Tag Archives: Quebec

Université de Montréal (Canada) and nanobots breech blood-brain barrier to deliver drugs to the brain

In the spirit of full disclosure, the March 25, 2014 news item on ScienceDaily describing the research about breeching the blood-brain barrier uses the term nanorobotic agents rather than nanobots, a term which makes my headline a lot catchier although less accurate. Getting back to the research,

Magnetic nanoparticles can open the blood-brain barrier and deliver molecules directly to the brain, say researchers from the University of Montreal, Polytechnique Montréal, and CHU Sainte-Justine. This barrier runs inside almost all vessels in the brain and protects it from elements circulating in the blood that may be toxic to the brain. The research is important as currently 98% of therapeutic molecules are also unable to cross the blood-brain barrier.

“The barrier is temporary [sic] opened at a desired location for approximately 2 hours by a small elevation of the temperature generated by the nanoparticles when exposed to a radio-frequency field,” explained first author and co-inventor Seyed Nasrollah Tabatabaei. “Our tests revealed that this technique is not associated with any inflammation of the brain. This new result could lead to a breakthrough in the way nanoparticles are used in the treatment and diagnosis of brain diseases,” explained the co-investigator, Hélène Girouard. “At the present time, surgery is the only way to treat patients with brain disorders. Moreover, while surgeons are able to operate to remove certain kinds of tumors, some disorders are located in the brain stem, amongst nerves, making surgery impossible,” added collaborator and senior author Anne-Sophie Carret.

A March 25, 2015 University of Montreal news release (also on EurekAlert), which originated the news item, notes that the technique was tested or rats or mice (murine model) and explains how the technology breeches the blood-brain barrier,

Although the technology was developed using murine models and has not yet been tested in humans, the researchers are confident that future research will enable its use in people. “Building on earlier findings and drawing on the global effort of an interdisciplinary team of researchers, this technology proposes a modern version of the vision described almost 40 years ago in the movie Fantastic Voyage, where a miniature submarine navigated in the vascular network to reach a specific region of the brain,” said principal investigator Sylvain Martel. In earlier research, Martel and his team had managed to manipulate the movement of nanoparticles through the body using the magnetic forces generated by magnetic resonance imaging (MRI) machines.

To open the blood-brain barrier, the magnetic nanoparticles are sent to the surface of the blood-brain barrier at a desired location in the brain. Although it was not the technique used in this study, the placement could be achieved by using the MRI technology described above. Then, the researchers generated a radio-frequency field. The nanoparticles reacted to the radio-frequency field by dissipating heat thereby creating a mechanical stress on the barrier. This allows a temporary and localized opening of the barrier for diffusion of therapeutics into the brain.

The technique is unique in many ways. “The result is quite significant since we showed in previous experiments that the same nanoparticles can also be used to navigate therapeutic agents in the vascular network using a clinical MRI scanner,” Martel remarked. “Linking the navigation capability with these new results would allow therapeutics to be delivered directly to a specific site of the brain, potentially improving significantly the efficacy of the treatment while avoiding systemic circulation of toxic agents that affect healthy tissues and organs,” Carret added. “While other techniques have been developed for delivering drugs to the blood-brain barrier, they either open it too wide, exposing the brain to great risks, or they are not precise enough, leading to scattering of the drugs and possible unwanted side effect,” Martel said.

Although there are many hurdles to overcome before the technology can be used to treat humans, the research team is optimistic. “Although our current results are only proof of concept, we are on the way to achieving our goal of developing a local drug delivery mechanism that will be able to treat oncologic, psychiatric, neurological and neurodegenerative disorders, amongst others,” Carret concluded.

Here’s a link to and a citation for the paper,

Remote control of the permeability of the blood–brain barrier by magnetic heating of nanoparticles: A proof of concept for brain drug delivery by Seyed Nasrollah Tabatabaei, Hélène Girouard, Anne-Sophie Carret, and Sylvain Martel.Journal of Controlled Release, Volume 206, 28 May 2015, Pages 49–57,  DOI: 10.1016/j.jconrel.2015.02.027  Available online 25 February 2015

This paper is behind a paywall.

For anyone unfamiliar with French, University of Montreal is Université de Montréal.

McGill University (Canada) researchers build DNA nanotubes block by block

McGill University (Montréal, Québec, Canada) researchers have found a new technique for creating DNA (deoxyribonucleic acid) nanotubes according to a Feb. 24, 2015 news item on Azonano,

Researchers at McGill University have developed a new, low-cost method to build DNA nanotubes block by block – a breakthrough that could help pave the way for scaffolds made from DNA strands to be used in applications such as optical and electronic devices or smart drug-delivery systems.

A Feb. 23, 2015 McGill University news release (also on EurekAlert), which originated the news item, describes current practice and the new technique,

Many researchers, including the McGill team, have previously constructed nanotubes using a method that relies on spontaneous assembly of DNA in solution. The new technique, reported today in Nature Chemistry, promises to yield fewer structural flaws than the spontaneous-assembly method. The building-block approach also makes it possible to better control the size and patterns of the DNA structures, the scientists report.

“Just like a Tetris game, where we manipulate the game pieces with the aim of creating a horizontal line of several blocks, we can now build long nanotubes block by block,” said Amani Hariri, a PhD student in McGill’s Department of Chemistry and lead author of the study. “By using a fluorescence microscope we can further visualize the formation of the tubes at each stage of assembly, as each block is tagged with a fluorescent compound that serves as a beacon. We can then count the number of blocks incorporated in each tube as it is constructed.”

This new technique was made possible by the development in recent years of single-molecule microscopy, which enables scientists to peer into the nano-world by turning the fluorescence of individual molecules on and off. (That groundbreaking work won three U.S.- and German-based scientists the 2014 Nobel Prize in Chemistry.)

Hariri’s research is jointly supervised by chemistry professors Gonzalo Cosa and Hanadi Sleiman, who co-authored the new study. Cosa’s research group specializes in single-molecule fluorescence techniques, while Sleiman’s uses DNA chemistry to design new materials for drug delivery and diagnostic tools.

The custom-built assembly technique developed through this collaboration “gives us the ability to monitor the nanotubes as we’re building them, and see their structure, robustness and morphology,” Cosa said.

“We wanted to control the nanotubes’ lengths and features one-by-one,” said Sleiman, who holds the Canada Research Chair in DNA Nanoscience. The resulting “designer nanotubes,” she adds, promise to be far cheaper to produce on a large scale than those created with so-called DNA origami, another innovative technique for using DNA as a nanoscale construction material.

Here’s a link to and a citation for the paper,

Stepwise growth of surface-grafted DNA nanotubes visualized at the single-molecule level by Amani A. Hariri, Graham D. Hamblin, Yasser Gidi, Hanadi F. Sleiman & Gonzalo Cosa. Nature Chemistry (2015) doi:10.1038/nchem.2184 Published online 23 February 2015

This article is behind a paywall.

Investment in graphene (Grafoid), the Canadian government, and a 2015 federal election

The federal government of Canada is facing an election this year and many analysts believe it will be held in October 2015. Interestingly, there have been a few recent announcements about funding, also referred to as contributions, for technology companies in the provinces of Ontario and Québec. (You need to win at least one of these provinces if you want to enjoy a majority government.) My Cellulose nanocrystals (CNC), also known as nanocrystalline cellulose (NCC), and toxicity; some Celluforce news; anti-petroleum extremists posted on Feb. 19, 2015 includes my observations (scroll down past the toxicity topic) about the government’s ‘clean technology’ promotional efforts and the rebranding of environmentalism into an ‘anti-petroleum’ movement.

This latest announcement about a ‘non-repayable grant’ is to be found in a Feb. 20, 2015 news item on Azonano,

The Hon. Greg Rickford, Minister of Natural Resources and Minister Responsible for Sustainable Development Technology Canada (SDTC) announced today the award of $8.1 million to Grafoid Inc. – Canada’s leading graphene technologies and applications developer – to automate Grafoid’s production of its low-cost, high-purity MesoGraf™ graphene.

“Our government is investing in advanced clean energy technologies that create well-paying jobs and generate economic opportunities. Today’s announcement contributes to economic prosperity and a cleaner environment in Ontario and across Canada,” said Mr. Rickford, who is also the Minister Responsible for Federal Economic Development Initiative for Northern Ontario.

The contribution from SDTC is an $8.1 million non-repayable grant to design and test the automation system for the production of constant quality MesoGraf™. Further, the grant enables the testing of pre-commercial products using MesoGraf™ graphene from the automated system.

The minister announced the funding at a news conference in Toronto attended by Grafoid and five other Canadian non graphene-related technology companies.

Ottawa-based [Ottawa is in the province of Ontario] Grafoid, the developer of a diverse range of renewable energy, industrial, military and consumer applications from its MesoGraf™ materials is the first Canadian graphene technologies developer to partner with the Canadian Government.

A Feb. 20, 2015 Grafoid news release on Marketwired.com, which originated the news item, describes how this makes Canada like other constituencies and gives a bit more detail about the company and its aims,

Canada joins the European Union, the United States, China and South Korea in providing funding assistance to privately-held graphene enterprises.

Grafoid Founding Partner and CEO Gary Economo praised Canada’s decision to stake its claim in the graphene space as the world races toward the commercialization of a potentially disruptive, pan-industrial nanomaterial.

“This is a great day for the Canadian graphene industry and for Grafoid, in particular, because it leads us out of the laboratory and into the automated manufacturing of the world’s new wonder material,” he told the news conference.

“Effectively, today’s $8.1million Federal government funding grant enables us to take a giant leap towards graphene’s broader commercialization,” Mr. Economo said. “It will permit us to increase MesoGraf™ production output from kilograms to tonnes within our global technology centre in Kingston, Ontario.

“For this we are truly appreciative of Canada’s actions in recognizing our science and commercial objectives. In the past three years Grafoid has travelled the globe staking our unique position in the graphene revolution. Today we are gratified to do this going forward with the Government of Canada,” Mr. Economo said.

Grafoid produces MesoGraf™ directly from high-grade graphite ore on a safe, economically scalable, environmentally sustainable basis. Its patent pending one-step process is unique in the industry, producing single layer, bi-layer and tri-layer graphene.

It is then adapted – or functionalized – by Grafoid for use in biomedical, renewable energy storage and production, military, aerospace and automotive, additive materials for 3D printing, water purification, construction, lubricants, solar solutions, coatings, sporting equipment and other sectoral applications.

At one atom thin, graphene is a two-dimensional pure carbon derived from graphite.

It is the strongest material known to science, is barely visible to the naked eye, yet it holds the potential to become a disruptive technology across all industrial sectors and ultimately, for the benefit of humanity.

Grafoid’s Game-Changing Process

Grafoid’s unique graphite ore-to-graphene process produces a material that eliminates cost barriers to graphene’s broad commercialization in a number of industries, some of which include building materials, automotive, aerospace, military, biomedical, renewable energy and sporting equipment.

In order to bring those application developments to market Grafoid’s partners require a scaling up of MesoGraf™ production to supply their needs for pre-production development testing and commercial production, and; the expansion of Grafoid’s research and development.

The automation of bulk MesoGraf™ graphene production is a global first. Uniformity and consistency are critical to the development of mass produced commercial applications.

One of the company’s first-to-market MesoGraf™ developments is in the renewable energy storage and power generation sectors. The market for quick charge long-life batteries is vast, and growing.

Hydro-Quebec – one of the world’s premier patent holders and suppliers of renewable energy technologies – is one of Grafoid’s first long-term sustainable technology development partners. [emphasis mine]

Within six months of development, multiple patents were filed and initial tests of the joint venture’s MesoGraf™ lithium-iron phosphate materials resulted in extreme gains in power performance over conventional batteries.

Grafoid’s corporate goal is not to simply be a graphene supplier but a global partner in commercial application development. With the ability to ramp up graphene output the company’s long-term financial prospects are secured from royalties and licensing fees from jointly developed technologies.

Competitive cost advantages built into an automated MesoGraf™ graphene production regime results in anticipated cost advantages to customers and licensees.

The Hydro-Québec deal with Grafoid was mentioned here in a Nov. 27, 2012 posting which includes this nugget,

There’s also the announcement of a joint venture between Grafoid (a company where, I believe, 40% is owned by Focus Graphite) with the University of Waterloo, from the Apr. 17, 2013 news item on Azonano,

Focus Graphite Inc. on behalf of Grafoid Inc. (“Grafoid”) is pleased to announce the signing of a two-year R&D agreement between Grafoid Inc. and the University of Waterloo to investigate and develop a graphene-based composite for electrochemical energy storage for the automotive and/or portable electronics sectors.

Given the company information included in the news release, there seems to have been a change in the corporate relationship between Grafoid and Focus Graphite. At the very least, Grafoid announcements are now generated by Grafoid itself,

About Grafoid Inc.

Incorporated in late 2011, Grafoid invested in a novel process that transforms raw, unprocessed, high grade graphite ore from its sister company, Focus Graphite to produce single layer, bi-layer and tri-layer MesoGraf™ graphene.

Today, Grafoid, a private company, sits as Canada’s innovation leader and standard-bearer in the global graphene technology space.

The company’s diverse commercial application developments include more than 15 global corporate partnerships – including Fortune 500 companies.

With 17 active projects under development with 11 universities and laboratories, and; some 64 patent applications filed or in development, Grafoid’s business goes beyond scientific R&D.

Grafoid’s Canadian-developed technologies are exported globally.

During the last three years Grafoid has experienced exponential growth as a global enterprise through joint-venture partnerships with Hydro-Quebec, Japan’s Mitsui & Company and other multinational corporations in the United States and Europe.

Grafoid’s wholly-owned subsidiaries Alcereco of Kingston, Ontario and Braille Battery, of Sarasota, Florida extend the company’s capabilities into graphene related material science and nano-engineering.

Braille is a world leader in ultra lightweight Lithium-ion high performance battery production and is a supplier to Formula 1, NASCAR and IndyCar racing vehicles.

The sister company, Focus Graphite also based in Ottawa, which provides Grafoid’s graphite flakes, owns a deposit in the northeastern part of Québec. (You can read more about graphite deposits and mines in my Feb. 20, 2015 post, NanoXplore: graphene and graphite in Québec (Canada).

Of course, this flurry of announcements may point to a Spring 2015 election.

NanoXplore: graphene and graphite in Québec (Canada)

For the second time this week I’m going to be mentioning the province of Québec (Canada) in relation to its ‘nanotechnology’ businesses (see: Cellulose nanocrystals (CNC), also known as nanocrystalline cellulose (NCC), and toxicity; some Celluforce news; anti-petroleum extremists posted on Feb. 19, 2015). A Feb. 20, 2015 news item on Azonano announces a graphene production facility in the Montréal area,

Group NanoXplore Inc., a Montreal-based company specialising in the production and application of graphene and its derivative materials, announced today that its graphene production facility is in full operation with a capacity of 3 metric tonnes per year. This is the largest graphene production capacity in Canada and, outside of China, one of the 5 largest in the world.

A Feb. 19, 2015 NanoXplore news release on MarketWire, which originated the news item, provides a bit more detail in amidst the promotional hype,

NanoXplore’s production process is unique and the core of the company’s competitive advantage. The proprietary process gently and efficiently creates pristine graphene from natural flake graphite without creating the crystalline defects that can limit performance. The process also functionalises the graphene material during production making subsequent mixing with a broad range of industrial materials simple and efficient. NanoXplore’s facility is routinely producing several standard grades of graphene as well as derivative products such as a unique graphite-graphene composite suitable for anodes in Li-ion batteries. [emphasis mine]

Another graphite connection in Québec

Interestingly, back in 2012 Hydro-Québec signed a deal with another Québec-based company, Focus Graphite (which owns a graphite deposit in the northeastern part of the province) to explore ways to produce more efficient lithium-ion batteries (my Nov 27, 2012 posting).

Getting back to the news release, it also provides a summary description of NanoXplore,

NanoXplore is a privately held advanced materials company focused on the large-scale production of high quality graphene and the integration of graphene into real world industrial products. NanoXplore achieves significant improvements in performance for its customers with very low levels of graphene because its material is of high quality (few defects, highly dispersible), because the production process can easily tune the dimensions of the graphene platelets, and because NanoXplore has specific expertise in dispersing graphene in a broad range of industrial materials. NanoXplore partners with its customers to integrate graphene into their products and processes, providing them with innovative products and a strong competitive advantage.

Graphite mines

NanoXplore, too, has some sort of relationship with a graphite mine or, in this case mining company, Mason Graphite (from the NanoXplore website’s Investors’ page),

FROM MINE TO PRODUCT

Partnered with Canadian mining company Mason Graphite, NanoXplore has access to lower quartile graphite/graphene production costs as well as a stable, long term, large flake source of raw material. Local government bodies have embraced the graphite-graphene cluster. With production and R&D centrally located in Montreal, NanoXplore offers world class innovation and true intellectual property safety for its formulation partners.

By the way, Benoit Gascon, NanoXplore’s board chair (scroll down to the bottom  of the team list) is also Mason Graphite’s Chief Executive Officer (CEO). The company has recently announced a detailed study on large-scale production of value-added graphite products (from a Feb. 11, 2015 Mason Graphite news release),

Mason Graphite Inc. (“Mason Graphite” or the “Company”) (TSX VENTURE:LLG)(OTCQX:MGPHF) announces that it has initiated a detailed study for large scale processing of value-added graphite products.

Value-added processing includes micronization, additional purification, spheronization and coating, resulting in graphite products that are suitable for a wide range of electrochemical applications (including alkaline batteries, lithium-ion batteries and fuel cells), technical applications (including carbon brushes, brake linings, plastics and lubricants), and other specialized uses.

The development and validation of the fabrication processes for these graphite products will be carried out by the National Research Council of Canada (“NRC”) along with Hatch, and is expected to conclude by the end of 2015. Following initial scoping work, equipment trials and product testing, the Company intends to provide preliminary results and an updated work program by mid-2015.

The NRC is the Government of Canada’s premier research and technology organization. Hatch is an engineering firm located in Montreal which is already working closely with Mason Graphite on the development of the Lac Gueret Graphite Project.

Other parts of Canada and the graphite/graphene enterprise

NanoXplore and Focus Graphite are not the only companies with connections to a graphite mine in Québec. There’s also Vancouver (Canada)-based Lomiko Metals (mentioned here in an April 17, 2013 posting [for the first time]. A. Paul Gill, Lomiko’s CEO, seems to be pursuing a similar business strategy in that Lomiko, too, has a number of business alliances, e.g., the mine, a research and development laboratory, etc. Moving out of Québec, there is also a graphite mine in Ontario owned by Northern Graphite (my Feb. 6, 2012 posting). It seems Canadians in eastern Canada have a valuable resource in graphite flakes.

Canadian nanoscientist, Federico Rosei, picks up a new honour (this one is from China)

I covered two of Federico Rosei’s awards last year in a Jan. 27, 2014 post about his Canadian Society for Chemistry award and in a Feb. 4, 2014 post about his E.W.R. Steacie Memorial Fellowship from Canada’s Natural Sciences and Engineering Research Council. This year, China has honoured the Dr. Rosei with a scholar’s award that requires regular visits to China. From a Jan. 28, 2015 news item on Azonano,

Professor Federico Rosei of the INRS Énergie Matériaux Télécommunications Research Centre has won the Chang Jiang Scholars Award, a highly prestigious distinction for world-class researchers given by the Chinese government. Professor Rosei was honoured for his work in the field of organic and inorganic nanomaterials. This is the first time the award has been given to an INRS faculty member. [INRS is Québec’s Institut national de la recherche scientifique; the Université de Québec’s research branch]

A Jan. 23, 2015 INRS news release by Gisèle Bolduc, which originated the news item, fills in some more details about the award and Dr. Rosei,

As a Chang Jiang scholar, Professor Rosei will make regular visits to the University of Electronic Science and Technology of China (UESTC) over the next three years, where he will help set up an R&D platform in nanomaterials and electronic and optoelectronic devices. In addition to these joint research projects, Professor Rosei will train young Chinese researchers, make scientific presentations, and forge international academic ties.

Federico Rosei’s tenure as a Chang Jiang scholar will complement and enhance his work as UNESCO Chair on Materials and Technologies for Energy Conversion, Saving and Storage (MATECSS). This INRS research chair is part of a North-South/South-South initiative to promote the international sharing of technical and scientific knowledge in the areas of renewable energies and sustainable development.

“Dr. Federico Rosei is an outstanding professor and researcher, and a true world leader in his field,” noted Yves Bégin, vice president (or principal) of research and academic affairs. “INRS is extremely proud to have Professor Rosei among its professors. Beyond his major scientific advances in his field, his presence in our institution helps build invaluable bridges between the local team of professors and large-scale international research projects.”

About the Chang Jiang Scholars Awards

Founded in 1998 by the Chinese Ministry of Education, the Chang Jiang Scholars program annually brings some 50 eminent international scholars, mainly in science and technology, to Chinese universities. The program’s aim is to raise standards of research in Chinese universities through collaboration with leading scientists from the world over.

About Federico Rosei

Professor Federico Rosei’s work in material physics has led to scientific innovations and practical applications in electronics, energy, and the life sciences. He is a Fellow of the Royal Society of Canada, distinguished lecturer at IEEE Nanotechnology Council (NTC), UNESCO Chair on Materials and Technologies for Energy Conversion, Saving and Storage (MATECSS), and recipient of the NSERC 2014 E.W.R. Steacie Memorial Fellowship from NSERC. Professor Rosei has won numerous awards including the 2014 José Vasconcelos World Award of Education from the World Cultural Council, the 2011 Friedrich Wilhelm Bessel award from the Alexander von Humboldt Foundation, the 2013 Herzberg Medal from the Canadian Association of Physicists, and the 2011 Rutherford Memorial Medal in Chemistry from the Royal Society of Canada. Dr. Rosei is a member of the European Academy of Sciences, a senior member of the Institute of Electrical and Electronics Engineers (IEEE) and the Society for Photo-Image Engineers (SPIE), and a Fellow of the American Physical Society; the U.S. Association for the Advancement of Science; the Engineering Institute of Canada; the Institute of Physics; the Royal Society of Chemistry; the Institute of Materials, Minerals and Mining; the Institute of Engineering and Technology; the Institute of Nanotechnology; and the Australian Institute of Physics.

Odd, there’s no mention of the Canadian Society for Chemistry award but since this man seems to be the recipient of many awards, I imagine some hard choices had to be made when writing him up.

For anyone who’d prefer to read about Rosei in French or would like to test their French reading skills, here’s Gisèle Bolduc’s 21 janvier 2015 actualité.

A multiferroic material for more powerful solar cells

A Nov. 12, 2014 INRS (Institut national de la recherche scientifique; Université du Québec) news release (also on EurekAlert), describes new work on solar cells from Federico Rosei’s laboratory (Note: Links have been removed; A French language version of the news release can be found here),

Applying a thin film of metallic oxide significantly boosts the performance of solar panel cells—as recentlydemonstrated by Professor Federico Rosei and his team at the Énergie Matériaux Télécommunications Research Centre at Institut national de la recherche scientifique (INRS). The researchers have developed a new class of materials comprising elements such as bismuth, iron, chromium, and oxygen. These“multiferroic” materials absorb solar radiation and possess unique electrical and magnetic properties. This makes them highly promising for solar technology, and also potentially useful in devices like electronic sensors and flash memory drives. …

The INRS research team discovered that by changing the conditions under which a thin film of these materials is applied, the wavelengths of light that are absorbed can be controlled. A triple-layer coating of these materials—barely 200 nanometres thick—captures different wavelengths of light. This coating converts much more light into electricity than previous trials conducted with a single layer of the same material. With a conversion efficiency of 8.1% reported by [Riad] Nechache and his coauthors, this is a major breakthrough in the field.

The team currently envisions adding this coating to traditional single-crystal silicon solar cells (currently available on the market). They believe it could increase maximum solar efficiency by 18% to 24% while also boosting cell longevity. As this technology draws on a simplified structure and processes, as well as abundant and stable materials, new photovoltaic (PV) cells will be more powerful and cost less. This means that the INRS team’s breakthrough may make it possible to reposition silicon PV cells at the forefront of the highly competitive solar energy market.

Here’s a link to and a citation for the paper,

Bandgap tuning of multiferroic oxide solar cells by R. Nechache, C. Harnagea, S. Li, L. Cardenas, W. Huang,  J. Chakrabartty, & F. Rosei. Nature Photonics (2014) doi:10.1038/nphoton.2014.255 Published online
10 November 2014

This paper is behind a paywall although there is a free preview via ReadCube Access.

I last mentioned Federico Rose in a March 4, 2014 post about a talk (The exploration of the role of nanoscience in tomorrow’s energy solutions) he was giving in Vancouver (Canada).

A platform for nanotechnology collaboration: NanoTechValley

A Nov. 10, 2014 news item on Nanowerk features a French company, NanoThinking, and its venture into a business and research platform for collaboration (Note: A link has been removed),

Following a conception period in close connection with innovation and nanotechnology professionals, NanoThinking now offers NanoTechValley: a collaborative platform dedicated to providers and users of nanotechnology, designed for two purposes: to stimulate the emergence of R&D projects and to offer access to cutting edge equipment proposed by the community.

Here’s more from a Nov. 2014 NanoThinking presentation document about NanoTechValley,

“Currently in a phase of emergence, the field of nanotechnology is still very atomized. This reality hampers the combination of the skills, projects and activities enclosed inside laboratories and industrial firms. The idea at the origin of our project was therefore to create a web platform which features would be designed specifically to foster the emergence of collaborative projects and arrange the meeting of offers and needs” explains Thomas Dubouchet, CEO at Nanothinking.

In order to address the needs of its future users, the platform includes the following features: secure access, possibility to share documents and hold discussion with multiple users, custom privacy settings and an invitation based system which will facilitate new participations in projects proposed by the community.

You can find out more about NanoThinking here (be sure to scroll down the page) and about NanoTechValley here.

This French project reminds me,  not only of Silicon Valley, but of a couple of NanoQuébec projects mentioned in a Sept. 19, 2012 posting (NanoQuébec sets up I-Nano, their version of an industrial dating service) and a May 13, 2013 posting (NanoQuébec and iNano get to the chapel while Canada Economic Development presides). While I described the project as a ‘dating service’, it could also be described as a platform designed to encourage collaborations between business and academe.

In any event, it’s good to see projects designed to help researchers connect with each other and connect with business partners wherever they may be located.

I last wrote about NanoThinking in a Dec. 30, 2013 posting which featured the company’s Global NanoTechMap.

Nanex Canada (?) opens office in United States

Earlier this month in a Sept. 5, 2014 posting I noted that a Belgian company was opening a Canadian subsidiary in Montréal, Québec, called Nanex Canada. Not unexpectedly, the company has now announced a new office in the US. From a Sept. 23, 2014 Nanex Canada news release on Digital Journal,

Nanex Canada appoints Patrick Tuttle, of Havre de Grace, Maryland as the new USA National Sales Director. Tuttle will be in charge of all operations for the USA marketing and distribution for the Nanex Super hydrophobic Water Repellent Nanotechnology products.

… Nanex Canada is proud to announce a new partnership with Patrick Tuttle to develop the market within the Unites States for Its new line of super hydrophobic products. “We feel this is a very strategic alliance with Mr. Tuttle and his international marketing staff,” said Boyd Soussana, National Marketing Director for the parent company, Nanex Canada.

The products Mr. Tuttle will be responsible for in developing a market for include:

1) Aqua Shield Marine

2) Aqua Shield Leather and Textile

3) Aqua Shield Exterior: Wood, Masonry, Concrete

4) Aqua Shield Sport: Skiing, Snowboarding, Clothing

5) Aqua Shield Clear: Home Glass and Windshield Coating

6) Dryve Shield: For all Auto Cleaning and Shine

Soussana went on to say “the tests we have done in Canada on high dollar vehicles and the feedback from the Marine industry have been excellent. We are hearing from boat owners that they are seeing instant results in cleaning and protection from the Aqua Shield Marine products from the teak, to the rails and the fiberglass as well”

Boyd Soussana told me they did a private test on some very high end vehicles and the owners were very impressed, according to him.

So what is a Super hydrophobic Water Repellent Nanotechnology Product and how does it work?

A superhydrophobic coating is a nanoscopic surface layer that repels water and also can reduce dirt and friction against the surface to achieve better fuel economies for the auto and maritime industries according to Wikipedia.

About Nanex Company

Nanex is a developer of commercialized nanotechnology solutions headquartered in Belgium operating in North America through its Canadian subsidiary Nanex Canada Incorporated. At the start of 2012 it launched its first product, an advanced super hydrophobic formula called Always Dry. By 2014 Nanex had distributors around the world from Korea, Malaysia, and Singapore, to England and Eastern Europe, and had expanded its products into three lines and several formulas.

Given the remarkably short time span between opening a Canadian subsidiary and opening an office in the US, it’s safe to assume that obtaining a toehold in the US market was Nanex’s true objective.

Canadian researchers harvest energy from chewing

Who knew that jaw movements have proved to be amongst the most promising activities for energy-harvesting? Apparently, scientists know and are coming up with ways to enjoy the harvest. From a Sept. 16, 2014 news item on Nanowerk,

A chin strap that can harvest energy from jaw movements has been created by a group of researchers in Canada.

It is hoped that the device can generate electricity from eating, chewing and talking, and power a number of small-scale implantable or wearable electronic devices, such as hearing aids, cochlear implants, electronic hearing protectors and communication devices.

An Institute of Physics (IOP) Sept. 16, 2014 news release (also on EurekAlert), which  generated the news item, explains just why jaw movements are so exciting and how the researchers went about ‘harvesting’,

Jaw movements have proved to be one of the most promising candidates for generating electricity from human body movements, with researchers estimating that an average of around 7 mW of power could be generated from chewing during meals alone.

To harvest this energy, the study’s researchers, from Sonomax-ÉTS Industrial Research Chair in In-ear Technologies (CRITIAS) at École de technologie supérieure (ÉTS) in Montreal, Canada, created a chinstrap made from piezoelectric fibre composites (PFC).

PFC is a type of piezoelectric smart material that consists of integrated electrodes and an adhesive polymer matrix. The material is able to produce an electric charge when it stretches and is subjected to mechanical stress.

In their study, the researchers created an energy-harvesting chinstrap made from a single layer of PFC and attached it to a pair of earmuffs using a pair of elastic side straps. To ensure maximum performance, the chinstrap was fitted snugly to the user, so when the user’s jaw moved it caused the strap to stretch.

To test the performance of the device, the subject was asked to chew gum for 60 seconds while wearing the device; at the same time the researchers recorded a number of different parameters.

The maximum amount of power that could be harvested from the jaw movements was around 18 µW, but taking into account the optimum set-up for the head-mounted device, the power output was around 10 µW.

Co-author of the study Aidin Delnavaz said: “Given that the average power available from chewing is around 7 mW, we still have a long way to go before we perfect the performance of the device.

“The power level we achieved is hardly sufficient for powering electrical devices at the moment; however, we can multiply the power output by adding more PFC layers to the chinstrap. For example, 20 PFC layers, with a total thickness of 6 mm, would be able to power a 200 µW intelligent hearing protector.”

One additional motivation for pursuing this area of research is the desire to curb the current dependency on batteries, which are not only expensive to replace but also extremely damaging to the environment if they are not disposed of properly.

“The only expensive part of the energy-harvesting device is the single PFC layer, which costs around $20. Considering the price and short lifetime of batteries, we estimate that a self-powered hearing protector based on the proposed chinstrap energy-harvesting device will start to pay back the investment after three years of use,” continued Delnavaz.

“Additionally, the device could substantially decrease the environmental impact of batteries and bring more comfort to users.

“We will now look at ways to increase the number of piezoelectric elements in the chinstrap to supply the power that small electronic devices demand, and also develop an appropriate power management circuit so that a tiny, rechargeable battery can be integrated into the device.”

Here’s a look at the ‘smart chinstrap’,

Caption: This is the experimental set up of an energy harvesting chin strap. Credit: Smart Materials and Structures/IOP Publishing

Caption: This is the experimental set up of an energy harvesting chin strap.
Credit: Smart Materials and Structures/IOP Publishing

I don’t see anyone rushing to get a chinstrap soon. Hopefully they’ll find a way to address some of the design issues. In the meantime, here’s a link to and a citation for the paper,

Flexible piezoelectric energy harvesting from jaw movements by Aidin Delnavaz and Jérémie Voix. 2014 Smart Mater. Struct. 23 105020 doi:10.1088/0964-1726/23/10/105020

This is an open access paper.