Tag Archives: quantum mechanics

Unbreakable encrypted message with key that’s shorter than the message

A Sept. 5, 2016 University of Rochester (NY state, US) news release (also on EurekAlert), makes an intriguing announcement,

Researchers at the University of Rochester have moved beyond the theoretical in demonstrating that an unbreakable encrypted message can be sent with a key that’s far shorter than the message—the first time that has ever been done.

Until now, unbreakable encrypted messages were transmitted via a system envisioned by American mathematician Claude Shannon, considered the “father of information theory.” Shannon combined his knowledge of algebra and electrical circuitry to come up with a binary system of transmitting messages that are secure, under three conditions: the key is random, used only once, and is at least as long as the message itself.

The findings by Daniel Lum, a graduate student in physics, and John Howell, a professor of physics, have been published in the journal Physical Review A.

“Daniel’s research amounts to an important step forward, not just for encryption, but for the field of quantum data locking,” said Howell.

Quantum data locking is a method of encryption advanced by Seth Lloyd, a professor of quantum information at Massachusetts Institute of Technology, that uses photons—the smallest particles associated with light—to carry a message. Quantum data locking was thought to have limitations for securely encrypting messages, but Lloyd figured out how to make additional assumptions—namely those involving the boundary between light and matter—to make it a more secure method of sending data.  While a binary system allows for only an on or off position with each bit of information, photon waves can be altered in many more ways: the angle of tilt can be changed, the wavelength can be made longer or shorter, and the size of the amplitude can be modified. Since a photon has more variables—and there are fundamental uncertainties when it comes to quantum measurements—the quantum key for encrypting and deciphering a message can be shorter that the message itself.

Lloyd’s system remained theoretical until this year, when Lum and his team developed a device—a quantum enigma machine—that would put the theory into practice. The device takes its name from the encryption machine used by Germany during World War II, which employed a coding method that the British and Polish intelligence agencies were secretly able to crack.

Let’s assume that Alice wants to send an encrypted message to Bob. She uses the machine to generate photons that travel through free space and into a spatial light modulator (SLM) that alters the properties of the individual photons (e.g. amplitude, tilt) to properly encode the message into flat but tilted wavefronts that can be focused to unique points dictated by the tilt. But the SLM does one more thing: it distorts the shapes of the photons into random patterns, such that the wavefront is no longer flat which means it no longer has a well-defined focus. Alice and Bob both know the keys which identify the implemented scrambling operations, so Bob is able to use his own SLM to flatten the wavefront, re-focus the photons, and translate the altered properties into the distinct elements of the message.

Along with modifying the shape of the photons, Lum and the team made use of the uncertainty principle, which states that the more we know about one property of a particle, the less we know about another of its properties. Because of that, the researchers were able to securely lock in six bits of classical information using only one bit of an encryption key—an operation called data locking.

“While our device is not 100 percent secure, due to photon loss,” said Lum, “it does show that data locking in message encryption is far more than a theory.”

The ultimate goal of the quantum enigma machine is to prevent a third party—for example, someone named Eve—from intercepting and deciphering the message. A crucial principle of quantum theory is that the mere act of measuring a quantum system changes the system. As a result, Eve has only one shot at obtaining and translating the encrypted message—something that is virtually impossible, given the nearly limitless number of patterns that exist for each photon.

The paper by Lum and Howell was one of two papers published simultaneously on the same topic. The other paper, “Quantum data locking,” was from a team led by Chinese physicist Jian-Wei Pan.

“It’s highly unlikely that our free-space implementation will be useful through atmospheric conditions,” said Lum. “Instead, we have identified the use of optic fiber as a more practical route for data locking, a path Pan’s group actually started with. Regardless, the field is still in its infancy with a great deal more research needed.”

Here’s a link to and a citation for the paper,

Quantum enigma machine: Experimentally demonstrating quantum data locking by Daniel J. Lum, John C. Howell, M. S. Allman, Thomas Gerrits, Varun B. Verma, Sae Woo Nam, Cosmo Lupo, and Seth Lloyd. Phys. Rev. A, Vol. 94, Iss. 2 — August 2016 DOI: http://dx.doi.org/10.1103/PhysRevA.94.022315

©2016 American Physical Society

This paper is behind a paywall.

There is an earlier open access version of the paper by the Chinese researchers on arXiv.org,

Experimental quantum data locking by Yang Liu, Zhu Cao, Cheng Wu, Daiji Fukuda, Lixing You, Jiaqiang Zhong, Takayuki Numata, Sijing Chen, Weijun Zhang, Sheng-Cai Shi, Chao-Yang Lu, Zhen Wang, Xiongfeng Ma, Jingyun Fan, Qiang Zhang, Jian-Wei Pan. arXiv.org > quant-ph > arXiv:1605.04030

The Chinese team’s later version of the paper is available here,

Experimental quantum data locking by Yang Liu, Zhu Cao, Cheng Wu, Daiji Fukuda, Lixing You, Jiaqiang Zhong, Takayuki Numata, Sijing Chen, Weijun Zhang, Sheng-Cai Shi, Chao-Yang Lu, Zhen Wang, Xiongfeng Ma, Jingyun Fan, Qiang Zhang, and Jian-Wei Pan. Phys. Rev. A, Vol. 94, Iss. 2 — August 2016 DOI: http://dx.doi.org/10.1103/PhysRevA.94.020301

©2016 American Physical Society

This version is behind a paywall.

Getting back to the folks at the University of Rochester, they have provided this image to illustrate their work,

The quantum enigma machine developed by researchers at the University of Rochester, MIT, and the National Institute of Standards and Technology. (Image by Daniel Lum/University of Rochester)

The quantum enigma machine developed by researchers at the University of Rochester, MIT, and the National Institute of Standards and Technology. (Image by Daniel Lum/University of Rochester)

Book announcement: Atomistic Simulation of Quantum Transport in Nanoelectronic Devices

For anyone who’s curious about where we go after creating chips at the 7nm size, this may be the book for you. Here’s more from a July 27, 2016 news item on Nanowerk,

In the year 2015, Intel, Samsung and TSMC began to mass-market the 14nm technology called FinFETs. In the same year, IBM, working with Global Foundries, Samsung, SUNY, and various equipment suppliers, announced their success in fabricating 7nm devices. A 7nm silicon channel is about 50 atomic layers and these devices are truly atomic! It is clear that we have entered an era of atomic scale transistors. How do we model the carrier transport in such atomic scale devices?

One way is to improve existing device models by including more and more parameters. This is called the top-down approach. However, as device sizes shrink, the number of parameters grows rapidly, making the top-down approach more and more sophisticated and challenging. Most importantly, to continue Moore’s law, electronic engineers are exploring new electronic materials and new operating mechanisms. These efforts are beyond the scope of well-established device models — hence significant changes are necessary to the top-down approach.

An alternative way is called the bottom-up approach. The idea is to build up nanoelectronic devices atom by atom on a computer, and predict the transport behavior from first principles. By doing so, one is allowed to go inside atomic structures and see what happens from there. The elegance of the approach comes from its unification and generality. Everything comes out naturally from the very basic principles of quantum mechanics and nonequilibrium statistics. The bottom-up approach is complementary to the top-down approach, and is extremely useful for testing innovative ideas of future technologies.

A July 27, 2016 World Scientific news release on EurekAlert, which originated the news item, delves into the topics covered by the book,

In recent decades, several device simulation tools using the bottom-up approach have been developed in universities and software companies. Some examples are McDcal, Transiesta, Atomistic Tool Kit, Smeagol, NanoDcal, NanoDsim, OpenMX, GPAW and NEMO-5. These software tools are capable of predicting electric current flowing through a nanostructure. Essentially the input is the atomic coordinates and the output is the electric current. These software tools have been applied extensively to study emerging electronic materials and devices.

However, developing such a software tool is extremely difficult. It takes years-long experiences and requires knowledge of and techniques in condensed matter physics, computer science, electronic engineering, and applied mathematics. In a library, one can find books on density functional theory, books on quantum transport, books on computer programming, books on numerical algorithms, and books on device simulation. But one can hardly find a book integrating all these fields for the purpose of nanoelectronic device simulation.

“Atomistic Simulation of Quantum Transport in Nanoelectronic Devices” (With CD-ROM) fills the chasm. Authors Yu Zhu and Lei Liu have experience in both academic research and software development. Yu Zhu is the project manager of NanoDsim, and Lei Liu is the project manager of NanoDcal. The content of the book is based Zhu and Liu’s combined R&D experiences of more than forty years.

In this book, the authors conduct an experiment and adopt a “paradigm” approach. Instead of organizing materials by fields, they focus on the development of one particular software tool called NanoDsim, and provide relevant knowledge and techniques whenever needed. The black of box of NanoDsim is opened, and the complete procedure from theoretical derivation, to numerical implementation, all the way to device simulation is illustrated. The affilicated source code of NanoDsim also provides an open platform for new researchers.

I’m not recommending the book as I haven’t read it but it does seem intriguing. For anyone who wishes to purchase it, you can do that here.

I wrote about IBM and its 7nm chip in a July 15, 2015 post.

A Moebius strip of moving energy (vibrations)

This research extends a theorem which posits that waves will adapt to slowly changing conditions and return to their original vibration to note that the waves can be manipulated to a new state. A July 25, 2016 news item on ScienceDaily makes the announcement,

Yale physicists have created something similar to a Moebius strip of moving energy between two vibrating objects, opening the door to novel forms of control over waves in acoustics, laser optics, and quantum mechanics.

The discovery also demonstrates that a century-old physics theorem offers much greater freedom than had long been believed. …

A July 25, 2016 Yale University news release (also on EurekAlert) by Jim Shelton, which originated the news item, expands on the theme,

Yale’s experiment is deceptively simple in concept. The researchers set up a pair of connected, vibrating springs and studied the acoustic waves that traveled between them as they manipulated the shape of the springs. Vibrations — as well as other types of energy waves — are able to move, or oscillate, at different frequencies. In this instance, the springs vibrate at frequencies that merge, similar to a Moebius strip that folds in on itself.

The precise spot where the vibrations merge is called an “exceptional point.”

“It’s like a guitar string,” said Jack Harris, a Yale associate professor of physics and applied physics, and the study’s principal investigator. “When you pluck it, it may vibrate in the horizontal plane or the vertical plane. As it vibrates, we turn the tuning peg in a way that reliably converts the horizontal motion into vertical motion, regardless of the details of how the peg is turned.”

Unlike a guitar, however, the experiment required an intricate laser system to precisely control the vibrations, and a cryogenic refrigeration chamber in which the vibrations could be isolated from any unwanted disturbance.

The Yale experiment is significant for two reasons, the researchers said. First, it suggests a very dependable way to control wave signals. Second, it demonstrates an important — and surprising — extension to a long-established theorem of physics, the adiabatic theorem.

The adiabatic theorem says that waves will readily adapt to changing conditions if those changes take place slowly. As a result, if the conditions are gradually returned to their initial configuration, any waves in the system should likewise return to their initial state of vibration. In the Yale experiment, this does not happen; in fact, the waves can be manipulated into a new state.

“This is a very robust and general way to control waves and vibrations that was predicted theoretically in the last decade, but which had never been demonstrated before,” Harris said. “We’ve only scratched the surface here.”

In the same edition of Nature, a team from the Vienna University of Technology also presented research on a system for wave control via exceptional points.

Here’s a link to and a citation for the paper,

Topological energy transfer in an optomechanical system with exceptional points by H. Xu, D. Mason, Luyao Jiang, & J. G. E. Harris. Nature (2016) doi:10.1038/nature18604 Published online 25 July 2016

This paper is behind a paywall.

First hologram of a single photon (light particle)

Polish scientists have created a technique for something thought to be impossible. From a July 19, 2016 news item on Nanowerk,

Until quite recently, creating a hologram of a single photon was believed to be impossible due to fundamental laws of physics. However, scientists at the Faculty of Physics, University of Warsaw, have successfully applied concepts of classical holography to the world of quantum phenomena. A new measurement technique has enabled them to register the first ever hologram of a single light particle, thereby shedding new light on the foundations of quantum mechanics.

A July 18, 2016 University of Warsaw press release on EurekAlert, which originated the news item, describes the breakthrough in more detail,

Scientists at the Faculty of Physics, University of Warsaw, have created the first ever hologram of a single light particle. The spectacular experiment, reported in the prestigious journal Nature Photonics, was conducted by Dr. Radoslaw Chrapkiewicz and Michal Jachura under the supervision of Dr. Wojciech Wasilewski and Prof. Konrad Banaszek. Their successful registering of the hologram of a single photon heralds a new era in holography: quantum holography, which promises to offer a whole new perspective on quantum phenomena.

“We performed a relatively simple experiment to measure and view something incredibly difficult to observe: the shape of wavefronts of a single photon,” says Dr. Chrapkiewicz.

In standard photography, individual points of an image register light intensity only. In classical holography, the interference phenomenon also registers the phase of the light waves (it is the phase which carries information about the depth of the image). When a hologram is created, a well-described, undisturbed light wave (reference wave) is superimposed with another wave of the same wavelength but reflected from a three-dimensional object (the peaks and troughs of the two waves are shifted to varying degrees at different points of the image). This results in interference and the phase differences between the two waves create a complex pattern of lines. Such a hologram is then illuminated with a beam of reference light to recreate the spatial structure of wavefronts of the light reflected from the object, and as such its 3D shape.

One might think that a similar mechanism would be observed when the number of photons creating the two waves were reduced to a minimum, that is to a single reference photon and a single photon reflected by the object. And yet you’d be wrong! The phase of individual photons continues to fluctuate, which makes classical interference with other photons impossible. Since the Warsaw physicists were facing a seemingly impossible task, they attempted to tackle the issue differently: rather than using classical interference of electromagnetic waves, they tried to register quantum interference in which the wave functions of photons interact.

Wave function is a fundamental concept in quantum mechanics and the core of its most important equation: the Schrödinger equation. In the hands of a skilled physicist, the function could be compared to putty in the hands of a sculptor: when expertly shaped, it can be used to ‘mould’ a model of a quantum particle system. Physicists are always trying to learn about the wave function of a particle in a given system, since the square of its modulus represents the distribution of the probability of finding the particle in a particular state, which is highly useful.

“All this may sound rather complicated, but in practice our experiment is simple at its core: instead of looking at changing light intensity, we look at the changing probability of registering pairs of photons after the quantum interference,” explains doctoral student Jachura.

Why pairs of photons? A year ago, Chrapkiewicz and Jachura used an innovative camera built at the University of Warsaw to film the behaviour of pairs of distinguishable and non-distinguishable photons entering a beam splitter. When the photons are distinguishable, their behaviour at the beam splitter is random: one or both photons can be transmitted or reflected. Non-distinguishable photons exhibit quantum interference, which alters their behaviour: they join into pairs and are always transmitted or reflected together. This is known as two-photon interference or the Hong-Ou-Mandel effect.

“Following this experiment, we were inspired to ask whether two-photon quantum interference could be used similarly to classical interference in holography in order to use known-state photons to gain further information about unknown-state photons. Our analysis led us to a surprising conclusion: it turned out that when two photons exhibit quantum interference, the course of this interference depends on the shape of their wavefronts,” says Dr. Chrapkiewicz.

Quantum interference can be observed by registering pairs of photons. The experiment needs to be repeated several times, always with two photons with identical properties. To meet these conditions, each experiment started with a pair of photons with flat wavefronts and perpendicular polarisations; this means that the electrical field of each photon vibrated in a single plane only, and these planes were perpendicular for the two photons. The different polarisation made it possible to separate the photons in a crystal and make one of them ‘unknown’ by curving their wavefronts using a cylindrical lens. Once the photons were reflected by mirrors, they were directed towards the beam splitter (a calcite crystal). The splitter didn’t change the direction of vertically-polarised photons, but it did diverge diplace horizontally-polarised photons. In order to make each direction equally probable and to make sure the crystal acted as a beam splitter, the planes of photon polarisation were bent by 45 degrees before the photons entered the splitter. The photons were registered using the state-of-the-art camera designed for the previous experiments. By repeating the measurements several times, the researchers obtained an interference image corresponding to the hologram of the unknown photon viewed from a single point in space. The image was used to fully reconstruct the amplitude and phase of the wave function of the unknown photon.

The experiment conducted by the Warsaw physicists is a major step towards improving our understanding of the fundamental principles of quantum mechanics. Until now, there has not been a simple experimental method of gaining information about the phase of a photon’s wave function. Although quantum mechanics has many applications, and it has been verified many times with a great degree of accuracy over the last century, we are still unable to explain what wave functions actually are: are they simply a handy mathematical tool, or are they something real?

“Our experiment is one of the first allowing us to directly observe one of the fundamental parameters of photon’s wave function – its phase – bringing us a step closer to understanding what the wave function really is,” explains Jachura.

The Warsaw physicists used quantum holography to reconstruct wave function of an individual photon. Researchers hope that in the future they will be able to use a similar method to recreate wave functions of more complex quantum objects, such as certain atoms. Will quantum holography find applications beyond the lab to a similar extent as classical holography, which is routinely used in security (holograms are difficult to counterfeit), entertainment, transport (in scanners measuring the dimensions of cargo), microscopic imaging and optical data storing and processing technologies?

“It’s difficult to answer this question today. All of us – I mean physicists – must first get our heads around this new tool. It’s likely that real applications of quantum holography won’t appear for a few decades yet, but if there’s one thing we can be sure of it’s that they will be surprising,” summarises Prof. Banaszek.

Here’s a link to and a citation for the paper,

Hologram of a single photon by Radosław Chrapkiewicz, Michał Jachura, Konrad Banaszek, & Wojciech Wasilewski.  Nature Photonics (2016) doi:10.1038/nphoton.2016.129 Published online 18 July 2016

This paper is behind a paywall.

Light-captured energetics (harvesting light for optoelectronics)

Comparing graphene to a tiger is unusual but that’s what researcher Sanfeng Wu does—eventually—in a May 13, 2016 University of Washington news release (also on EurekAlert) about his work,

In the quest to harvest light for electronics, the focal point is the moment when photons — light particles — encounter electrons, those negatively-charged subatomic particles that form the basis of our modern electronic lives. If conditions are right when electrons and photons meet, an exchange of energy can occur. Maximizing that transfer of energy is the key to making efficient light-captured energetics possible.

“This is the ideal, but finding high efficiency is very difficult,” said University of Washington physics doctoral student Sanfeng Wu. “Researchers have been looking for materials that will let them do this — one way is to make each absorbed photon transfer all of its energy to many electrons, instead of just one electron in traditional devices.”

In traditional light-harvesting methods, energy from one photon only excites one electron or none depending on the absorber’s energy gap, transferring just a small portion of light energy into electricity. The remaining energy is lost as heat. But in a paper released May 13 in Science Advances, Wu, UW associate professor Xiaodong Xu and colleagues at four other institutions describe one promising approach to coax photons into stimulating multiple electrons. Their method exploits some surprising quantum-level interactions to give one photon multiple potential electron partners. Wu and Xu, who has appointments in the UW’s Department of Materials Science & Engineering and the Department of Physics, made this surprising discovery using graphene.

There has been intense research on graphene’s electrical properties but the researchers’ discovery adds a new property to be investigated (from the news release),

“Graphene is a substance with many exciting properties,” said Wu, the paper’s lead author. “For our purposes, it shows a very efficient interaction with light.”

Graphene is a two-dimensional hexagonal lattice of carbon atoms bonded to one another, and electrons are able to move easily within graphene. The researchers took a single layer of graphene — just one sheet of carbon atoms thick — and sandwiched it between two thin layers of a material called boron-nitride.

Boron-nitride is a material that has excited a great deal of interest in the last 12 to 18 months (from the news release),

“Boron-nitride has a lattice structure that is very similar to graphene, but has very different chemical properties,” said Wu. “Electrons do not flow easily within boron-nitride; it essentially acts as an insulator.”

Xu and Wu discovered that when the graphene layer’s lattice is aligned with the layers of boron-nitride, a type of “superlattice” is created with properties allowing efficient optoelectronics that researchers had sought. These properties rely on quantum mechanics, the occasionally baffling rules that govern interactions between all known particles of matter. Wu and Xu detected unique quantum regions within the superlattice known as Van Hove singularities.

Here’s an animated .gif illustrating the superlattice in action,

The Moire superlattice they created by aligning graphene and boron-nitride. Credit: Sanfeng Wu.

The Moire superlattice they created by aligning graphene and boron-nitride. Credit: Sanfeng Wu.

The news release goes on to describe the Van Hove singularities within the superlattice and to mention the ‘tiger’,

“These are regions of huge electron density of states, and they were not accessed in either the graphene or boron-nitride alone,” said Wu. “We only created these high electron density regions in an accessible way when both layers were aligned together.”

When Xu and Wu directed energetic photons toward the superlattice, they discovered that those Van Hove singularities were sites where one energized photon could transfer its energy to multiple electrons that are subsequently collected by electrodes— not just one electron or none with the remaining energy lost as heat. By a conservative estimate, Xu and Wu report that within this superlattice one photon could “kick” as many as five electrons to flow as current.

With the discovery of collecting multiple electrons upon the absorption of one photon, researchers may be able to create highly efficient devices that could harvest light with a large energy profit. Future work would need to uncover how to organize the excited electrons into electrical current for optimizing the energy-converting efficiency and remove some of the more cumbersome properties of their superlattice, such as the need for a magnetic field. But they believe this efficient process between photons and electrons represents major progress.

“Graphene is a tiger with great potential for optoelectronics, but locked in a cage,” said Wu. “The singularities in this superlattice are a key to unlocking that cage and releasing graphene’s potential for light harvesting application.”

H/t to a May 13, 2016 news item on phys.org.

Here’s a link to and a citation for the paper,

Multiple hot-carrier collection in photo-excited graphene Moiré superlattices by Sanfeng Wu, Lei Wang, You Lai, Wen-Yu Shan, Grant Aivazian, Xian Zhang, Takashi Taniguchi, Kenji Watanabe, Di Xiao, Cory Dean, James Hone, Zhiqiang Li, and Xiaodong Xu. Science Advances 13 May 2016: Vol. 2, no. 5, e1600002 DOI: 10.1126/sciadv.1600002

This paper is open access.

A new state for water molecules

ORNL researchers discovered that water in beryl displays some unique and unexpected characteristics. (Photo by Jeff Scovil)

ORNL researchers discovered that water in beryl displays some unique and unexpected characteristics. (Photo by Jeff Scovil)

That striking image from the Oak Ridge National Laboratory (ORNL; US) depicting a new state for water molecules looks like mixed media: photography and drawing/illustration. Thankfully, an April 22, 2016 news item on ScienceDaily provides a text description,

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy’s Oak Ridge National Laboratory [ORNL] describe a new tunneling state of water molecules confined in hexagonal ultra-small channels — 5 angstrom across — of the mineral beryl. An angstrom is 1/10-billionth of a meter, and individual atoms are typically about 1 angstrom in diameter.

The discovery, made possible with experiments at ORNL’s Spallation Neutron Source and the Rutherford Appleton Laboratory in the United Kingdom, demonstrates features of water under ultra confinement in rocks, soil and cell walls, which scientists predict will be of interest across many disciplines.

An April 22, 2016 ORNL news release (also on EurekAlert), which originated the news item, offers more detail,

“At low temperatures, this tunneling water exhibits quantum motion through the separating potential walls, which is forbidden in the classical world,” said lead author Alexander Kolesnikov of ORNL’s Chemical and Engineering Materials Division. “This means that the oxygen and hydrogen atoms of the water molecule are ‘delocalized’ and therefore simultaneously present in all six symmetrically equivalent positions in the channel at the same time. It’s one of those phenomena that only occur in quantum mechanics and has no parallel in our everyday experience.”

The existence of the tunneling state of water shown in ORNL’s study should help scientists better describe the thermodynamic properties and behavior of water in highly confined environments such as water diffusion and transport in the channels of cell membranes, in carbon nanotubes and along grain boundaries and at mineral interfaces in a host of geological environments.

ORNL co-author Lawrence Anovitz noted that the discovery is apt to spark discussions among materials, biological, geological and computational scientists as they attempt to explain the mechanism behind this phenomenon and understand how it applies to their materials.

“This discovery represents a new fundamental understanding of the behavior of water and the way water utilizes energy,” Anovitz said. “It’s also interesting to think that those water molecules in your aquamarine or emerald ring – blue and green varieties of beryl – are undergoing the same quantum tunneling we’ve seen in our experiments.”

While previous studies have observed tunneling of atomic hydrogen in other systems, the ORNL discovery that water exhibits such tunneling behavior is unprecedented. The neutron scattering and computational chemistry experiments showed that, in the tunneling state, the water molecules are delocalized around a ring so the water molecule assumes an unusual double top-like shape.

“The average kinetic energy of the water protons directly obtained from the neutron experiment is a measure of their motion at almost absolute zero temperature and is about 30 percent less than it is in bulk liquid or solid water,” Kolesnikov said. “This is in complete disagreement with accepted models based on the energies of its vibrational modes.”

Here’s a link to and a citation for the paper,

Quantum Tunneling of Water in Beryl: A New State of the Water Molecule by Alexander I. Kolesnikov, George F. Reiter, Narayani Choudhury, Timothy R. Prisk, Eugene Mamontov, Andrey Podlesnyak, George Ehlers, Andrew G. Seel, David J. Wesolowski, and Lawrence M. Anovitz.
Phys. Rev. Lett. 116, 167802 – Published 22 April 2016

This paper is behind a paywall.

An atom without properties?

There’s rather intriguing Swiss research into atoms and so-called Bell Correlations according to an April 21, 2016 news item on ScienceDaily,

The microscopic world is governed by the rules of quantum mechanics, where the properties of a particle can be completely undetermined and yet strongly correlated with those of other particles. Physicists from the University of Basel have observed these so-called Bell correlations for the first time between hundreds of atoms. Their findings are published in the scientific journal Science.

Everyday objects possess properties independently of each other and regardless of whether we observe them or not. Einstein famously asked whether the moon still exists if no one is there to look at it; we answer with a resounding yes. This apparent certainty does not exist in the realm of small particles. The location, speed or magnetic moment of an atom can be entirely indeterminate and yet still depend greatly on the measurements of other distant atoms.

An April 21, 2016 University of Basel (Switzerland) press release (also on EurekAlert), which originated the news item, provides further explanation,

With the (false) assumption that atoms possess their properties independently of measurements and independently of each other, a so-called Bell inequality can be derived. If it is violated by the results of an experiment, it follows that the properties of the atoms must be interdependent. This is described as Bell correlations between atoms, which also imply that each atom takes on its properties only at the moment of the measurement. Before the measurement, these properties are not only unknown – they do not even exist.

A team of researchers led by professors Nicolas Sangouard and Philipp Treutlein from the University of Basel, along with colleagues from Singapore, have now observed these Bell correlations for the first time in a relatively large system, specifically among 480 atoms in a Bose-Einstein condensate. Earlier experiments showed Bell correlations with a maximum of four light particles or 14 atoms. The results mean that these peculiar quantum effects may also play a role in larger systems.

Large number of interacting particles

In order to observe Bell correlations in systems consisting of many particles, the researchers first had to develop a new method that does not require measuring each particle individually – which would require a level of control beyond what is currently possible. The team succeeded in this task with the help of a Bell inequality that was only recently discovered. The Basel researchers tested their method in the lab with small clouds of ultracold atoms cooled with laser light down to a few billionths of a degree above absolute zero. The atoms in the cloud constantly collide, causing their magnetic moments to become slowly entangled. When this entanglement reaches a certain magnitude, Bell correlations can be detected. Author Roman Schmied explains: “One would expect that random collisions simply cause disorder. Instead, the quantum-mechanical properties become entangled so strongly that they violate classical statistics.”

More specifically, each atom is first brought into a quantum superposition of two states. After the atoms have become entangled through collisions, researchers count how many of the atoms are actually in each of the two states. This division varies randomly between trials. If these variations fall below a certain threshold, it appears as if the atoms have ‘agreed’ on their measurement results; this agreement describes precisely the Bell correlations.

New scientific territory

The work presented, which was funded by the National Centre of Competence in Research Quantum Science and Technology (NCCR QSIT), may open up new possibilities in quantum technology; for example, for generating random numbers or for quantum-secure data transmission. New prospects in basic research open up as well: “Bell correlations in many-particle systems are a largely unexplored field with many open questions – we are entering uncharted territory with our experiments,” says Philipp Treutlein.

Here’s a link to and a citation for the paper,

Bell correlations in a Bose-Einstein condensate by Roman Schmied, Jean-Daniel Bancal, Baptiste Allard, Matteo Fadel, Valerio Scarani, Philipp Treutlein, Nicolas Sangouard. Science  22 Apr 2016: Vol. 352, Issue 6284, pp. 441-444 DOI: 10.1126/science.aad8665

This paper is behind a paywall.

Prime Minister Trudeau, the quantum physicist

Prime Minister Justin Trudeau’s apparently extemporaneous response to a joking (non)question about quantum computing by a journalist during an April 15, 2016 press conference at the Perimeter Institute for Theoretical Physics in Waterloo, Ontario, Canada has created a buzz online, made international news, and caused Canadians to sit taller.

For anyone who missed the moment, here’s a video clip from the Canadian Broadcasting Corporation (CBC),

Aaron Hutchins in an April 15, 2016 article for Maclean’s magazine digs deeper to find out more about Trudeau and quantum physics (Note: A link has been removed),

Raymond Laflamme knows the drill when politicians visit the Perimeter Institute. A photo op here, a few handshakes there and a tour with “really basic, basic, basic facts” about the field of quantum mechanics.

But when the self-described “geek” Justin Trudeau showed up for a funding announcement on Friday [April 15, 2016], the co-founder and director of the Institute for Quantum Computing at the University of Waterloo wasn’t met with simple nods of the Prime Minister pretending to understand. Trudeau immediately started talking about things being waves and particles at the same time, like cats being dead and alive at the same time. It wasn’t just nonsense—Trudeau was referencing the famous thought experiment of the late legendary physicist Erwin Schrödinger.

“I don’t know where he learned all that stuff, but we were all surprised,” Laflamme says. Soon afterwards, as Trudeau met with one student talking about superconductivity, the Prime Minister asked her, “Why don’t we have high-temperature superconducting systems?” something Laflamme describes as the institute’s “Holy Grail” quest.

“I was flabbergasted,” Laflamme says. “I don’t know how he does in other subjects, but in quantum physics, he knows the basic pieces and the important questions.”

Strangely, Laflamme was not nearly as excited (tongue in cheek) when I demonstrated my understanding of quantum physics during our interview (see my May 11, 2015 posting; scroll down about 40% of the way to the Ramond Laflamme subhead).

As Jon Butterworth comments in his April 16, 2016 posting on the Guardian science blog, the response says something about our expectations regarding politicians,

This seems to have enhanced Trudeau’s reputation no end, and quite right too. But it is worth thinking a bit about why.

The explanation he gives is clear, brief, and understandable to a non-specialist. It is the kind of thing any sufficiently engaged politician could pick up from a decent briefing, given expert help. …

Butterworth also goes on to mention journalists’ expectations,

The reporter asked the question in a joking fashion, not unkindly as far as I can tell, but not expecting an answer either. If this had been an announcement about almost any other government investment, wouldn’t the reporter have expected a brief explanation of the basic ideas behind it? …

As for the announcement being made by Trudeau, there is this April 15, 2016 Perimeter Institute press release (Note: Links have been removed),

Prime Minister Justin Trudeau says the work being done at Perimeter and in Canada’s “Quantum Valley” [emphasis mine] is vital to the future of the country and the world.

Prime Minister Justin Trudeau became both teacher and student when he visited Perimeter Institute today to officially announce the federal government’s commitment to support fundamental scientific research at Perimeter.

Joined by Minister of Science Kirsty Duncan and Small Business and Tourism Minister Bardish Chagger, the self-described “geek prime minister” listened intensely as he received brief overviews of Perimeter research in areas spanning from quantum science to condensed matter physics and cosmology.

“You don’t have to be a geek like me to appreciate how important this work is,” he then told a packed audience of scientists, students, and community leaders in Perimeter’s atrium.

The Prime Minister was also welcomed by 200 teenagers attending the Institute’s annual Inspiring Future Women in Science conference, and via video greetings from cosmologist Stephen Hawking [he was Laflamme’s PhD supervisor], who is a Perimeter Distinguished Visiting Research Chair. The Prime Minister said he was “incredibly overwhelmed” by Hawking’s message.

“Canada is a wonderful, huge country, full of people with big hearts and forward-looking minds,” Hawking said in his message. “It’s an ideal place for an institute dedicated to the frontiers of physics. In supporting Perimeter, Canada sets an example for the world.”

The visit reiterated the Government of Canada’s pledge of $50 million over five years announced in last month’s [March 2016] budget [emphasis mine] to support Perimeter research, training, and outreach.

It was the Prime Minister’s second trip to the Region of Waterloo this year. In January [2016], he toured the region’s tech sector and universities, and praised the area’s innovation ecosystem.

This time, the focus was on the first link of the innovation chain: fundamental science that could unlock important discoveries, advance human understanding, and underpin the groundbreaking technologies of tomorrow.

As for the “quantum valley’ in Ontario, I think there might be some competition here in British Columbia with D-Wave Systems (first commercially available quantum computing, of a sort; my Dec. 16, 2015 post is the most recent one featuring the company) and the University of British Columbia’s Stewart Blusson Quantum Matter Institute.

Getting back to Trudeau, it’s exciting to have someone who seems so interested in at least some aspects of science that he can talk about it with a degree of understanding. I knew he had an interest in literature but there is also this (from his Wikipedia entry; Note: Links have been removed),

Trudeau has a bachelor of arts degree in literature from McGill University and a bachelor of education degree from the University of British Columbia…. After graduation, he stayed in Vancouver and he found substitute work at several local schools and permanent work as a French and math teacher at the private West Point Grey Academy … . From 2002 to 2004, he studied engineering at the École Polytechnique de Montréal, a part of the Université de Montréal.[67] He also started a master’s degree in environmental geography at McGill University, before suspending his program to seek public office.[68] [emphases mine]

Trudeau is not the only political leader to have a strong interest in science. In our neighbour to the south, there’s President Barack Obama who has done much to promote science since he was elected in 2008. David Bruggeman in an April 15, 2016  post (Obama hosts DNews segments for Science Channel week of April 11-15, 2016) and an April 17, 2016 post (Obama hosts White House Science Fair) describes two of Obama’s most recent efforts.

ETA April 19, 2016: I’ve found confirmation that this Q&A was somewhat staged as I hinted in the opening with “Prime Minister Justin Trudeau’s apparently extemporaneous response … .” Will Oremus’s April 19, 2016 article for Slate.com breaks the whole news cycle down and points out (Note: A link has been removed),

Over the weekend, even as latecomers continued to dine on the story’s rapidly decaying scraps, a somewhat different picture began to emerge. A Canadian blogger pointed out that Trudeau himself had suggested to reporters at the event that they lob him a question about quantum computing so that he could knock it out of the park with the newfound knowledge he had gleaned on his tour.

The Canadian blogger who tracked this down is J. J. McCullough (Jim McCullough) and you can read his Oct. 16, 2016 posting on the affair here. McCullough has a rather harsh view of the media response to Trudeau’s lecture. Oremus is a bit more measured,

… Monday brought the countertake parade—smaller and less pompous, if no less righteous—led by Gawker with the headline, “Justin Trudeau’s Quantum Computing Explanation Was Likely Staged for Publicity.”

But few of us in the media today are immune to the forces that incentivize timeliness and catchiness over subtlety, and even Gawker’s valuable corrective ended up meriting a corrective of its own. Author J.K. Trotter soon updated his post with comments from Trudeau’s press secretary, who maintained (rather convincingly, I think) that nothing in the episode was “staged”—at least, not in the sinister way that the word implies. Rather, Trudeau had joked that he was looking forward to someone asking him about quantum computing; a reporter at the press conference jokingly complied, without really expecting a response (he quickly moved on to his real question before Trudeau could answer); Trudeau responded anyway, because he really did want to show off his knowledge.

Trotter deserves credit, regardless, for following up and getting a fuller picture of what transpired. He did what those who initially jumped on the story did not, which was to contact the principals for context and comment.

But my point here is not to criticize any particular writer or publication. The too-tidy Trudeau narrative was not the deliberate work of any bad actor or fabricator. Rather, it was the inevitable product of today’s inexorable social-media machine, in which shareable content fuels the traffic-referral engines that pay online media’s bills.

I suggest reading both McCullough’s and Oremus’s posts in their entirety should you find debates about the role of media compelling.

Handling massive digital datasets the quantum way

A Jan. 25, 2016 news item on phys.org describes a new approach to analyzing and managing huge datasets,

From gene mapping to space exploration, humanity continues to generate ever-larger sets of data—far more information than people can actually process, manage, or understand.

Machine learning systems can help researchers deal with this ever-growing flood of information. Some of the most powerful of these analytical tools are based on a strange branch of geometry called topology, which deals with properties that stay the same even when something is bent and stretched every which way.

Such topological systems are especially useful for analyzing the connections in complex networks, such as the internal wiring of the brain, the U.S. power grid, or the global interconnections of the Internet. But even with the most powerful modern supercomputers, such problems remain daunting and impractical to solve. Now, a new approach that would use quantum computers to streamline these problems has been developed by researchers at [Massachusetts Institute of Technology] MIT, the University of Waterloo, and the University of Southern California [USC}.

A Jan. 25, 2016 MIT news release (*also on EurekAlert*), which originated the news item, describes the theory in more detail,

… Seth Lloyd, the paper’s lead author and the Nam P. Suh Professor of Mechanical Engineering, explains that algebraic topology is key to the new method. This approach, he says, helps to reduce the impact of the inevitable distortions that arise every time someone collects data about the real world.

In a topological description, basic features of the data (How many holes does it have? How are the different parts connected?) are considered the same no matter how much they are stretched, compressed, or distorted. Lloyd [ explains that it is often these fundamental topological attributes “that are important in trying to reconstruct the underlying patterns in the real world that the data are supposed to represent.”

It doesn’t matter what kind of dataset is being analyzed, he says. The topological approach to looking for connections and holes “works whether it’s an actual physical hole, or the data represents a logical argument and there’s a hole in the argument. This will find both kinds of holes.”

Using conventional computers, that approach is too demanding for all but the simplest situations. Topological analysis “represents a crucial way of getting at the significant features of the data, but it’s computationally very expensive,” Lloyd says. “This is where quantum mechanics kicks in.” The new quantum-based approach, he says, could exponentially speed up such calculations.

Lloyd offers an example to illustrate that potential speedup: If you have a dataset with 300 points, a conventional approach to analyzing all the topological features in that system would require “a computer the size of the universe,” he says. That is, it would take 2300 (two to the 300th power) processing units — approximately the number of all the particles in the universe. In other words, the problem is simply not solvable in that way.

“That’s where our algorithm kicks in,” he says. Solving the same problem with the new system, using a quantum computer, would require just 300 quantum bits — and a device this size may be achieved in the next few years, according to Lloyd.

“Our algorithm shows that you don’t need a big quantum computer to kick some serious topological butt,” he says.

There are many important kinds of huge datasets where the quantum-topological approach could be useful, Lloyd says, for example understanding interconnections in the brain. “By applying topological analysis to datasets gleaned by electroencephalography or functional MRI, you can reveal the complex connectivity and topology of the sequences of firing neurons that underlie our thought processes,” he says.

The same approach could be used for analyzing many other kinds of information. “You could apply it to the world’s economy, or to social networks, or almost any system that involves long-range transport of goods or information,” says Lloyd, who holds a joint appointment as a professor of physics. But the limits of classical computation have prevented such approaches from being applied before.

While this work is theoretical, “experimentalists have already contacted us about trying prototypes,” he says. “You could find the topology of simple structures on a very simple quantum computer. People are trying proof-of-concept experiments.”

Ignacio Cirac, a professor at the Max Planck Institute of Quantum Optics in Munich, Germany, who was not involved in this research, calls it “a very original idea, and I think that it has a great potential.” He adds “I guess that it has to be further developed and adapted to particular problems. In any case, I think that this is top-quality research.”

Here’s a link to and a citation for the paper,

Quantum algorithms for topological and geometric analysis of data by Seth Lloyd, Silvano Garnerone, & Paolo Zanardi. Nature Communications 7, Article number: 10138 doi:10.1038/ncomms10138 Published 25 January 2016

This paper is open access.

ETA Jan. 25, 2016 1245 hours PST,

Shown here are the connections between different regions of the brain in a control subject (left) and a subject under the influence of the psychedelic compound psilocybin (right). This demonstrates a dramatic increase in connectivity, which explains some of the drug’s effects (such as “hearing” colors or “seeing” smells). Such an analysis, involving billions of brain cells, would be too complex for conventional techniques, but could be handled easily by the new quantum approach, the researchers say. Courtesy of the researchers

Shown here are the connections between different regions of the brain in a control subject (left) and a subject under the influence of the psychedelic compound psilocybin (right). This demonstrates a dramatic increase in connectivity, which explains some of the drug’s effects (such as “hearing” colors or “seeing” smells). Such an analysis, involving billions of brain cells, would be too complex for conventional techniques, but could be handled easily by the new quantum approach, the researchers say. Courtesy of the researchers

*’also on EurekAlert’ text and link added Jan. 26, 2016.

100 percent efficiency transporting the energy of sunlight from receptors to reaction centers

Genetic engineering has been combined with elements of quantum physics to find a better way of transferring the energy derived from sunlight from the receptors to the reaction centers (i.e., photosynthesis). From an Oct. 15, 2015 news item on Nanowerk,

Nature has had billions of years to perfect photosynthesis, which directly or indirectly supports virtually all life on Earth. In that time, the process has achieved almost 100 percent efficiency in transporting the energy of sunlight from receptors to reaction centers where it can be harnessed — a performance vastly better than even the best solar cells.

One way plants achieve this efficiency is by making use of the exotic effects of quantum mechanics — effects sometimes known as “quantum weirdness.” These effects, which include the ability of a particle to exist in more than one place at a time [superposition], have now been used by engineers at MIT to achieve a significant efficiency boost in a light-harvesting system.

Surprisingly, the MIT [Massachusetts Institute of Technology] researchers achieved this new approach to solar energy not with high-tech materials or microchips — but by using genetically engineered viruses.

An Oct. 15, 2015 MIT news release (also on EurekAlert), which originated the news item, recounts an exciting tale of interdisciplinary work and an international collaboration,

This achievement in coupling quantum research and genetic manipulation, described this week in the journal Nature Materials, was the work of MIT professors Angela Belcher, an expert on engineering viruses to carry out energy-related tasks, and Seth Lloyd, an expert on quantum theory and its potential applications; research associate Heechul Park; and 14 collaborators at MIT and in Italy.

Lloyd, a professor of mechanical engineering, explains that in photosynthesis, a photon hits a receptor called a chromophore, which in turn produces an exciton — a quantum particle of energy. This exciton jumps from one chromophore to another until it reaches a reaction center, where that energy is harnessed to build the molecules that support life.

But the hopping pathway is random and inefficient unless it takes advantage of quantum effects that allow it, in effect, to take multiple pathways at once and select the best ones, behaving more like a wave than a particle.

This efficient movement of excitons has one key requirement: The chromophores have to be arranged just right, with exactly the right amount of space between them. This, Lloyd explains, is known as the “Quantum Goldilocks Effect.”

That’s where the virus comes in. By engineering a virus that Belcher has worked with for years, the team was able to get it to bond with multiple synthetic chromophores — or, in this case, organic dyes. The researchers were then able to produce many varieties of the virus, with slightly different spacings between those synthetic chromophores, and select the ones that performed best.

In the end, they were able to more than double excitons’ speed, increasing the distance they traveled before dissipating — a significant improvement in the efficiency of the process.

The project started from a chance meeting at a conference in Italy. Lloyd and Belcher, a professor of biological engineering, were reporting on different projects they had worked on, and began discussing the possibility of a project encompassing their very different expertise. Lloyd, whose work is mostly theoretical, pointed out that the viruses Belcher works with have the right length scales to potentially support quantum effects.

In 2008, Lloyd had published a paper demonstrating that photosynthetic organisms transmit light energy efficiently because of these quantum effects. When he saw Belcher’s report on her work with engineered viruses, he wondered if that might provide a way to artificially induce a similar effect, in an effort to approach nature’s efficiency.

“I had been talking about potential systems you could use to demonstrate this effect, and Angela said, ‘We’re already making those,'” Lloyd recalls. Eventually, after much analysis, “We came up with design principles to redesign how the virus is capturing light, and get it to this quantum regime.”

Within two weeks, Belcher’s team had created their first test version of the engineered virus. Many months of work then went into perfecting the receptors and the spacings.

Once the team engineered the viruses, they were able to use laser spectroscopy and dynamical modeling to watch the light-harvesting process in action, and to demonstrate that the new viruses were indeed making use of quantum coherence to enhance the transport of excitons.

“It was really fun,” Belcher says. “A group of us who spoke different [scientific] languages worked closely together, to both make this class of organisms, and analyze the data. That’s why I’m so excited by this.”

While this initial result is essentially a proof of concept rather than a practical system, it points the way toward an approach that could lead to inexpensive and efficient solar cells or light-driven catalysis, the team says. So far, the engineered viruses collect and transport energy from incoming light, but do not yet harness it to produce power (as in solar cells) or molecules (as in photosynthesis). But this could be done by adding a reaction center, where such processing takes place, to the end of the virus where the excitons end up.

MIT has produced a video explanation of the work,

Here’s a link to and a citation for the paper,

Enhanced energy transport in genetically engineered excitonic networks by Heechul Park, Nimrod Heldman, Patrick Rebentrost, Luigi Abbondanza, Alessandro Iagatti, Andrea Alessi, Barbara Patrizi, Mario Salvalaggio, Laura Bussotti, Masoud Mohseni, Filippo Caruso, Hannah C. Johnsen, Roberto Fusco, Paolo Foggi, Petra F. Scudo, Seth Lloyd, & Angela M. Belcher. Nature Materials (2015) doi:10.1038/nmat4448 Published online 12 October 2015

This paper is behind a paywall.