach to analyzing and managing huge datasets,

From gene mapping to space exploration, humanity continues to generate ever-larger sets of data—far more information than people can actually process, manage, or understand.

Machine learning systems can help researchers deal with this ever-growing flood of information. Some of the most powerful of these analytical tools are based on a strange branch of geometry called topology, which deals with properties that stay the same even when something is bent and stretched every which way.

Such topological systems are especially useful for analyzing the connections in complex networks, such as the internal wiring of the brain, the U.S. power grid, or the global interconnections of the Internet. But even with the most powerful modern supercomputers, such problems remain daunting and impractical to solve. Now, a new approach that would use quantum computers to streamline these problems has been developed by researchers at [Massachusetts Institute of Technology] MIT, the University of Waterloo, and the University of Southern California [USC}.

A Jan. 25, 2016 MIT news release (*also on EurekAlert*), which originated the news item, describes the theory in more detail,

… Seth Lloyd, the paper’s lead author and the Nam P. Suh Professor of Mechanical Engineering, explains that algebraic topology is key to the new method. This approach, he says, helps to reduce the impact of the inevitable distortions that arise every time someone collects data about the real world.

In a topological description, basic features of the data (How many holes does it have? How are the different parts connected?) are considered the same no matter how much they are stretched, compressed, or distorted. Lloyd [ explains that it is often these fundamental topological attributes “that are important in trying to reconstruct the underlying patterns in the real world that the data are supposed to represent.”

It doesn’t matter what kind of dataset is being analyzed, he says. The topological approach to looking for connections and holes “works whether it’s an actual physical hole, or the data represents a logical argument and there’s a hole in the argument. This will find both kinds of holes.”

Using conventional computers, that approach is too demanding for all but the simplest situations. Topological analysis “represents a crucial way of getting at the significant features of the data, but it’s computationally very expensive,” Lloyd says. “This is where quantum mechanics kicks in.” The new quantum-based approach, he says, could exponentially speed up such calculations.

Lloyd offers an example to illustrate that potential speedup: If you have a dataset with 300 points, a conventional approach to analyzing all the topological features in that system would require “a computer the size of the universe,” he says. That is, it would take 2300 (two to the 300th power) processing units — approximately the number of all the particles in the universe. In other words, the problem is simply not solvable in that way.

“That’s where our algorithm kicks in,” he says. Solving the same problem with the new system, using a quantum computer, would require just 300 quantum bits — and a device this size may be achieved in the next few years, according to Lloyd.

“Our algorithm shows that you don’t need a big quantum computer to kick some serious topological butt,” he says.

There are many important kinds of huge datasets where the quantum-topological approach could be useful, Lloyd says, for example understanding interconnections in the brain. “By applying topological analysis to datasets gleaned by electroencephalography or functional MRI, you can reveal the complex connectivity and topology of the sequences of firing neurons that underlie our thought processes,” he says.

The same approach could be used for analyzing many other kinds of information. “You could apply it to the world’s economy, or to social networks, or almost any system that involves long-range transport of goods or information,” says Lloyd, who holds a joint appointment as a professor of physics. But the limits of classical computation have prevented such approaches from being applied before.

While this work is theoretical, “experimentalists have already contacted us about trying prototypes,” he says. “You could find the topology of simple structures on a very simple quantum computer. People are trying proof-of-concept experiments.”

Ignacio Cirac, a professor at the Max Planck Institute of Quantum Optics in Munich, Germany, who was not involved in this research, calls it “a very original idea, and I think that it has a great potential.” He adds “I guess that it has to be further developed and adapted to particular problems. In any case, I think that this is top-quality research.”

Here’s a link to and a citation for the paper,

Quantum algorithms for topological and geometric analysis of data by Seth Lloyd, Silvano Garnerone, & Paolo Zanardi. Nature Communications 7, Article number: 10138 doi:10.1038/ncomms10138 Published 25 January 2016

This paper is open access.

ETA Jan. 25, 2016 1245 hours PST,

Shown here are the connections between different regions of the brain in a control subject (left) and a subject under the influence of the psychedelic compound psilocybin (right). This demonstrates a dramatic increase in connectivity, which explains some of the drug’s effects (such as “hearing” colors or “seeing” smells). Such an analysis, involving billions of brain cells, would be too complex for conventional techniques, but could be handled easily by the new quantum approach, the researchers say. Courtesy of the researchers

Shown here are the connections between different regions of the brain in a control subject (left) and a subject under the influence of the psychedelic compound psilocybin (right). This demonstrates a dramatic increase in connectivity, which explains some of the drug’s effects (such as “hearing” colors or “seeing” smells). Such an analysis, involving billions of brain cells, would be too complex for conventional techniques, but could be handled easily by the new quantum approach, the researchers say. Courtesy of the researchers

*’also on EurekAlert’ text and link added Jan. 26, 2016.

Interacting photons and quantum logic gates

University of Toronto physicists have taken the first step toward ‘working with pure light’ according to an August 25, 2015 news item on Nanotechnology Now,

A team of physicists at the University of Toronto (U of T) have taken a step toward making the essential building block of quantum computers out of pure light. Their advance, described in a paper published this week in Nature Physics, has to do with a specific part of computer circuitry known as a “logic gate.”

An August 25, 2015 University of Toronto news release by Patchen Barss, which originated the news item, provides an explanation of ‘logic gates’, photons, and the impact of this advance (Note: Links have been removed),

Logic gates perform operations on input data to create new outputs. In classical computers, logic gates take the form of diodes or transistors. But quantum computer components are made from individual atoms and subatomic particles. Information processing happens when the particles interact with one another according to the strange laws of quantum physics.

Light particles — known as “photons” — have many advantages in quantum computing, but it is notoriously difficult to get them to interact with one another in useful ways. This experiment demonstrates how to create such interactions.

“We’ve seen the effect of a single particle of light on another optical beam,” said Canadian Institute for Advanced Research (CIFAR) Senior Fellow Aephraim Steinberg, one of the paper’s authors and a researcher at U of T’s Centre for Quantum Information & Quantum Computing. “Normally light beams pass through each other with no effect at all. To build technologies like optical quantum computers, you want your beams to talk to one another. That’s never been done before using a single photon.”

The interaction was a two-step process. The researchers shot a single photon at rubidium atoms that they had cooled to a millionth of a degree above absolute zero. The photons became “entangled” with the atoms, which affected the way the rubidium interacted with a separate optical beam. The photon changes the atoms’ refractive index, which caused a tiny but measurable “phase shift” in the beam.

This process could be used as an all-optical quantum logic gate, allowing for inputs, information-processing and outputs.

“Quantum logic gates are the most obvious application of this advance,” said Steinberg. “But being able to see these interactions is the starting page of an entirely new field of optics. Most of what light does is so well understood that you wouldn’t think of it as a field of modern research. But two big exceptions are, “What happens when you deal with light one particle at a time?’ and “What happens when there are media like our cold atoms that allow different light beams to interact with each other?’”

Both questions have been studied, he says, but never together until now.

Here’s a link to and citation for the paper,

Observation of the nonlinear phase shift due to single post-selected photons by Amir Feizpour, Matin Hallaji, Greg Dmochowski, & Aephraim M. Steinberg. Nature Physics (2015) doi:10.1038/nphys3433 Published online 24 August 2015

This paper is behind a paywall.

TRIUMF accelerator used by US researchers to visualize properties of nanoscale materials

The US researchers are at the University of California at Los Angeles (UCLA) and while it’s not explicitly stated I’m assuming the accelerator they mention at TRIUMF (Canada’s national laboratory for particle and nuclear physics) has something special as there are accelerators in California and other parts of the US.

A July 15, 2015 news item on Nanotechnology Now announces the latest on visualizing the properties of nanoscale materials,

Scientists trying to improve the semiconductors that power our electronic devices have focused on a technology called spintronics as one especially promising area of research. Unlike conventional devices that use electrons’ charge to create power, spintronic devices use electrons’ spin. The technology is already used in computer hard drives and many other applications — and scientists believe it could eventually be used for quantum computers, a new generation of machines that use quantum mechanics to solve complex problems with extraordinary speed.

A July 15, 2015 UCLA news release, which originated the news item, expands on the theme and briefly mentions TRIUMF’s accelerator (Note: A link has been removed),

Emerging research has shown that one key to greatly improving performance in spintronics could be a class of materials called topological insulators. Unlike ordinary materials that are either insulators or conductors, topological insulators function as both simultaneously — on the inside, they are insulators but on their exteriors, they conduct electricity.

But topological insulators have certain defects that have so far limited their use in practical applications, and because they are so tiny, scientists have so far been unable to fully understand how the defects impact their functionality.

The UCLA researchers have overcome that challenge with a new method to visualize topological insulators at the nanoscale. An article highlighting the research, which was which led by Louis Bouchard, assistant professor of chemistry and biochemistry, and Dimitrios Koumoulis, a UCLA postdoctoral scholar, was published online in the Proceedings of the National Academy of Sciences.

The new method is the first use of beta‑detected nuclear magnetic resonance to study the effects of these defects on the properties of topological insulators.

The technique involves aiming a highly focused stream of ions at the topological insulator. To generate that beam of ions, the researchers used a large particle accelerator called a cyclotron, which accelerates protons through a spiral path inside the machine and forces them to collide with a target made of the chemical element tantalum. This collision produces lithium-8 atoms, which are ionized and slowed down to a desired energy level before they are implanted in the topological insulators.

In beta‑detected nuclear magnetic resonance, ions (in this case, the ionized lithium-8 atoms) of various energies are implanted in the material of interest (the topological insulator) to generate signals from the material’s layers of interest.

Bouchard said the method is particularly well suited for probing regions near the surfaces and interfaces of different materials.

In the UCLA research, the high sensitivity of the beta‑detected nuclear magnetic resonance technique and its ability to probe materials allowed the scientists to “see” the impacts of the defects in the topological insulators by viewing the electronic and magnetic properties beneath the surface of the material.

The researchers used the large TRIUMF cyclotron in Vancouver, British Columbia.

According to the UCLA news release, there were also researchers from the University of British Columbia, the University of Texas at Austin and Northwestern University *were* involved with the work.

Here’s a link to and a citation for the paper,

Nanoscale β-nuclear magnetic resonance depth imaging of topological insulators by Dimitrios Koumoulis, Gerald D. Morris, Liang He, Xufeng Kou, Danny King, Dong Wang, Masrur D. Hossain, Kang L. Wang, Gregory A. Fiete, Mercouri G. Kanatzidis, and Louis-S. Bouchard. PNAS July 14, 2015 vol. 112 no. 28 doi: 10.1073/pnas.1502330112

This paper is behind a paywall.

*’were’ added Jan. 20, 2016.

Connecting the dots in quantum computing—the secret is in the spins

The Feb. 26, 2013 University of Pittsburgh news release puts it a lot better than I can,

Recent research offers a new spin on using nanoscale semiconductor structures to build faster computers and electronics. Literally.

University of Pittsburgh and Delft University of Technology researchers reveal in the Feb. 17 [2013]online issue of Nature Nanotechnology a new method that better preserves the units necessary to power lightning-fast electronics, known as qubits (pronounced CUE-bits). Hole spins, rather than electron spins, can keep quantum bits in the same physical state up to 10 times longer than before, the report finds.

“Previously, our group and others have used electron spins, but the problem was that they interacted with spins of nuclei, and therefore it was difficult to preserve the alignment and control of electron spins,” said Sergey Frolov, assistant professor in the Department of Physics and Astronomy within Pitt’s Kenneth P. Dietrich School of Arts and Sciences, who did the work as a postdoctoral fellow at Delft University of Technology in the Netherlands.

Whereas normal computing bits hold mathematical values of zero or one, quantum bits live in a hazy superposition of both states. It is this quality, said Frolov, which allows them to perform multiple calculations at once, offering exponential speed over classical computers. However, maintaining the qubit’s state long enough to perform computation remains a long-standing challenge for physicists.

“To create a viable quantum computer, the demonstration of long-lived quantum bits, or qubits, is necessary,” said Frolov. “With our work, we have gotten one step closer.”

Thankfully, an explanation of the hole spins vs. electron spins issue follows,

The holes within hole spins, Frolov explained, are literally empty spaces left when electrons are taken out. Using extremely thin filaments called InSb (indium antimonide) nanowires, the researchers created a transistor-like device that could transform the electrons into holes. They then precisely placed one hole in a nanoscale box called “a quantum dot” and controlled the spin of that hole using electric fields. This approach- featuring nanoscale size and a higher density of devices on an electronic chip-is far more advantageous than magnetic control, which has been typically employed until now, said Frolov.

“Our research shows that holes, or empty spaces, can make better spin qubits than electrons for future quantum computers.”

“Spins are the smallest magnets in our universe. Our vision for a quantum computer is to connect thousands of spins, and now we know how to control a single spin,” said Frolov. “In the future, we’d like to scale up this concept to include multiple qubits.”

This graphic displays spin qubits within a nanowire. [downloaded from http://www.news.pitt.edu/connecting-quantum-dots]

This graphic displays spin qubits within a nanowire. [downloaded from http://www.news.pitt.edu/connecting-quantum-dots]

From the news release,

Coauthors of the paper include Leo Kouwenhoven, Stevan Nadj-Perge, Vlad Pribiag, Johan van den Berg, and Ilse van Weperen of Delft University of Technology; and Sebastien Plissard and Erik Bakkers from Eindhoven University of Technology in the Netherlands.

The paper, “Electrical control over single hole spins in nanowire quantum dots,” appeared online Feb. 17 in Nature Nanotechnology. The research was supported by the Dutch Organization for Fundamental Research on Matter, the Netherlands Organization for Scientific Research, and the European Research Council.

According to the scientists we’re going to be waiting a bit longer for a quantum computer but this work is promising. Their paper is behind a paywall.