Tag Archives: Quebec

State-of-the-art biotech and nanophotonics equipment at Québec’s Institut national de la recherche scientifique (INRS)

Canada Foundation for Innovation (a federal government funding agency) has awarded two infrastructure grants to Québec’s Institut national de la recherche scientifique (INRS) or more specifically their Énergie Matériaux Télécommunications Research Centreaccording to an April 18, 2014 news item on Azonano,

Professor Marc André Gauthier and Professor Luca Razzari of the Énergie Matériaux Télécommunications Research Centre have each been awarded large grants from the John R. Evans Leaders Fund of the Canada Foundation for Innovation (CFI) for the acquisition of state-of-the-art biotech and nanophotonics equipment.

To this funding will be added matching grants from the Ministère de l’Enseignement supérieur, de la Recherche, de la Science et de la Technologie (MESRST). These new laboratories will help us develop new approaches for improving health and information technologies, train the next generation of highly qualified high-tech workers, and transfer technology and expertise to local startups.

An April 17, 2014 INRS news release by Gisèle Bolduc, which originated the news item (Pour ceux qui préfèrent l’actualité en français) , provides more details,

Bio-hybrid materials

Professor Gauthier’snew Laboratory of Bio-Hybrid Materials (LBM) will enable him to tackle the numerous challenges of designing these functional materials and make it possible for the biomedical and biotech sectors to take full advantage of their new and unique properties. Professor Gauthier and his team will work on developing new bio organic reactions involving synthetic and natural molecules and improving those that already exist. They will examine the architecture of protein-polymer grafts and develop methods for adjusting the structure and function of bio-hybrid materials in order to evaluate their therapeutic potential.

Plasmonic nanostructures and nonlinear optics

Professor Luca Razzari will use his Laboratory of Nanostructure-Assisted Spectroscopy and Nonlinear Optics (NASNO Lab) to document the properties of plasmonic nanostructures, improve nanospectroscopies and explore new photonic nanodevices. He will also develop new biosensors able to identify very small numbers of biomarkers. This may have an important impact in the early diagnosis of several diseases such as cancer and life-threatening infectious diseases.Besides this, he will investigate a new generation of nanoplasmonic devices for information and communications technology applications.

Congratulations!

Nano and the energy crisis, a March 25, 2014 presentation by Federico Rosei in Vancouver, Canada

ARPICO’s, Society of Italian Researchers and Professionals in Western Canada, is presenting a talk about the energy crisis and how nanoscience may help, which will be given by Federico Rosei, a nanoscientist based in Québec at the INRS (Institut national de la recherche scientifique). I don’t have much more information about the talk (from the March 4, 2014 ARPICO announcement),

Looming Energy Crisis & Possible Solutions
What is economically viable?
What is environmentally sustainable?
In the short term, in the long term…

Please join us for a presentation & lively discussion facilitated by

Federico Rosei, PhD
International award winning scientist, thinker and speaker

The exploration of the role of nanoscience in tomorrow’s energy solutions

There are more details about the speaker (from the ARPICO announcement),

Dr. Rosei’s research interests focus on the properties of nanostructured materials. Among numerous positions held, he is Canada Research Chair in Nanostructured Organic and Inorganic Materials, Professor & Director of INRS-Energy, Materials & Telecommunications, Universite du Quebec, Varennes (QC), and UNESCO Chair in Materials and Technologies for Energy Conversion, Saving and Storage. He has published over 170 articles in prestigious international journals and his publications have been cited over 4,500 times. He has received several awards, including the FQRNT Strategic Professorship, the Rutherford Memorial Medal in Chemistry from the Royal Society of Canada, and the Herzberg Medal from the Canadian Association of Physicists.

Dr. Rosei’s biographical notes have not been updat4ed as he has recently won two major awards as per my Feb. 4, 2014 posting about his E.W.R. Steacie Memorial Fellowship and my Jan. 27, 2014 posting about his 2014 Award for Research Excellence in Materials Chemistry from the Canadian Society for Chemistry.

Here are the event details,

Date & Time:      Tuesday, March 25, 2014, 7pm

Location:      Roundhouse Community Centre (Room C),
181 Roundhouse Mews, Vancouver, BC
(Yaletown-Roundhouse Sky Train Station, C21 & C23 Buses, Parking $3)

Refreshments:      Complimentary—coffee and cookies

Admission & RSVP:      Admission is free.

Registration at https://www.eventbrite.ca/e/looming-energy-crisis-possible-solutions-by-prof-federico-rosei-inrs-tickets-6582603745

I’m glad to see a talk about the energy crisis that’s geared to ways in which we might deal with it.

Université de Montréal (Canada) collaborates with University of Houston (US) for a new theory and better solar cells

Solar cell efficiency is not good as researchers from  l’Université de Montréal (UdeM, located in Quebec, Canada) and the University of Houston (UH, located Texas, US) note in a Jan. 29, 2014 joint UH/UdeM news release written by Lisa Merkl (UH) on EurekAlert,

“Scientists don’t fully understand what is going on inside the materials that make up solar cells. We were trying to get at the fundamental photochemistry or photophysics that describes how these cells work,” Bittner said [Eric Bittner, a John and Rebecca Moores Professor of Chemistry and Physics in UH’s College of Natural Sciences and Mathematics,].

Solar cells are made out of organic semiconductors – typically blends of materials. However, solar cells made of these materials have about 3 percent efficiency. Bittner added that the newer materials, the fullerene/polymer blends, only reach about 10 percent efficiency.

“There is a theoretical limit for the efficiency of the ideal solar cell – the Shockley-Queisser limit. The theory we published describes how we might be able to get above this theoretical limit by taking advantage of quantum mechanical effects,” Bittner said. “By understanding these effects and making use of them in the design of a solar cell, we believe you can improve efficiency.”

Silva [Carlos Silva, an associate professor at the Université de Montréal and Canada Research Chair in Organic Semiconductor Materials] added, “In polymeric semiconductors, where plastics form the active layer of solar cells, the electronic structure of the material is intimately correlated with the vibrational motion within the polymer chain. Quantum-mechanical effects due to such vibrational-electron coupling give rise to a plethora of interesting physical processes that can be controlled to optimize solar cell efficiencies by designing materials that best exploit them.”

Unfortunately, there’s no more information about this model other than this (from the news release),

“Our theoretical model accomplishes things that you can’t get from a molecular model,” he [Bittner] said. “It is mostly a mathematical model that allows us to look at a much larger system with thousands of molecules. You can’t do ordinary quantum chemistry calculations on a system of that size.”

The calculations have prompted a series of new experiments by Silva’s group to probe the outcomes predicted by their model.

Bittner and Silva’s next steps involve collaborations with researchers who are experts in making the polymers and fabricating solar cells.

Here’s a link to and a citation for the paper,

Noise-induced quantum coherence drives photo-carrier generation dynamics at polymeric semiconductor heterojunctions by Eric R. Bittner & Carlos Silva. Nature Communications 5, Article number: 3119 doi:10.1038/ncomms4119 Published 29 January 2014

This article is behind a paywall although you can get a free preview via ReadCube Access.

Lomiko Mines, graphene, 3D printing, and the World Outlook Financial Conference and the launch of an international sustainable mining institute in Vancouver, Canada

I have two items one of which concerns Lomiko Metals and the other, a new institute focused on extraction launched jointly by the University of British Columbia (UBC), Simon Fraser University (SFU) and l’École Polytechnique de Montréal (EPM).

First, there’s a puzzling Jan. 28, 2014 news item on Nanowerk about Lomiko Metals (a company that extracts graphite flakes from the Quatre Milles property in Québec, and its appearance at the 2014 World Outlook Financial Conference being held in Vancouver,

Lomiko Metals Inc. invite [sic] investors to learn about 3d printing at the World Outlook Conference. Lomiko partner Graphene 3D Lab has reached a significant milestone by filing a provisional patent application for the use of graphene-enhanced material, along with other materials, in 3D Printing. 3D printing or additive manufacturing is the process of creating a three-dimensional, solid object from a digital file, of virtually any shape. 3D printing is achieved using an additive process, whereas successive layers of material are laid down and create different shapes.

Unsure as to whether or not Lomiko Metals would be offering demonstrations of 3D printed items containing graphene at the conference, I sent a query to the company’s Chief Executive Officer, A. Paul Gill who kindly replied with this,

The demonstration being done is by the Conference not by Lomiko.  We were going to do something at our booth but we didn’t want to steal any thunder from the WOC or Tinkinerine which is a 3D Printing manufacturer and is going public through a merger with White Bear Resources. (TSX-V: WBR).

The Jan. 27, 2013 [sic] Lomiko Metals news release, which originated the news item, did have this to say about graphene and 3D printing (Note: I live in dread of accidentally writing 2013 when I mean 2014),

Adding graphene to polymers which are conventionally u sed in 3D printing improves the properties of the polymer in many different ways; it improves the polymers mechanical strength as well as its electrical and thermal conductivity. The method described in the provisional patent application allows consumers to use the polymer, infused with graphene, together with conventional polymers in the same printing process, thereby fabricating functional electronic devices using 3D printing.

New developments in 3D printing will allow for the creation of products with different components, such as printed electronic circuits, sensors, or batteries to be manufactured. 3D Printing is a new and promising manufacturing technology that has garnered much interest, growing from uses in prototyping to everyday products. Today, it is a billion dollar industry growing at a brisk pace.

For those eager to find out about investment opportunities in 2014, here’s the World Financial Outlook Conference website. I was surprised they don’t list the conference dates on the homepage (Jan. 31 – Feb. 1,2014) or any details other than the prices for various categories of registration. There is a Speakers page, which lists John Biehler as their 3D printing expert,

John Biehler is a Vancouver based photographer, blogger, gadget geek, mobile phone nerd, teacher, traveler, 3D printer builder/operator, maker & all around curious person.

He co-founded 3D604.org, a club of 3d printing enthusiasts who meet monthly and help share their knowledge of 3d printing at many events. He has spoken at numerous conferences including SXSW Interactive, Northern Voice, BarCamp and many others.

John is a regular contributor to Miss604.com, the DottoTech radio show, the Province newspaper and London Drugs blogs as well as doing a weekly Tech Tuesday segment on News 1130 radio and many other online, print, radio and television outlets. He is currently writing his first book (about 3D printing) that will be published in 2014 by Que.

You can find the conference agenda here. Biehler’s talk “3D Printing: The Future is Now” is scheduled for Saturday, Feb. 1, 2014 at 10:45 am PDT.

Sustainable extraction

A January 29, 2014 University of British Columbia (UBC) news release announced this (Note: Links have been removed),

International sustainable mining institute launched

A new Canadian institute that will help developing countries benefit from their mining resources in environmentally and socially responsible ways was officially launched in Vancouver today.

The Canadian International Institute for Extractive Industries and Development (CIIEID) is a coalition between the University of British Columbia, Simon Fraser University, and École Polytechnique de Montréal (EPM). Institute Interim Executive Director Bern Klein was joined for the launch in Vancouver by UBC’s Vice President Research & International John Hepburn, SFU President Andrew Petter, and EPM CEO Christophe Guy.

“Nations want to develop their mineral, oil and gas resources,” says Klein, also a professor of mining engineering at UBC. “But many lack the regulatory and policy frameworks to make the most of their natural resources, while also considering the needs of affected communities. We want them to have the capacity to use their resources to enhance livelihoods, improve dialogue and mitigate environmental harm.”

In November 2012 the Department of Foreign Affairs, Trade and Development (then CIDA) announced the award of $25 million to a coalition of the three academic institutions to form the Institute. Since then, the Institute has set up operations and is connecting with partner nongovernmental organizations, governments, professional associations, and industry. It is now beginning program development.

Programming will put the Institute and its partners’ knowledge and resources at the service of foreign governments and local communities. Its work will focus on four main areas: applied research, community engagement, education, and governance of natural resources.

For more information about the Institute, visit the website at: http://ciieid.org.

I have searched the CIIEID website to find out how the government or anyone else for that matter determined that Canadians have any advice about or examples of sustainable extraction to offer any other country.  I remain mystified. Perhaps someone reading this blog would care to enlighten me.

Canadian Society for Chemistry honours Québec nanoscientist Federico Rosei

Dr. Federico Rosei’s name has graced this blog before, most recently in a June 15, 2010 posting about an organic nanoelectronics project. Late last week, Québec’s Institut national de la recherche scientifique (INRS) announced that Rosei will be honoured by the Canadian Society for Chemistry at  the 2014 Canadian Chemistry Conference (from the January 24, 2014 news release on EurekAlert),,

The Canadian Society for Chemistry (CSC) has bestowed its 2014 Award for Research Excellence in Materials Chemistry on Professor Federico Rosei, director of the INRS Énergie Matériaux Télécommunications research centre, in recognition of his exceptional contributions to the field. Professor Rosei will be honoured at the society’s annual conference, which will take place June 1 to 5, 2014, in Vancouver.

In conjunction with this honour, Federico Rosei has been invited to speak at this important scientific conference and to take part in a lecture tour of Canadian universities located outside major cities.

Professor Rosei has been widely honoured for his research on nanomaterial properties and their applications. He has received numerous awards and distinctions, including the 2013 Herzberg Medal from the Canadian Association of Physicists, the Brian Ives Lectureship Award from ASM Canada, the 2011 Rutherford Memorial Medal in Chemistry from the Royal Society of Canada, and the Alexander von Humboldt Foundation’s 2010 Friedrich Wilhelm Bessel Research Award. He is also a fellow of the American Association for the Advancement of Science; the Institute of Physics; the Royal Society of Chemistry; the Institute of Materials, Minerals and Mining; the Institute of Engineering and Technology; and the Institute of Nanotechnology in the U.K.; the Engineering Institute of Canada; and the Australian Institute of Physics. In addition, Professor Rosei is a Senior Member of the Institute of Electrical and Electronics Engineers (IEEE) and the Society for Photo-Image Engineers (SPIE), and a member of Sigma Xi (scientific research society) and the Global Young Academy.

Please join us in extending our congratulations to Professor Rosei!

###

The Canadian Society for Chemistry

The Canadian Society for Chemistry (CSC) is a not-for-profit professional association that unites chemistry students and professionals who work in industry, academia, and government. Recognized by the International Union of Pure and Applied Chemistry (IUPAC), the CSC awards annual prizes and scholarships in recognition of outstanding achievements in the chemical sciences.

About INRS

Institut national de recherche scientifique (INRS) is a graduate research and training university. As Canada’s leading university for research intensity in its class, INRS brings together some 150 professors and close to 700 students and postdoctoral fellows in its centres in Montreal, Quebec City, Laval, and Varennes. As active providers of fundamental research essential to the advancement of science in Quebec as well as internationally, INRS research teams also play a critical role in developing concrete solutions to problems that our society faces.

The French language version of the news release: de l’actualité le 23 janvier 2014, par Stéphanie Thibault (Note: Links have been removed from the excerpt),

Le professeur Federico Rosei du Centre Énergie Matériaux Télécommunications de l’INRS est récipiendaire du Prix d’excellence en chimie des matériaux 2014. La Société canadienne de chimie reconnaît ainsi sa contribution exceptionnelle dans ce domaine. Le professeur Rosei sera honoré lors du congrès annuel de la Société qui aura lieu du 1er au 5 juin 2014 à Vancouver.

À titre de lauréat, le professeur Rosei sera conférencier invité à cette importante rencontre scientifique et participera à une tournée de conférences qui l’amènera dans des universités canadiennes situées hors des grandes villes.

I have not found any specific details about Dr. Rosei’s upcoming chemistry lecture tour of universities.

The conference where Dr. Rosei will be honoured is the 97th annual Canadian Chemistry Conference and Exhibition. It is being hosted by Simon Fraser University (SFU), located in the Vancouver region. While the conference programme is not yet in place there’s a hint as to what will be offered in the conference chair’s Welcome message,

On behalf of the Organizing Committee, I am delighted to welcome all the delegates and their guests to Vancouver, British Columbia, for the 97th Canadian Chemistry Conference and Exhibition that will take place from June 1 to 5, 2014. This is Canada’s largest annual event devoted to the science and practice of chemistry, and it will give participants a platform to exchange ideas, discover novel opportunities, reacquaint with colleagues, meet new friends, and broaden their knowledge. The conference will held at the new Vancouver Convention Centre, which is a spectacular, green-designed facility on the beautiful waterfront in downtown Vancouver.

The theme of the CSC 2014 Conference is “Chemistry from Sea to Sky”; it will broadly cover all disciplines of chemistry from fundamental research to “blue sky” applications, highlight global chemical scientific interactions and collaborations, and feature the unique location, culture and beautiful geography (the Coastal Mountains along the ocean’s edge of Howe Sound) of British Columbia and Vancouver.

We are pleased to have Professor Shankar Balasubramanian (University of Cambridge, UK) and Professor Klaus Müllen (Max Planck Institute for Polymer Research, Mainz, Germany) as the plenary speakers. In addition to divisional symposia, the scientific program also includes several jointly organized international symposia, featuring Canada and each of China, Germany, Japan, Korea, Switzerland and the USA. This new type of symposium at the CSC aims to highlight research interests of Canadians in an international context. Interactions between chemists and TRIUMF (the world’s largest cyclotron, based in Vancouver) will also be highlighted via a special “Nuclear and Radiochemistry” Divisional Program.

All of the members of the local Organizing Committee from Simon Fraser University wish you a superb conference experience and a memorable stay in Vancouver. Welcome to Vancouver! Bienvenue à Vancouver!

Zuo-Guang Ye, Conference Chair
Department of Chemistry
Simon Fraser University
Burnaby, British Columbia

Conference abstracts are being accepted until February 17, 2014 (according to the conference home page). Dr. Shankar Balasubramanian was last mentioned (one of several authors of a paper) here in a July 22, 2013 posting titled: Combining bacteriorhodopsin with semiconducting nanoparticles to generate hydrogen.

McGill University and Sandia Labs validate Luttinger liquid model predictions

A collaboration between McGill University (Québec, Canada) and Sandia National Laboratories (New Mexico, US) has resulted in the answer to a question that was posed over 50 years ago in the field of quantum physics according to a Jan. 23, 2014 McGill University news release (also on EurekAlert),

How would electrons behave if confined to a wire so slender they could pass through it only in single-file?

The question has intrigued scientists for more than half a century. In 1950, Japanese Nobel Prize winner Sin-Itiro Tomonaga, followed by American physicist Joaquin Mazdak Luttinger in 1963, came up with a mathematical model showing that the effects of one particle on all others in a one-dimensional line would be much greater than in two- or three-dimensional spaces. Among quantum physicists, this model came to be known as the “Luttinger liquid” state.

The news release provides more information about the problem and about how the scientists addressed it,

What does one-dimensional quantum physics involve?  Gervais [Professor Guillaume Gervais of McGill’s Department of Physics] explains it this way: “Imagine that you are driving on a highway and the traffic is not too dense. If a car stops in front of you, you can get around it by passing to the left or right. That’s two-dimensional physics. But if you enter a tunnel with a single lane and a car stops, all the other cars behind it must slam on the brakes. That’s the essence of the Luttinger liquid effect. The way electrons behave in the Luttinger state is entirely different because they all become coupled to one another.”

To scientists, “what is so fascinating and elegant about quantum physics in one dimension is that the solutions are mathematically exact,” Gervais adds. “In most other cases, the solutions are only approximate.”

Making a device with the correct parameters to conduct the experiment was no simple task, however, despite the team’s 2011 discovery of a way to do so. It took years of trial, and more than 250 faulty devices – each of which required 29 processing steps – before Laroche’s [McGill PhD student Dominique Laroche[ painstaking efforts succeeded in producing functional devices yielding reliable data.  “So many things could go wrong during the fabrication process that troubleshooting the failed devices felt like educated guesswork at times,” explains Laroche.  “Adding in the inherent failure rate compounded at each processing step made the fabrication of these devices extremely challenging.”

In particular, the experiment measures the effect that a very small electrical current in one of the wires has on a nearby wire.  This can be viewed as the “friction” between the two circuits, and the experiment shows that this friction increases as the circuits are cooled to extremely low temperatures. This effect is a strong prediction of Luttinger liquid theory.

“It took a very long time to make these devices,” said Lilly. “It’s not impossible to do in other labs, but Sandia has crystal-growing capabilities, a microfabrication facility, and support for fundamental research from DOE’s office of Basic Energy Sciences (BES), and we’re very interested in understanding the fundamental ideas that drive the behavior of very small systems.”

The findings could lead to practical applications in electronics and other fields. While it’s difficult at this stage to predict what those might be, “the same was true in the case of the laser when it was invented,” Gervais notes.  “Nanotechnologies are already helping us in medicine, electronics and engineering – and this work shows that they can help us get to the bottom of a long-standing question in quantum physics.”

Here’s a link to and a citation for the paper,

1D-1D Coulomb Drag Signature of a Luttinger Liquid by D. Laroche, G. Gervais, M. P. Lilly, and J. L. Reno. Science DOI: 10.1126/science.1244152 Published Online January 23 2014

This paper is behind a paywall.

Canada-European Union research and Horizon 2020 funding opportunities

Thanks to the Society of Italian Researchers and Professionals of Western Canada (ARPICO), I received a Jan. 15, 2014 notice about ERA-Can‘s (European Research Area and Canada) upcoming Horizon 2020 information sessions, i.e., funidng opportunities for Canadian researchers,

The Canadian partners* to ERA-Can+ invite you to learn about Horizon 2020, a European funding opportunity that is accessible to Canadians working in science, technology, and innovation.

Horizon 2020 is a multi-year (2014-2020) program for science and technology funded by the European Commission. With a budget of almost Euro 80 billion (CAD $118 billion) Horizon 2020 forms a central part of the EU’s economic policy agenda. The program’s main goals are to encourage scientific excellence, increase the competitiveness of industries, and develop solutions to societal challenges in Europe and abroad.

ERA-Can+ has been established to help Canadians access Horizon 2020 funding. Building on several years of successful collaboration, ERA-Can+ will encourage bilateral exchange across the science, technology, and innovation chain. The project will also enrich the EU-Canada policy dialogue, enhance coordination between European and Canadian sector leaders, and stimulate transatlantic collaboration by increasing awareness of the funding opportunities available.

The European Commission released its first call for proposals under Horizon 2020 in December 2013. Canadian and European researchers and innovators can submit proposals for projects in a variety of fields including personalized health and care; food security; the sustainable growth of marine and maritime sectors; digital security; smart cities and communities; competitive low-carbon energy; efficient transportation; waste management; and disaster resilience. Further calls for proposals will be released later this year.

You are invited to attend one of four upcoming information sessions on Horizon 2020 opportunities for Canadians. These sessions will explain the structure of research funding in Europe and provide information on upcoming funding opportunities and the mechanisms by which Canadians can participate. Martina De Sole, Coordinator of ERA-Can+, and numerous Canadian partners will be on hand to share their expertise on these topics. Participants also will have the opportunity to learn about current and developing collaborations between Canadian and European researchers and innovators.

ERA-CAN+ Information Session Dates – Precise times to be confirmed.

Toronto: Morning of January 28th
MaRS Discovery District, 101 College Street

Kitchener-Waterloo: Morning of January 29th
Canadian Digital Media Network, 151 Charles Street West, Suite 100, Kitchener

Ottawa: Morning of January 30th
University of Ottawa; precise location on campus to be confirmed.

Montreal: Morning of January 31st
Intercontinental Hotel, 360 Rue Saint Antoine Ouest

This session is organised in partnership with the Ministère de l’Enseignement supérieur, de la Recherche, de la Science, de la Technologie du Québec.

For further information please contact [email protected]

* ERA-Can+ Project Partners
APRE – Agenzia per la Promozione della Ricerca Europea (Italy)
AUCC – Association of Universities and Colleges of Canada (Canada)
CNRS – Centre National de la Recherche Scientifique (France)
DFATD – Department of Foreign Affairs, Trade and Development Canada (Canada)
DLR – Deutsches Zentrum fur Luft- und Raumfahrt e.V. (Germany)
PPF – The Public Policy Forum (Canada)
ZSI – Zentrum fur Soziale Innovation (Austria)

You can go to ERA-Can’s Information Sessions webpage to register for a specific event.

There are plans to hold sessions elsewhere in Canada,

Plans to have Info Sessions in other parts of Canada are underway.

For further information please contact [email protected]

Are science cities London, Paris, New York and Tokyo losing prominence?

I am more accustomed to thinking about great art cities than great science cities but it appears I lack imagination if a Dec. 13, 2013 news item on Nanowerk is to be believed (Note: A link has been removed),

The world’s largest scientific centers are losing some of their prominence due to geographical decentralization at the global scale, according to a team of researchers from the LISST (Laboratoire Interdisciplinaire Solidarités, Sociétés, Territoires, CNRS / Université de Toulouse II-Le Mirail / EHESS) who conducted a systematic statistical analysis of millions of articles and papers published in thousands of scientific reviews between 1987 and 2007. Their project, whose results were recently published on the Urban Studies website (“Cities and the geographical deconcentration of scientific activity: A multilevel analysis of publications (1987–2007)”), was the first to focus on the geography of science in all the world’s cities.

Here’s an image illustrating the researchers’ work,

Courtesy o CNRS [downloaded from http://www2.cnrs.fr/presse/communique/3353.htm]

Courtesy o CNRS [downloaded from http://www2.cnrs.fr/presse/communique/3353.htm]

The Dec. 10, 2013 CNRS (France’s Centre national de la recherche scientifique) news release, [English language version] [en français]), which originated the news item, provides more details,

Geographic encoding, city by city, of all of the articles listed in the Science Citation Index (SCI) (1) between 1987 and 2007 shows that traditional scientific centers are not as prominent as they used to be: the combined share of the world’s top 10 science cities dropped from 20% in 1987 to 13% in 2007. Researchers at the LISST (Laboratoire Interdisciplinaire Solidarités, Sociétés, Territoires, CNRS /Université de Toulouse II-Le Mirail / EHESS), aided by two collaborators at the CIRST (Centre Interuniversitaire de Recherche sur la Science et la Technologie) in Montreal, concluded that this phenomenon is accompanied by a general trend toward decentralization worldwide, especially in emerging nations. China offers a good illustration: the main provincial capitals are playing a much stronger role than they did in the past, and the skyrocketing development of science in China goes alongside with a geographical realignment. Whereas Beijing and Shanghai together accounted for 52.8% of the articles published by Chinese researchers in the Science Citation Index in 1987, this percentage dropped to 31.9% in 2007. Turkey is another striking example of an emerging nation whose scientific system has seen very rapid growth. In terms of the number of articles published, the country rose from 44th to 16th place worldwide between 1987 and 2007. Over the same period, its two main scientific hubs, Ankara and Istanbul, lost some of their pre-eminence within the country. While these two cities represented more than 60% of Turkey’s scientific production in 1987, they now produce slightly less than half of the articles published by Turkish researchers. And, as in China, growth in scientific activity is accompanied by geographical decentralization: Turkey has more science hubs now than it did two decades ago, and its two traditional scientific capitals play a lesser role.

The US, which remains the world leader in terms of scientific production, is an exceptional case: the number of articles published by American researchers continues to rise steadily, but at a slower pace than in the emerging nations. Consequently, the country’s share of worldwide scientific production is lower than it used to be: in 1987, the US represented 34% of the SCI, but by 2007 this figure had fallen to 25%. Nonetheless, the American scientific scene remains quite stable geographically: the role of its main research centers has not evolved significantly because the US scientific establishment has always been one of the least centralized in the world, with research activities scattered across hundreds of cities of all sizes.

Does this development herald the decline of the great scientific centers? The fact that scientific activity is becoming more geographically decentralized on a worldwide scale does not imply that it is declining in large cities with a strong research tradition. The number of articles published in London, Paris, New York and Tokyo continues to rise every year. But the pace of growth in those traditional centers is slower than in others in the global scientific system. As more research is conducted in an increasing number of cities, the main scientific centers contribute a lesser share to the total.

The findings of this project, funded as part of an ANR program (2010-2013), challenge the assumption that scientific production inevitably tends to be concentrated in a few large urban areas, which therefore should be given priority in the allocation of resources.

(1) The Science Citation Index (or SCI) is a bibliographical database created in the US in 1964 for the purpose of documenting all scientific production worldwide. In its current version (SCI-Expanded), which is part of the Thomson Reuters Web of Science database (WoS), it registers more than one million scientific articles every year, encompassing the experimental sciences and sciences of the universe, medicine, the engineering sciences, etc., but not the humanities and social sciences, which are included in the SSCI. The SCI-Expanded records contain information on the content of each article (title, name of publication, summary, keywords), its author or authors (name, institution, city, country), and the list of references cited in the article.

This is especially fascinating in light of a recently published book claiming that the major city centres for art in the 21st century will shifting to some unexpected places. From Phaidon Press’ Art Cities of the Future webpage,

The volume profiles 12 global cities to watch for exciting contemporary art: Beirut, Bogotá, Cluj, Delhi, Istanbul, Johannesburg, Lagos, San Juan, São Paulo, Seoul, Singapore and Vancouver.

Thankfully, in both the old world and the new, commentators appear to agree. “It’s great to have a look around and discover truly interesting new work,” said Simon Armstrong, book buyer at Tate Modern and Tate Britain, in The Bookseller, “and there are some great examples of emergent artists here in this huge presentation of contemporary art from 12 cities on the fringes of the art map.”

Hannah Clugston, writing in Aesthetica concurred, describing the title as “brilliantly executed” with “stunning images,” and possessing an awareness “of the wider concerns behind the work.”

It appears that the geography of creative endeavours in the arts and the sciences is shifting. For those curious about the science end of things, here’s a link to and a citation for the paper about geography and scientific activity,

Cities and the geographical deconcentration of scientific activity: A multilevel analysis of publications (1987–2007) by Michel Grossetti, Denis Eckert, Yves Gingras, Laurent Jégou, Vincent Larivière, and Béatrice Milard. Urban Studies, 0042098013506047, November 20, 2013, doi:10.1177/0042098013506047

This paper is behind a paywall.

Development of US plant to produce cellulosic nanomaterials announced again or is this a new one?

There’s a new announcement from the Secretary of the US Department of Agriculture (USDA) about building a commercial production plant in Wisconsin for producing cellulosic nanomaterials that greatly resembles an earlier announcement in 2012. Let’s start with the new announcement, from the Dec. 11, 2013 USDA press release (h/t AgriPulse Dec. 11, 2013 news item),

U.S. Department of Agriculture (USDA) Secretary Tom Vilsack today announced a public-private partnership to rapidly advance the development of the first U.S. commercial facility producing cellulosic nanomaterial, a wood fiber broken down to the nanoscale. The partnership is between the U.S. Endowment for Forestry and Communities (Endowment) and the U.S. Forest Service.

“We believe in the potential of wood- based nanotechnology to strengthen rural America by creating sustainable jobs and adding timber value while also creating conservation opportunities in working forests,” said Vilsack. “This public- private partnership will develop high-tech outputs from the forest products sector, and promote the invention of renewable products that have substantial environmental benefits.”

The three-year partnership will promote cellulosic nanomaterial as a commercially viable enterprise by building on work done by the Forest Products Laboratory in Madison, Wis. The partnership seeks to overcome technical barriers to large- scale wood-based nanotechnology processing, while filling gaps in the science and technology that are needed for commercialization. Initial funding comes from the Endowment and the Forest Service. The partnership is currently seeking additional public and private sector funding.

Together with partners, this new venture will:

  • Emphasize the potential of wood- based nanotechnology for the economy and the environment.
  • Overcome technical barriers to commercialization of wood- based nanotechnology.
  • Demonstrate commitment to creating high paying jobs in rural America through value- added manufacturing and high value products.
  • Showcase the commitment of USDA and the Forest Service to innovation.

The previous announcement which I covered in my July 27, 2012 posting has some similarities, although they were announcing the expected construction of a pilot plant for a specific forest-derived cellulosic nanomaterial,,

According to the July 25, 2012 article by Rick Barrett originally published by Milwaukee Journal Sentinel McClatchy-Tribune Information Services) on the equities.com website,

The U.S. Forest Products Laboratory, in Madison, says it’s opening a $1.7 million pilot plant that will support an emerging market for wood products derived from nanotechnology.

…The pilot plant will supply nanocrystals to companies and universities that want to make materials from them or conduct their own experiments. For now, at least, it will employ just one person.

But while the Forest Products Laboratory wants to foster the technology, it doesn’t want to compete with businesses interested in producing the materials.

“We are part of the federal government, so we cannot compete against commercial companies. So if someone comes in and starts making these materials on a commercial level, we will have to get out of it,” Rudie said. That’s why, he added, the program has bought only equipment it can use for other purposes.

At a guess I’d say plans were changed (to my knowledge there’ve been no announcements about the opening of a pilot plant) and they decided that a commercial plant in a private/public partnership would be the way to go. I notice they’re very careful to use the term cellulosic nanomaterials, which suggests they will be producing not just the crystals mentioned in the 2012 story but fibrils and more.

On the Canadian side of things,, Alberta gave its pilot cellulose nanocrystal (CNC, aka, nanocrystalline cellulose [NCC]) plant a soft launch in Sept. 2013, as per my Nov. 19, 2013 posting,  and Quebec’s CelluForce plant (a  Domtar/FPInnovations partnership [private/public]) has a stockpile of the crystals and is, to my knowledge (my Oct. 3, 2013 posting), is not producing any additional material.

 

Human immune system and nanotoxicology in Québec (Canada)

At this point it’s starting to seem like there are thousands and thousands of nanotoxicology studies so the announcement of a new study based in Québec (Canada) didn’t immediately cause excitement  until I caught sight of the word ‘inflammation” which casts a newish light on the topic. From the Dec. 4, 2013 news item on Azonano,

… Professor Girard [Professor Denis Girard INRS–Institut Armand-Frappier Research Centre] will focus on the effects of NPs [nanoparticles] on human immune system cells (eosinophils) that play a key role in inflammation.

“Several studies on NPs have examined how tissues react in contact with these tiny foreign bodies,” said Girard. “Researchers have found that eosinophils flock to the contact site, but they have not examined the phenomenon in greater detail.” To further investigate why eosinophils come into contact with NPs and the role they play, protocols require expertise in both nanotoxicology and immunology, which is rare.

The Nov. 28, 2013 INRS [Institut national de la recherche scientifique] Université news release by Stéphanie Thibault, which originated the news item, delves into the issue of inflammatory responses,

According to Professor Girard, understanding the inflammatory response is currently a priority in the field of nanotoxicology. For a number of years, researchers have been observing links between exposure to NPs and asthmatic symptoms in some animals. Does the human body undergo similar inflammation upon contact with NPs? In the absence of any standards for workers, it’s best to take a closer look, insists Girard. “At this time, nanoparticles have not been properly identified and are often handled without protection. If they enter the body through the skin, respiratory tract, or even ingestion, we have no idea what happens next.” In his lab, a variety of approaches will help further understanding of how nanoparticles of different types and sizes interact. Cellular processes will be examined in detail.

 

At the rate at which NPs are being developed, Girard could be conducting systematic nanotoxicology studies for many years to come. “I will of course need the support of a strong team,” said Girard. “I already have one I am very proud of, and it will be expanded for the new project.” …

I gather there are going to be some jobs generated from this grant,

His research is being funded by Institut de recherche Robert-Sauvé en santé et en sécurité du travail (IRSST), which will award him a renewable $300,000 grant for the next three years.

… The IRSST grant will be used to hire staff and student researchers.

While I have heard of the IRSST before,, the INRS is new to me. Here’s more from the INRS English language homepage,

INRS (Institut national de la recherche scientifique) is one of Canada’s top universities in terms of research intensity (funding per faculty member). It brings together 150 professors, over 700 graduate and postgraduate students, and a hundred postdoctoral researchers at four centers in Montreal, Québec City, Laval, and Varennes. Conducting applied and fundamental research essential to the advancement of science in Quebec and around the world, our research teams plays a critical role in finding solutions to problems facing our society. Founded in 1969, INRS is one of the nine establishments that make up the Université du Québec network.

 

“The Institute is dedicated to fundamental and applied research, graduate studies, and the training of researchers. In keeping with its mission and objectives as a research university, the Institute specifically gears its activities towards Quebec’s economic, social, and cultural development, as well as the transfer of knowledge and technology stemming from all its fields of study.” INRS letters patent, 1999

There you have it.