Tag Archives: Quebec

May/June 2017 scienceish events in Canada (mostly in Vancouver)

I have five* events for this posting

(1) Science and You (Montréal)

The latest iteration of the Science and You conference took place May 4 – 6, 2017 at McGill University (Montréal, Québec). That’s the sad news, the good news is that they have recorded and released the sessions onto YouTube. (This is the first time the conference has been held outside of Europe, in fact, it’s usually held in France.) Here’s why you might be interested (from the 2017 conference page),

The animator of the conference will be Véronique Morin:

Véronique Morin is science journalist and communicator, first president of the World Federation of Science Journalists (WFSJ) and serves as judge for science communication awards. She worked for a science program on Quebec’s public TV network, CBCRadio-Canada, TVOntario, and as a freelancer is also a contributor to -among others-  The Canadian Medical Journal, University Affairs magazine, NewsDeeply, while pursuing documentary projects.

Let’s talk about S …

Holding the attention of an audience full of teenagers may seem impossible… particularly on topics that might be seen as boring, like sciences! Yet, it’s essential to demistify science in order to make it accessible, even appealing in the eyes of futur citizens.
How can we encourage young adults to ask themselves questions about the surrounding world, nature and science? How can we make them discover sciences with and without digital tools?

Find out tips and tricks used by our speakers Kristin Alford and Amanda Tyndall.

Kristin Alford
Dr Kristin Alford is a futurist and the inaugural Director of MOD., a futuristic museum of discovery at the University of South Australia. Her mind is presently occupied by the future of work and provoking young adults to ask questions about the role of science at the intersection of art and innovation.

Internet Website

Amanda Tyndall
Over 20 years of  science communication experience with organisations such as Café Scientifique, The Royal Institution of Great Britain (and Australia’s Science Exchange), the Science Museum in London and now with the Edinburgh International Science Festival. Particularly interested in engaging new audiences through linkages with the arts and digital/creative industries.

Internet Website

A troll in the room

Increasingly used by politicians, social media can reach thousand of people in few seconds. Relayed to infinity, the message seems truthful, but is it really? At a time of fake news and alternative facts, how can we, as a communicator or a journalist, take up the challenge of disinformation?
Discover the traps and tricks of disinformation in the age of digital technologies with our two fact-checking experts, Shawn Otto and Vanessa Schipani, who will offer concrete solutions to unravel the true from the false..

 

Shawn Otto
Shawn Otto was awarded the IEEE-USA (“I-Triple-E”) National Distinguished Public Service Award for his work elevating science in America’s national public dialogue. He is cofounder and producer of the US presidential science debates at ScienceDebate.org. He is also an award-winning screenwriter and novelist, best known for writing and co-producing the Academy Award-nominated movie House of Sand and Fog.

Vanessa Schipani
Vanessa is a science journalist at FactCheck.org, which monitors U.S. politicians’ claims for accuracy. Previously, she wrote for outlets in the U.S., Europe and Japan, covering topics from quantum mechanics to neuroscience. She has bachelor’s degrees in zoology and philosophy and a master’s in the history and philosophy of science.

At 20,000 clicks from the extreme

Sharing living from a space station, ship or submarine. The examples of social media use in extreme conditions are multiplying and the public is asking for more. How to use public tools to highlight practices and discoveries? How to manage the use of social networks of a large organisation? What pitfalls to avoid? What does this mean for citizens and researchers?
Find out with Phillipe Archambault and Leslie Elliott experts in extrem conditions.

Philippe Archambault

Professor Philippe Archambault is a marine ecologist at Laval University, the director of the Notre Golfe network and president of the 4th World Conference on Marine Biodiversity. His research on the influence of global changes on biodiversity and the functioning of ecosystems has led him to work in all four corners of our oceans from the Arctic to the Antarctic, through Papua New Guinea and the French Polynesia.

Website

Leslie Elliott

Leslie Elliott leads a team of communicators at Ocean Networks Canada in Victoria, British Columbia, home to Canada’s world-leading ocean observatories in the Pacific and Arctic Oceans. Audiences can join robots equipped with high definition cameras via #livedive to discover more about our ocean.

Website

Science is not a joke!

Science and humor are two disciplines that might seem incompatible … and yet, like the ig-Nobels, humour can prove to be an excellent way to communicate a scientific message. This, however, can prove to be quite challenging since one needs to ensure they employ the right tone and language to both captivate the audience while simultaneously communicating complex topics.

Patrick Baud and Brian Malow, both well-renowned scientific communicators, will give you with the tools you need to capture your audience and also convey a proper scientific message. You will be surprised how, even in Science, a good dose of humour can make you laugh and think.

Patrick Baud
Patrick Baud is a French author who was born on June 30, 1979, in Avignon. He has been sharing for many years his passion for tales of fantasy, and the marvels and curiosities of the world, through different media: radio, web, novels, comic strips, conferences, and videos. His YouTube channel “Axolot”, was created in 2013, and now has over 420,000 followers.

Internet Website
Youtube

Brian Malow
Brian Malow is Earth’s Premier Science Comedian (self-proclaimed).  Brian has made science videos for Time Magazine and contributed to Neil deGrasse Tyson’s radio show.  He worked in science communications at a museum, blogged for Scientific American, and trains scientists to be better communicators.

Internet Website
YouTube

I don’t think they’ve managed to get everything up on YouTube yet but the material I’ve found has been subtitled (into French or English, depending on which language the speaker used).

Here are the opening day’s talks on YouTube with English subtitles or French subtitles when appropriate. You can also find some abstracts for the panel presentations here. I was particularly in this panel (S3 – The Importance of Reaching Out to Adults in Scientific Culture), Note: I have searched out the French language descriptions for those unavailable in English,

Organized by Coeur des sciences, Université du Québec à Montréal (UQAM)
Animator: Valérie Borde, Freelance Science Journalist

Anouk Gingras, Musée de la civilisation, Québec
Text not available in English

[La science au Musée de la civilisation c’est :
• Une cinquantaine d’expositions et espaces découvertes
• Des thèmes d’actualité, liés à des enjeux sociaux, pour des exposition souvent destinées aux adultes
• Un potentiel de nouveaux publics en lien avec les autres thématiques présentes au Musée (souvent non scientifiques)
L’exposition Nanotechnologies : l’invisible révolution :
• Un thème d’actualité suscitant une réflexion
• Un sujet sensible menant à la création d’un parcours d’exposition polarisé : choix entre « oui » ou « non » au développement des nanotechnologies pour l’avenir
• L’utilisation de divers éléments pour rapprocher le sujet du visiteur

  • Les nanotechnologies dans la science-fiction
  • Les objets du quotidien contenant des nanoparticules
  • Les objets anciens qui utilisant les nanotechnologies
  • Divers microscopes retraçant l’histoire des nanotechnologies

• Une forme d’interaction suscitant la réflexion du visiteur via un objet sympatique : le canard  de plastique jaune, muni d’une puce RFID

  • Sept stations de consultation qui incitent le visiteur à se prononcer et à réfléchir sur des questions éthiques liées au développement des nanotechnologies
  • Une compilation des données en temps réel
  • Une livraison des résultats personnalisée
  • Une mesure des visiteurs dont l’opinion s’est modifiée à la suite de la visite de l’exposition

Résultats de fréquentation :
• Public de jeunes adultes rejoint (51%)
• Plus d’hommes que de femmes ont visité l’exposition
• Parcours avec canard: incite à la réflexion et augmente l’attention
• 3 visiteurs sur 4 prennent le canard; 92% font l’activité en entier]

Marie Lambert-Chan, Québec Science
Capting the attention of adult readership : challenging mission, possible mission
Since 1962, Québec Science Magazine is the only science magazine aimed at an adult readership in Québec. Our mission : covering topical subjects related to science and technology, as well as social issues from a scientific point of view. Each year, we print eight issues, with a circulation of 22,000 copies. Furthermore, the magazine has received several awards and accolades. In 2017, Québec Science Magazine was honored by the Canadian Magazine Awards/Grands Prix du Magazine and was named Best Magazine in Science, Business and Politics category.
Although we have maintained a solid reputation among scientists and the media industry, our magazine is still relatively unknown to the general public. Why is that ? How is it that, through all those years, we haven’t found the right angle to engage a broader readership ?
We are still searching for definitive answers, but here are our observations :
Speaking science to adults is much more challenging than it is with children, who can marvel endlessly at the smallest things. Unfortunately, adults lose this capacity to marvel and wonder for various reasons : they have specific interests, they failed high-school science, they don’t feel competent enough to understand scientific phenomena. How do we bring the wonder back ? This is our mission. Not impossible, and hopefully soon to be accomplished. One noticible example is the number of reknown scientists interviewed during the popular talk-show Tout le monde en parle, leading us to believe the general public may have an interest in science.
However, to accomplish our mission, we have to recount science. According to the Bulgarian writer and blogger Maria Popova, great science writing should explain, elucidate and enchant . To explain : to make the information clear and comprehensible. To elucidate : to reveal all the interconnections between the pieces of information. To enchant : to go beyond the scientific terms and information and tell a story, thus giving a kaleidoscopic vision of the subject. This is how we intend to capture our readership’s attention.
Our team aims to accomplish this challenge. Although, to be perfectly honest, it would be much easier if we had more resources, financial-wise or human-wise. However, we don’t lack ideas. We dream of major scientific investigations, conferences organized around themes from the magazine’s issues, Web documentaries, podcasts… Such initiatives would give us the visibility we desperately crave.
That said, even in the best conditions, would be have more subscribers ? Perhaps. But it isn’t assured. Even if our magazine is aimed at adult readership, we are convinced that childhood and science go hand in hand, and is even decisive for the children’s future. At the moment, school programs are not in place for continuous scientific development. It is possible to develop an interest for scientific culture as adults, but it is much easier to achieve this level of curiosity if it was previously fostered.

Robert Lamontagne, Université de Montréal
Since the beginning of my career as an astrophysicist, I have been interested in scientific communication to non-specialist audiences. I have presented hundreds of lectures describing the phenomena of the cosmos. Initially, these were mainly offered in amateur astronomers’ clubs or in high-schools and Cégeps. Over the last few years, I have migrated to more general adult audiences in the context of cultural activities such as the “Festival des Laurentides”, the Arts, Culture and Society activities in Repentigny and, the Université du troisième âge (UTA) or Senior’s University.
The Quebec branch of the UTA, sponsored by the Université de Sherbrooke (UdeS), exists since 1976. Seniors universities, created in Toulouse, France, are part of a worldwide movement. The UdeS and its senior’s university antennas are members of the International Association of the Universities of the Third Age (AIUTA). The UTA is made up of 28 antennas located in 10 regions and reaches more than 10,000 people per year. Antenna volunteers prepare educational programming by drawing on a catalog of courses, seminars and lectures, covering a diverse range of subjects ranging from history and politics to health, science, or the environment.
The UTA is aimed at people aged 50 and over who wish to continue their training and learn throughout their lives. It is an attentive, inquisitive, educated public and, given the demographics in Canada, its number is growing rapidly. This segment of the population is often well off and very involved in society.
I usually use a two-prong approach.
• While remaining rigorous, the content is articulated around a few ideas, avoiding analytical expressions in favor of a qualitative description.
• The narrative framework, the story, which allows to contextualize the scientific content and to forge links with the audience.

Sophie Malavoy, Coeur des sciences – UQAM

Many obstacles need to be overcome in order to reach out to adults, especially those who aren’t in principle interested in science.
• Competing against cultural activities such as theater, movies, etc.
• The idea that science is complex and dull
• A feeling of incompetence. « I’ve always been bad in math and physics»
• Funding shortfall for activities which target adults
How to reach out to those adults?
• To put science into perspective. To bring its relevance out by making links with current events and big issues (economic, heath, environment, politic). To promote a transdisciplinary approach which includes humanities and social sciences.
• To stake on originality by offering uncommon and ludic experiences (scientific walks in the city, street performances, etc.)
• To bridge between science and popular activities to the public (science/music; science/dance; science/theater; science/sports; science/gastronomy; science/literature)
• To reach people with emotions without sensationalism. To boost their curiosity and ability to wonder.
• To put a human face on science, by insisting not only on the results of a research but on its process. To share the adventure lived by researchers.
• To liven up people’s feeling of competence. To insist on the scientific method.
• To invite non-scientists (citizens groups, communities, consumers, etc.) to the reflections on science issues (debate, etc.).  To move from dissemination of science to dialog

Didier Pourquery, The Conversation France
Text not available in English

[Depuis son lancement en septembre 2015 la plateforme The Conversation France (2 millions de pages vues par mois) n’a cessé de faire progresser son audience. Selon une étude menée un an après le lancement, la structure de lectorat était la suivante
Pour accrocher les adultes et les ainés deux axes sont intéressants ; nous les utilisons autant sur notre site que sur notre newsletter quotidienne – 26.000 abonnés- ou notre page Facebook (11500 suiveurs):
1/ expliquer l’actualité : donner les clefs pour comprendre les débats scientifiques qui animent la société ; mettre de la science dans les discussions (la mission du site est de  « nourrir le débat citoyen avec de l’expertise universitaire et de la recherche »). L’idée est de poser des questions de compréhension simple au moment où elles apparaissent dans le débat (en période électorale par exemple : qu’est-ce que le populisme ? Expliqué par des chercheurs de Sciences Po incontestables.)
Exemples : comprendre les conférences climat -COP21, COP22 – ; comprendre les débats de société (Gestation pour autrui); comprendre l’économie (revenu universel); comprendre les maladies neurodégénératives (Alzheimer) etc.
2/ piquer la curiosité : utiliser les formules classiques (le saviez-vous ?) appliquées à des sujets surprenants (par exemple : «  Que voit un chien quand il regarde la télé ? » a eu 96.000 pages vues) ; puis jouer avec ces articles sur les réseaux sociaux. Poser des questions simples et surprenantes. Par exemple : ressemblez-vous à votre prénom ? Cet article académique très sérieux a comptabilisé 95.000 pages vues en français et 171.000 en anglais.
3/ Susciter l’engagement : faire de la science participative simple et utile. Par exemple : appeler nos lecteurs à surveiller l’invasion de moustiques tigres partout sur le territoire. Cet article a eu 112.000 pages vues et a été republié largement sur d’autres sites. Autre exemple : appeler les lecteurs à photographier les punaises de leur environnement.]

Here are my very brief and very rough translations. (1) Anouk Gingras is focused largely on a nanotechnology exhibit and whether or not visitors went through it and participated in various activities. She doesn’t seem specifically focused on science communication for adults but they are doing some very interesting and related work at Québec’s Museum of Civilization. (2) Didier Pourquery is describing an online initiative known as ‘The Conversation France’ (strange—why not La conversation France?). Moving on, there’s a website with a daily newsletter (blog?) and a Facebook page. They have two main projects, one is a discussion of current science issues in society, which is informed with and by experts but is not exclusive to experts, and more curiosity-based science questions and discussion such as What does a dog see when it watches television?

Serendipity! I hadn’t stumbled across this conference when I posted my May 12, 2017 piece on the ‘insanity’ of science outreach in Canada. It’s good to see I’m not the only one focused on science outreach for adults and that there is some action, although seems to be a Québec-only effort.

(2) Ingenious—a book launch in Vancouver

The book will be launched on Thursday, June 1, 2017 at the Vancouver Public Library’s Central Branch (from the Ingenious: An Evening of Canadian Innovation event page)

Ingenious: An Evening of Canadian Innovation
Thursday, June 1, 2017 (6:30 pm – 8:00 pm)
Central Branch
Description

Gov. Gen. David Johnston and OpenText Corp. chair Tom Jenkins discuss Canadian innovation and their book Ingenious: How Canadian Innovators Made the World Smarter, Smaller, Kinder, Safer, Healthier, Wealthier and Happier.

Books will be available for purchase and signing.

Doors open at 6 p.m.

INGENIOUS : HOW CANADIAN INNOVATORS MADE THE WORLD SMARTER, SMALLER, KINDER, SAFER, HEALTHIER, WEALTHIER, AND HAPPIER

Address:

350 West Georgia St.
VancouverV6B 6B1

Get Directions

  • Phone:

Location Details:

Alice MacKay Room, Lower Level

I do have a few more details about the authors and their book. First, there’s this from the Ottawa Writer’s Festival March 28, 2017 event page,

To celebrate Canada’s 150th birthday, Governor General David Johnston and Tom Jenkins have crafted a richly illustrated volume of brilliant Canadian innovations whose widespread adoption has made the world a better place. From Bovril to BlackBerrys, lightbulbs to liquid helium, peanut butter to Pablum, this is a surprising and incredibly varied collection to make Canadians proud, and to our unique entrepreneurial spirit.

Successful innovation is always inspired by at least one of three forces — insight, necessity, and simple luck. Ingenious moves through history to explore what circumstances, incidents, coincidences, and collaborations motivated each great Canadian idea, and what twist of fate then brought that idea into public acceptance. Above all, the book explores what goes on in the mind of an innovator, and maps the incredible spectrum of personalities that have struggled to improve the lot of their neighbours, their fellow citizens, and their species.

From the marvels of aboriginal invention such as the canoe, snowshoe, igloo, dogsled, lifejacket, and bunk bed to the latest pioneering advances in medicine, education, philanthropy, science, engineering, community development, business, the arts, and the media, Canadians have improvised and collaborated their way to international admiration. …

Then, there’s this April 5, 2017 item on Canadian Broadcasting Corporation’s (CBC) news online,

From peanut butter to the electric wheelchair, the stories behind numerous life-changing Canadian innovations are detailed in a new book.

Gov. Gen. David Johnston and Tom Jenkins, chair of the National Research Council and former CEO of OpenText, are the authors of Ingenious: How Canadian Innovators Made the World Smarter, Smaller, Kinder, Safer, Healthier, Wealthier and Happier. The authors hope their book reinforces and extends the culture of innovation in Canada.

“We started wanting to tell 50 stories of Canadian innovators, and what has amazed Tom and myself is how many there are,” Johnston told The Homestretch on Wednesday. The duo ultimately chronicled 297 innovations in the book, including the pacemaker, life jacket and chocolate bars.

“Innovations are not just technological, not just business, but they’re social innovations as well,” Johnston said.

Many of those innovations, and the stories behind them, are not well known.

“We’re sort of a humble people,” Jenkins said. “We’re pretty quiet. We don’t brag, we don’t talk about ourselves very much, and so we then lead ourselves to believe as a culture that we’re not really good inventors, the Americans are. And yet we knew that Canadians were actually great inventors and innovators.”

‘Opportunities and challenges’

For Johnston, his favourite story in the book is on the light bulb.

“It’s such a symbol of both our opportunities and challenges,” he said. “The light bulb was invented in Canada, not the United States. It was two inventors back in the 1870s that realized that if you passed an electric current through a resistant metal it would glow, and they patented that, but then they didn’t have the money to commercialize it.”

American inventor Thomas Edison went on to purchase that patent and made changes to the original design.

Johnston and Jenkins are also inviting readers to share their own innovation stories, on the book’s website.

I’m looking forward to the talk and wondering if they’ve included the botox and cellulose nanocrystal (CNC) stories to the book. BTW, Tom Jenkins was the chair of a panel examining Canadian research and development and lead author of the panel’s report (Innovation Canada: A Call to Action) for the then Conservative government (it’s also known as the Jenkins report). You can find out more about in my Oct. 21, 2011 posting.

(3) Made in Canada (Vancouver)

This is either fortuitous or there’s some very high level planning involved in the ‘Made in Canada; Inspiring Creativity and Innovation’ show which runs from April 21 – Sept. 4, 2017 at Vancouver’s Science World (also known as the Telus World of Science). From the Made in Canada; Inspiring Creativity and Innovation exhibition page,

Celebrate Canadian creativity and innovation, with Science World’s original exhibition, Made in Canada, presented by YVR [Vancouver International Airport] — where you drive the creative process! Get hands-on and build the fastest bobsled, construct a stunning piece of Vancouver architecture and create your own Canadian sound mashup, to share with friends.

Vote for your favourite Canadian inventions and test fly a plane of your design. Discover famous (and not-so-famous, but super neat) Canadian inventions. Learn about amazing, local innovations like robots that teach themselves, one-person electric cars and a computer that uses parallel universes.

Imagine what you can create here, eh!!

You can find more information here.

One quick question, why would Vancouver International Airport be presenting this show? I asked that question of Science World’s Communications Coordinator, Jason Bosher, and received this response,

 YVR is the presenting sponsor. They donated money to the exhibition and they also contributed an exhibit for the “We Move” themed zone in the Made in Canada exhibition. The YVR exhibit details the history of the YVR airport, it’s geographic advantage and some of the planes they have seen there.

I also asked if there was any connection between this show and the ‘Ingenious’ book launch,

Some folks here are aware of the book launch. It has to do with the Canada 150 initiative and nothing to do with the Made in Canada exhibition, which was developed here at Science World. It is our own original exhibition.

So there you have it.

(4) Robotics, AI, and the future of work (Ottawa)

I’m glad to finally stumble across a Canadian event focusing on the topic of artificial intelligence (AI), robotics and the future of work. Sadly (for me), this is taking place in Ottawa. Here are more details  from the May 25, 2017 notice (received via email) from the Canadian Science Policy Centre (CSPC),

CSPC is Partnering with CIFAR {Canadian Institute for Advanced Research]
The Second Annual David Dodge Lecture

Join CIFAR and Senior Fellow Daron Acemoglu for
the Second Annual David Dodge CIFAR Lecture in Ottawa on June 13.
June 13, 2017 | 12 – 2 PM [emphasis mine]
Fairmont Château Laurier, Drawing Room | 1 Rideau St, Ottawa, ON
Along with the backlash against globalization and the outsourcing of jobs, concern is also growing about the effect that robotics and artificial intelligence will have on the labour force in advanced industrial nations. World-renowned economist Acemoglu, author of the best-selling book Why Nations Fail, will discuss how technology is changing the face of work and the composition of labour markets. Drawing on decades of data, Acemoglu explores the effects of widespread automation on manufacturing jobs, the changes we can expect from artificial intelligence technologies, and what responses to these changes might look like. This timely discussion will provide valuable insights for current and future leaders across government, civil society, and the private sector.

Daron Acemoglu is a Senior Fellow in CIFAR’s Insitutions, Organizations & Growth program, and the Elizabeth and James Killian Professor of Economics at the Massachusetts Institute of Technology.

Tickets: $15 (A light lunch will be served.)

You can find a registration link here. Also, if you’re interested in the Canadian efforts in the field of artificial intelligence you can find more in my March 24, 2017 posting (scroll down about 25% of the way and then about 40% of the way) on the 2017 Canadian federal budget and science where I first noted the $93.7M allocated to CIFAR for launching a Pan-Canadian Artificial Intelligence Strategy.

(5) June 2017 edition of the Curiosity Collider Café (Vancouver)

This is an art/science (also known called art/sci and SciArt) that has taken place in Vancouver every few months since April 2015. Here’s more about the June 2017 edition (from the Curiosity Collider events page),

Collider Cafe

When
8:00pm on Wednesday, June 21st, 2017. Door opens at 7:30pm.

Where
Café Deux Soleils. 2096 Commercial Drive, Vancouver, BC (Google Map).

Cost
$5.00-10.00 cover at the door (sliding scale). Proceeds will be used to cover the cost of running this event, and to fund future Curiosity Collider events. Curiosity Collider is a registered BC non-profit organization.

***

#ColliderCafe is a space for artists, scientists, makers, and anyone interested in art+science. Meet, discover, connect, create. How do you explore curiosity in your life? Join us and discover how our speakers explore their own curiosity at the intersection of art & science.

The event will start promptly at 8pm (doors open at 7:30pm). $5.00-10.00 (sliding scale) cover at the door. Proceeds will be used to cover the cost of running this event, and to fund future Curiosity Collider events. Curiosity Collider is a registered BC non-profit organization.

Enjoy!

*I changed ‘three’ events to ‘five’ events and added a number to each event for greater reading ease on May 31, 2017.

Bob McDonald: How is Canada on the ‘forefront of pushing nanotechnology forward’?

Mr. Quirks & Quarks, also known as the Canadian Broadcasting Corporation’s (CBC) Bob McDonald, host of the science radio programme Quirks & Quarks, published an Oct. 9, 2016 posting on the programme’s CBC blog about the recently awarded 2016 Nobel Prize for Chemistry and Canada’s efforts in the field of nanotechnology (Links have been removed),

The Nobel Prize in Chemistry awarded this week for developments in nanotechnology heralds a new era in science, akin to the discovery of electromagnetic induction 185 years ago. And like electricity, nanotechnology could influence the world in dramatic ways, not even imaginable today.

The world’s tiniest machines

The Nobel Laureates developed molecular machines, which are incredibly tiny devices assembled one molecule at a time, including a working motor, a lifting machine, a micro-muscle, and even a four wheel drive vehicle, all of which can only be seen with the most powerful electron microscopes. While these lab experiments are novel curiosities, the implications are huge, and Canada is on the forefront of pushing this research forward. [emphasis mine]

McDonald never explains how Canadians are pushing nanotechnology research further but there is this (Note: Links have been removed),

Many universities offer degree programs on the subject while organizations such as the National Institute for Nanotechnology at the University of Alberta, and the Waterloo Institute for Nanotechnology at the University of Waterloo in Ontario, are conducting fundamental research on these new novel materials.

Somehow he never mentions any boundary-pushing research. hmmm

To be blunt, it’s very hard to establish Canada’s position in the field since ‘nanotechnolgy research’ as such doesn’t exist here in the way it does in the United States, Korea, Iran, Germany, China, the United Kingdom, Ireland, Austria, and others. It’s not a federally coordinated effort in Canada despite the fact that we have a Canada National Research Council (NRC) National Institute of Nanotechnology (NINT) in Alberta. (There’s very little information about research on the NINT website.) A Government of Canada NanoPortal is poorly maintained and includes information that is seriously out-of-date. One area where Canadians have been influential has been at the international level where we’ve collaborated on a number of OECD (Organization for Economic and Cooperative Development) projects focused on safety (occupational and environmental, in particular) issues.

Canada’s Ingenuity Lab, a nanotechnology project that appeared promising, hasn’t made many research announcements and seems to be a provincial (Alberta) initiative rather than a federal one. In fact, the most activity in the field of nanotechnology research has been at the provincial level with Alberta and Québec in the lead, if financial investment is your primary measure, and Ontario following, then the other provinces trailing from behind. Unfortunately, I’ve never come across any nanotechnology research from the Yukon or other parts North.

With regard to research announcements, the situation changes and you have Québec and Ontario assuming the lead positions with Alberta following. As McDonald noted, the University of Waterloo has a major nanotechnology education programme and the University of Toronto seems to have a very active research focus in that field (Ted Sargent and solar cells and quantum dots) and the University of Guelph is known for its work in agriculture and nanotechnolgy (search this blog using any of the three universities as a search term). In Québec, they’ve made a number of announcements about cutting edge research. You can search this blog for the names Sylvain Martel, Federico Rosei, and Claude Ostiguy (who seems to work primarily in French), amongst others. CelluForce, based in Quebec, and once  a leader (not sure about the situation these days) in the production of cellulose nanocrystals (CNC). One side comment, CNC was first developed at the University of British Columbia, however, Québec showed more support (provincial funding) and interest and the bulk of that research effort moved.

There’s one more shout out and that’s for Blue Goose Biorefineries in the province of Saskatchewan, which sells CNC and offers services to help companies  research applications for the material.

One other significant area of interest comes to mind, the graphite mines in Québec and Ontario which supply graphite flakes used to produce graphene, a material that is supposed to revolutionize electronics, in particular.

There are other research efforts and laboratories in Canada but these are the institutions and researchers with which I’m most familiar after more than eight years of blogging about Canadian nanotechnology. That said, if I’ve missed any significant, please do let me know in the comments section of this blog.

Interconnected performance analysis music hub shared by McGill University and Université de Montréal announced* June 2, 2016

The press releases promise the Centre for Interdisciplinary Research in Music Media and Technology (CIRMMT) will shape the future of music. The CIRMMT June 2, 2016 (Future of Music) press release (received via email) describes the funding support,

A significant investment of public and private support that will redefine the future of music research in Canada by transforming the way musicians compose,listen and perform music.

The Centre for Interdisciplinary Research in Music Media and Technology (CIRMMT), the Schulich School of Music of McGill University and the Faculty of Music of l’Université de Montréal are creating a unique interconnected research hub that will quite literally link two exceptional spaces at two of Canada’s most renowned music schools.

Imagine a new space and community where musicians, scientists and engineers join forces to gain a better understanding of the influence that music plays on individuals as well as their physical, psychological and even neurological conditions; experience the acoustics of an 18th century Viennese concert hall created with the touch of a fingertip; or attending an orchestral performance in one concert hall but hearing and seeing musicians performing from a completely different venue across town… All this and more will soon become possible here in Montreal!

The combination of public and private gifts will broaden our musical horizons exponentially thanks to significant investment for music research in Canada. With over $14.5 million in grants from the Canada Foundation for Innovation (CFI), the Government of Quebec and the Fonds de Recherche du Québec (FRQ), and a substantial contribution of an additional $2.5million gift from private philanthropy.

“We are grateful for this exceptional investment in music research from both the federal and provincial governments and from our generous donors,” says McGill Principal Suzanne Fortier. “This will further the collaboration between these two outstanding music schools and support the training of the next generation of music researchers and artists. For anyone who loves music, this is very exciting news.”

There’s not much technical detail in this one but here it is,

Digital channels coupling McGill University’s Music Multimedia Room (MMR – a large, sound-isolated performance lab) and l’Université de Montréal’s Salle Claude Champagne ([SCC -] a superb concert hall) will transform these two exceptional spaces into the world’s leading research facility for the scientific study of live performance, movement of recorded sound in space, and distributed performance (where musicians in different locations perform together).

“The interaction between scientific/technological research and artistic practice is one of the most fruitful avenues for future developments in both fields. This remarkable investment in music research is a wonderful recognition of the important contributions of the arts to Canadian society”, says Sean Ferguson, Dean of Schulich School of Music

The other CIRMMT June 2, 2016 (Collaborative hub) press  release (received via email) elaborates somewhat on the technology,

The MMR (McGill University’s Music Multimedia Room) will undergo complete renovations which include the addition of high quality variable acoustical treatment and a state-of-the-art rigging system. An active enhancement and sound spatialization system, together with stereoscopic projectors and displays, will provide virtual acoustic and immersive environments. At the SCC (l’Université de Montréal’s Salle Claude Champagne), the creation of a laboratory, a control room and a customizable rigging system will enable the installation and utilization of new research equipment’s in this acoustically-rich environment. These improvements will drastically augment the research possibilities in the hall, making it a unique hub in Canada for researchers to validate their experiments in a real concert hall.

“This infrastructure will provide exceptional spaces for performance analysis of multiple performers and audience members simultaneously, with equipment such as markerless motion-capture equipment and eye trackers. It will also connect both spaces for experimentations on distributed performances and will make possible new kinds of multimedia artworks.

The research and benefits

The research program includes looking at audio recording technologies, audio and video in immersive environments, and ultra-videoconferencing, leading to the development of new technologies for audio recording, film, television, distance education, and multi-media artworks; as well as a focus on cognition and perception in musical performance by large ensembles and on the rhythmical synchronization and sound blending of performers.

Social benefits include distance learning, videoconferencing, and improvements to the quality of both recorded music and live performance. Health benefits include improved hearing aids, noise reduction in airplanes and public spaces, and science-based music pedagogies and therapy. Economic benefits include innovations in sound recording, film and video games, and the training of highly qualified personnel across disciplines.

Amongst other activities they will be exploring data sonification as it relates to performance.

Hopefully, I’ll have more after the livestreamed press conference being held this afternoon, June 2, 2016,  (2:30 pm EST) at the CIRMMT.

*’opens’ changed to ‘announced’ on June 2, 2016 at 1335 hours PST.

ETA June 8, 2016: I did attend the press conference via livestream. There was some lovely violin played and the piece proved to be a demonstration of the work they’re hoping to expand on now that there will be a CIRMMT (pronounced kermit). There was a lot of excitement and I think that’s largely due to the number of years it’s taken to get to this point. One of the speakers reminisced about being a music student at McGill in the 1970s when they first started talking about getting a new music building.

They did get their building but have unable to complete it until these 2016 funds were awarded. Honestly, all the speakers seemed a bit giddy with delight. I wish them all congratulations!

Chemicals that slow biological aging in yeast might help humans too

A March 15, 2016 Concordia University (Montréal, Canada) news release (also on EurekAlert) describes research that may slow the aging process (Note: Links have been removed),

Even though the search for the Fountain of Youth dates back to the ancient Greeks, the quest to live forever continues today. Indeed, it has been said that the ability to slow the aging process would be the most important medical discovery in the modern era.

A new study published in the journal Oncotarget by researchers from Concordia and the Quebec-based biotech company Idunn Technologies may have uncovered an important factor: plant extracts containing the six best groups of anti-aging molecules ever seen.

For the study, the research team combed through Idunn Technologies’ extensive biological library, conducting more than 10,000 trials to screen for plant extracts that would increase the chronological lifespan of yeast.

Why yeast? Cellularly speaking, aging progresses similarly in both yeast and humans. It’s the best cellular model to understand how the anti-aging process takes place.

“In total, we found six new groups of molecules that decelerate the chronological aging of yeast,” says Vladimir Titorenko, the study’s senior author and a professor in the Department of Biology at Concordia. He carried out the study with a group of Concordia students and Éric Simard, the founder of Idunn Technologies, which is named for the goddess of rejuvenation in Norse mythology.

This has important implications not only for slowing the aging process, but also for preventing certain diseases associated with aging, including cancer.

“Rather than focus on curing the individual disease, interventions on the molecular processes of aging can simultaneously delay the onset and progression of most age-related disorders. This kind of intervention is predicted to have a much larger effect on healthy aging and life expectancy than can be attained by treating individual diseases,” says Simard, who notes that these new molecules will soon be available in commercial products.

“These results also provide new insights into mechanisms through which chemicals extracted from certain plants can slow biological aging,” says Titorenko.

One of these groups of molecules is the most potent longevity-extending pharmacological intervention yet described in scientific literature: a specific extract of willow bark.

Willow bark was commonly used during the time of Hippocrates, when people were advised to chew on it to relieve pain and fever. The study showed that it increases the average and maximum chronological lifespan of yeast by 475 per cent and 369 per cent, respectively. This represents a much greater effect than rapamycin and metformin, the two best drugs known for their anti-aging effects.

“These six extracts have been recognized as non-toxic by Health Canada, and already exhibit recognized health benefits in humans,” says Simard.

“But first, more research must be done. That’s why Idunn Technologies is collaborating with four other universities for six research programs, to go beyond yeast, and work with an animal model of aging, as well as two cancer models.”

A rather interesting image was included with the news release,

The Fountain of Youth, a 1546 painting by Lucas Cranach the Elder. Courtesy: Concordia University

The Fountain of Youth, a 1546 painting by Lucas Cranach the Elder. Courtesy: Concordia University

There’s also this,

An extract of willow bark has shown to be one of the most potent longevity-extending pharmacological interventions yet described in scientific literature. Courtesy: Concordia University

An extract of willow bark has shown to be one of the most potent longevity-extending pharmacological interventions yet described in scientific literature. Courtesy: Concordia University

Here’s a link to and a citation for the paper,

Discovery of plant extracts that greatly delay yeast chronological aging and have different effects on longevity-defining cellular processes by Vicky Lutchman, Younes Medkour, Eugenie Samson, Anthony Arlia-Ciommo, Pamela Dakik, Berly Cortes, Rachel Feldman, Sadaf Mohtashami, Mélissa McAuley, Marisa Chancharoen, Belise Rukundo, Éric Simard, Vladimir I. Titorenko. DOI: 10.18632/oncotarget.7665 Published: February 24, 2016

This appears to be an open access paper.

You can find out more about Idunn Technologies here but you will need French language reading skills as the English language version of the site is not yet available.

Disinfectant for backyard pools could be key to new nanomaterials

Research from McGill University (Québec, Canada) focuses on cyanuric acid, one of the chemicals used to disinfect backyard pools. according to a March 1, 2016 McGill University news release (received by email; it can also be found in a March 1, 2016 news item on Nanowerk *and on EurekAlert*),

Cyanuric acid is commonly used to stabilize chlorine in backyard pools; it binds to free chlorine and releases it slowly in the water. But researchers at McGill University have now discovered that this same small, inexpensive molecule can also be used to coax DNA into forming a brand new structure: instead of forming the familiar double helix, DNA’s nucleobases — which normally form rungs in the DNA ladder — associate with cyanuric acid molecules to form a triple helix.

The discovery “demonstrates a fundamentally new way to make DNA assemblies,” says Hanadi Sleiman, Canada Research Chair in DNA Nanoscience at McGill and senior author of the study, published in Nature Chemistry. “This concept may apply to many other molecules, and the resulting DNA assemblies could have applications in a range of technologies.”

The DNA alphabet, composed of the four letters A, T, G and C, is the underlying code that gives rise to the double helix famously discovered by Watson and Crick more than 60 years ago. The letters, or bases, of DNA can also interact in other ways to form a variety of DNA structures used by scientists in nanotechnology applications – quite apart from DNA’s biological role in living cells.

For years, scientists have sought to develop a larger, designer alphabet of DNA bases that would enable the creation of more DNA structures with unique, new properties. For the most part, however, devising these new molecules has involved costly and complex procedures.

The road to the McGill team’s discovery began some eight years ago, when Sleiman mentioned to others in her lab that cyanuric acid might be worth experimenting with because of its properties. The molecule has three faces with the same binding features as thymine (T in the DNA alphabet), the natural complement to adenine (A).  “One of my grad students tried it,” she recalls, “and came back and said he saw fibres” through an atomic force microscope.

The researchers later discovered that these fibres have a unique underlying structure. Cyanuric acid is able to coax strands composed of adenine bases into forming a novel motif in DNA assembly. The adenine and cyanuric acid units associate into flower-like rosettes; these form the cross-section of a triple helix.  The strands then combine to form long fibres.

“The nanofibre material formed in this way is easy to access, abundant and highly structured,” says Nicole Avakyan, a PhD student in Sleiman’s lab and first author of the study. “With further development, we can envisage a variety of applications of this material, from medicinal chemistry to tissue engineering and materials science.”

Here’s a link to and a citation for the paper,

Reprogramming the assembly of unmodified DNA with a small molecule by Nicole Avakyan, Andrea A. Greschner, Faisal Aldaye, Christopher J. Serpell, Violeta Toader,    Anne Petitjean, & Hanadi F. Sleiman. Nature Chemistry (2016) doi:10.1038/nchem.2451 Published online 22 February 2016

This paper is behind a paywall.

*’also on EurekAlert’ added on March 2, 2016.

Montreal Neuro goes open science

The Montreal Neurological Institute (MNI) in Québec, Canada, known informally and widely as Montreal Neuro, has ‘opened’ its science research to the world. David Bruggeman tells the story in a Jan. 21, 2016 posting on his Pasco Phronesis blog (Note: Links have been removed),

The Montreal Neurological Institute (MNI) at McGill University announced that it will be the first academic research institute to become what it calls ‘Open Science.’  As Science is reporting, the MNI will make available all research results and research data at the time of publication.  Additionally it will not seek patents on any of the discoveries made on research at the Institute.

Will this catch on?  I have no idea if this particular combination of open access research data and results with no patents will spread to other university research institutes.  But I do believe that those elements will continue to spread.  More universities and federal agencies are pursuing open access options for research they support.  Elon Musk has opted to not pursue patent litigation for any of Tesla Motors’ patents, and has not pursued patents for SpaceX technology (though it has pursued litigation over patents in rocket technology). …

Montreal Neuro and its place in Canadian and world history

Before pursuing this announcement a little more closely, you might be interested in some of the institute’s research history (from the Montreal Neurological Institute Wikipedia entry and Note: Links have been removed),

The MNI was founded in 1934 by the neurosurgeon Dr. Wilder Penfield (1891–1976), with a $1.2 million grant from the Rockefeller Foundation of New York and the support of the government of Quebec, the city of Montreal, and private donors such as Izaak Walton Killam. In the years since the MNI’s first structure, the Rockefeller Pavilion was opened, several major structures were added to expand the scope of the MNI’s research and clinical activities. The MNI is the site of many Canadian “firsts.” Electroencephalography (EEG) was largely introduced and developed in Canada by MNI scientist Herbert Jasper, and all of the major new neuroimaging techniques—computer axial tomography (CAT), positron emission tomography (PET), and magnetic resonance imaging (MRI) were first used in Canada at the MNI. Working under the same roof, the Neuro’s scientists and physicians made discoveries that drew world attention. Penfield’s technique for epilepsy neurosurgery became known as the Montreal procedure. K.A.C. Elliott identified γ-aminobutyric acid (GABA) as the first inhibitory neurotransmitter. Brenda Milner revealed new aspects of brain function and ushered in the field of neuropsychology as a result of her groundbreaking study of the most famous neuroscience patient of the 20th century, H.M., who had anterograde amnesia and was unable to form new memories. In 2007, the Canadian government recognized the innovation and work of the MNI by naming it one of seven national Centres of Excellence in Commercialization and Research.

For those with the time and the interest, here’s a link to an interview (early 2015?) with Brenda Milner (and a bonus, related second link) as part of a science podcast series (from my March 6, 2015 posting),

Dr. Wendy Suzuki, a Professor of Neural Science and Psychology in the Center for Neural Science at New York University, whose research focuses on understanding how our brains form and retain new long-term memories and the effects of aerobic exercise on memory. Her book Healthy Brain, Happy Life will be published by Harper Collins in the Spring of 2015.

  • Totally Cerebral: Untangling the Mystery of Memory: Neuroscientist Wendy Suzuki introduces us to scientists who have uncovered some of the deepest secrets about our brains. She begins by talking with experimental psychologist Brenda Milner [interviewed in her office at McGill University, Montréal, Quebéc], who in the 1950s, completely changed our understanding of the parts of the brain important for forming new long-term memories.
  • Totally Cerebral: The Man Without a Memory: Imagine never being able to form a new long term memory after the age of 27. Welcome to the life of the famous amnesic patient “HM”. Neuroscientist Suzanne Corkin studied HM for almost half a century, and gives us a glimpse of what daily life was like for him, and his tremendous contribution to our understanding of how our memories work.

Brief personal anecdote
For those who just want the science, you may want to skip this section.

About 15 years ago, I had the privilege of talking with Mary Filer, a former surgical nurse and artist in glass. Originally from Saskatchewan, she, a former member of Wilder Penfield’s surgical team, was then in her 80s living in Vancouver and still associated with Montreal Neuro, albeit as an artist rather than a surgical nurse.

Penfield had encouraged her to pursue her interest in the arts (he was an art/science aficionado) and at this point her work could be seen many places throughout the world and, if memory serves, she had just been asked to go MNI for the unveiling of one of her latest pieces.

Her husband, then in his 90s, had founded the School of Architecture at McGill University. This couple had known all the ‘movers and shakers’ in Montreal society for decades and retired to Vancouver where their home was in a former chocolate factory.

It was one of those conversations, you just don’t forget.

More about ‘open science’ at Montreal Neuro

Brian Owens’ Jan. 21, 2016 article for Science Magazine offers some insight into the reason for the move to ‘open science’,

Guy Rouleau, the director of McGill University’s Montreal Neurological Institute (MNI) and Hospital in Canada, is frustrated with how slowly neuroscience research translates into treatments. “We’re doing a really shitty job,” he says. “It’s not because we’re not trying; it has to do with the complexity of the problem.”

So he and his colleagues at the renowned institute decided to try a radical solution. Starting this year, any work done there will conform to the principles of the “open-
science” movement—all results and data will be made freely available at the time of publication, for example, and the institute will not pursue patents on any of its discoveries. …

“It’s an experiment; no one has ever done this before,” he says. The intent is that neuroscience research will become more efficient if duplication is reduced and data are shared more widely and earlier. …”

After a year of consultations among the institute’s staff, pretty much everyone—about 70 principal investigators and 600 other scientific faculty and staff—has agreed to take part, Rouleau says. Over the next 6 months, individual units will hash out the details of how each will ensure that its work lives up to guiding principles for openness that the institute has developed. …

Owens’ article provides more information about implementation and issues about sharing. I encourage you to read it in its entirety.

As for getting more research to the patient, there’s a Jan. 26, 2016 Cafe Scientifique talk in Vancouver (my Jan. 22, 2016 ‘Events’ posting; scroll down about 40% of the way) regarding that issue although there’s no hint that the speakers will be discussing ‘open science’.

Promising new technique for controlled fabrication of nanowires

This research is the result of a collaboration between French, Italian, Australian, and Canadian researchers. From a Jan. 5, 2016 news item on *phys.org,

An international team of researchers including Professor Federico Rosei and members of his group at INRS (Institut national de la recherche scientifique) has developed a new strategy for fabricating atomically controlled carbon nanostructures used in molecular carbon-based electronics. An article just published in the prestigious journal Nature Communications presents their findings: the complete electronic structure of a conjugated organic polymer, and the influence of the substrate on its electronic properties.

A Jan. 5, 2016 INRS news release by Gisèle Bolduc, which originated the news item, indicates this is the beginning rather than an endpoint (Note: A link has been removed),

The researchers combined two procedures previously developed in Professor Rosei’s lab—molecular self-assembly and chain polymerization—to produce a network of long-range poly(para-phenylene) (PPP) nanowires on a copper (Cu) surface. Using advanced technologies such as scanning tunneling microscopy and photoelectron spectroscopy as well as theoretical models, they were able to describe the morphology and electronic structure of these nanostructures.

“We provide a complete description of the band structure and also highlight the strong interaction between the polymer and the substrate, which explains both the decreased bandgap and the metallic nature of the new chains. Even with this hybridization, the PPP bands display a quasi one-dimensional dispersion in conductive polymeric nanowires,” said Professor Federico Rosei, one of the authors of the study.

Although further research is needed to fully describe the electronic properties of these nanostructures, the polymer’s dispersion provides a spectroscopic record of the polymerization process of certain types of molecules on gold, silver, copper, and other surfaces. It’s a promising approach for similar semiconductor studies—an essential step in the development of actual devices.

The results of the study could be used in designing organic nanostructures, with significant potential applications in nanoelectronics, including photovoltaic devices, field-effect transistors, light-emitting diodes, and sensors.

About the article

This study was designed by Yannick Fagot-Revurat and Daniel Malterre of Université de Lorraine/CNRS, Federico Rosei of INRS, Josh Lipton-Duffin of the Institute for Future Environments (Australia), Giorgio Contini of the Italian National Research Council, and Dmytro F. Perepichka of McGill University. […]The researchers were generously supported by Conseil Franco-Québécois de coopération universitaire, the France–Italy International Program for Scientific Cooperation, the Natural Sciences and Engineering Research Council of Canada, Fonds québécois de recherche – Nature et technologies, and a Québec MEIE grant (in collaboration with Belgium).

Here’s a link to and a citation for the paper,

Quasi one-dimensional band dispersion and surface metallization in long-range ordered polymeric wires by Guillaume Vasseur, Yannick Fagot-Revurat, Muriel Sicot, Bertrand Kierren, Luc Moreau, Daniel Malterre, Luis Cardenas, Gianluca Galeotti, Josh Lipton-Duffin, Federico Rosei, Marco Di Giovannantonio, Giorgio Contini, Patrick Le Fèvre, François Bertran, Liangbo Liang, Vincent Meunier, Dmitrii F. Perepichka. Nature Communications 7, Article number:  10235 doi:10.1038/ncomms10235 Published 04 January 2016

This is an open access paper.

*’ScienceDaily’ corrected to ‘phys.org’ on Tues., Jan. 5, 2016 at 1615 PST.

Quebecol, a maple syrup-based molecule, could be used as an anti-inflammatory

I think this is the first time I’ve had any research from Université Laval (Québec; Laval University) and it seems fitting that it would involve maple syrup. From a Dec. 22, 2015 Université Laval news release on EurekAlert,

Arthritis and other inflammatory diseases could someday be treated with medication containing a molecule from maple syrup. Université Laval researchers demonstrated in a recent study that quebecol, a molecule found in maple syrup, has interesting properties for fighting the body’s inflammatory response.

Discovered in 2011, quebecol is the result of chemical reactions during the syrup-making process that transform the naturally occurring polyphenols in maple sap. After successfully synthesizing quebecol and its derivatives, Université Laval researchers under the supervision of Normand Voyer, a chemist with the Faculty of Science and Engineering, evaluated its anti-inflammatory properties. They called on colleague Daniel Grenier of the Faculty of Dentistry, who developed an in vitro model for determining the anti-inflammatory potential of natural molecules. “We take blood cells called macrophages and put them with bacterial toxins,” explained Professor Grenier. “Macrophages usually react by triggering an inflammatory response. But if the culture medium contains an anti-inflammatory molecule, this response is blocked.”

The researchers carried out tests that showed quebecol curbs the inflammatory response of macrophages, and some derivatives are even more effective than the original molecule. “The most powerful derivative has a simpler structure and is easier to synthesize than quebecol,” said Normand Voyer. “This paves the way for a whole new class of anti-inflammatory agents, inspired by quebecol, that could compensate for the low efficacy of certain treatments while reducing the risk of side effects.”

Here’s a link to and a citation for the paper,

Anti-inflammatory properties of quebecol and its derivatives by Sébastien Cardinal, Jabrane Azelmat, Daniel Grenier, Normand Voyer. Bioorganic & Medicinal Chemistry Letters         doi:10.1016/j.bmcl.2015.11.096 Available online 27 November 2015

This paper is behind a paywall.

Québec’s second edition of its Best Practices Guidance for Nanomaterial Risk Management in the Workplace

Lynn Bergeson’s Dec. 16, 2015 posting on Nanotechnology Now highlights Québec’s second edition of its guide to best practices for handling nanomaterials in the workplace,

On December 11, 2015, the Institut de recherche Robert-Sauvé en santé et en sécurité du travail (IRSST), a leading occupational health and safety research center in Canada, published the second edition of its Best Practices Guidance for Nanomaterial Risk Management in the Workplace.

… IRSST intends the Guidance to support the safe development of nanotechnologies in Québec by bringing together current scientific knowledge on hazard identification, strategies for determining nanomaterial levels in different work environments, risk assessment, and the application of various risk management approaches. IRSST states that the Guidance provides practical information and prevention tools for the safe handling of nanomaterials in laboratories and pilot plants, as well as industrial facilities that produce or incorporate them. The Guidance recommends a preventive approach designed to minimize occupational exposure to nanomaterials. According to IRSST, given the different exposure pathways, the many factors that can affect nanomaterial toxicity and the health risks, its approach “is essentially based on hazard identification, different risk assessment strategies and a hierarchy of control measures, incorporating knowledge specific to nanomaterials when available.” The second edition of the Guidance incorporates new information in the scientific literature. In addition, IRSST has included appendices describing initiatives in Québec workplaces; examples of at-risk situations described in the literature; preventive measures and data on their relative efficacy; and the implementation of measures to control exposure. ,,,

The Best Practices Guidance for Nanomaterial Risk Management in the Workplace can be found here on the IRSST website where you’ll also find this description,

Today’s nanotechnologies can substantially improve the properties of a wide range of products in all sectors of activity, from the manufacture of materials with ground-breaking performance to medical diagnostics and treatment—yet they raise major technological, economic, ethical, social and environmental questions. Some of the spinoffs we can expect include the emergence of new markets, job creation, improvements in quality of life and contributions to protection of the environment. The impact of nanotechnologies is already being felt in sectors as diverse as agroprocessing, cosmetics, construction, healthcare and the aerospace industry. Most universities in Québec and many research centres are working to design new applications. Many companies have projects in the start-up phase, while others are already producing nanomaterials or have incorporated them in their processes to improve product performance, a trend expected to accelerate over the coming years. These new developments, which could mean exposure of a growing number of workers to these infinitesimally small particles, are of particular concern to workers in industry and staff in research laboratories. It is estimated that in 2015 about 10% of manufacturing jobs worldwide will be associated with nanotechnologies, [emphasis mine] and more than 2,000 commercial products will contain nanomaterials.

Given our fragmentary knowledge of the health and safety risks for workers and the environment, the handling of these new materials with their unique properties raises many questions and concerns. In fact, many studies have already demonstrated that the toxicity of certain nanomaterials differs from that of their bulk counterparts of the same chemical composition. Nanomaterials enter the body mainly through inhalation but also through the skin and the GI tract. Animal studies have demonstrated that certain nanomaterials can enter the blood stream through translocation and accumulate in different organs. Animal studies also show that certain nanomaterials cause more inflammation and more lung tumours on a mass-for-mass basis than the same substances in bulk form, among many other specific effects documented. In addition, research has shown that the physicochemical characteristics of nanomaterials (size, shape, specific surface area, charge, solubility and surface properties) play a major role in their impact on biological systems, including their ability to generate oxidative stress. It is thus crucial that risks be assessed and controlled to ensure the safe handling of nanomaterials. As with many other chemicals, a risk assessment and management approach must be developed on a case-by-case basis.

There is still no consensus, however, on a measurement method for characterizing occupational exposure to nanomaterials, making quantitative risk assessment difficult if not impossible in many situations. As a result, a precautionary approach is recommended to minimize worker exposure. In Québec, the employer is responsible for providing a safe work environment, and preventive measures must be applied by employees. Accordingly, preventive programs that take into account the specific characteristics of nanomaterials must be developed in all work environments where nanomaterials are handled, so that good work practices can be established and preventive procedures tailored to the risks of the particular work situation can be introduced.

Fortunately, current scientific knowledge, though partial, makes it possible to identify, assess and effectively manage these risks. This best practices guide is meant to support the safe development of nanotechnologies in Québec by bringing together current scientific knowledge on hazard identification, strategies for determining nanomaterial levels in different work environments, risk assessment and the application of various risk management approaches. Some knowledge of occupational hygiene is required to use this guide effectively. Designed for all work environments that manufacture or use nanomaterials, this guide provides practical information and prevention tools for the safe handling of nanomaterials in laboratories and pilot plants as well as industrial facilities that produce or incorporate them. To be effective, risk management must be an integral part of an organization’s culture, and health and safety issues must be considered when designing the workplace or as far upstream as possible. This is crucial for good organizational governance. In practice, risk management is an iterative process implemented as part of a structured approach that fosters continuous improvement in decision-making and can even promote better performance. The purpose of this guide is to contribute to the implementation of such an approach to the prevention of nanomaterial-related risks only. Depending on the process, other risks (associated with exposure to solvents, gas, heat stress, ergonomic stress, etc.) may be present, but they are not addressed in this guide.

I wonder where they got these numbers, “It is estimated that in 2015 about 10% of manufacturing jobs worldwide will be associated with nanotechnologies, and more than 2,000 commercial products will contain nanomaterials.” Given that many companies don’t like to disclose whether or not they’re using nanomaterials and most countries don’t insist on an inventory (there are voluntary inventories, which generally speaking have not been successful), bringing me back to the question: where did these numbers come from?

As for the guide itself, Canadians have been very involved with the OECD (Organization for Economic Cooperation and Development) and its ‘nanomaterial safety’ working group and, I understand, have provided leadership on occasion. The guide, which is available in both French and English, is definitely worth checking out.