Tag Archives: Rationally Designed Complex Hierarchical Microarchitectures

“Spring is like a perhaps hand,” E. E. Cummings, Harvard, and nano flowers

It’s always a treat to read a news/press/media release that starts with poetry. From the May 16, 2013 Harvard University press release,

“Spring is like a perhaps hand,” wrote the poet E. E. Cummings: “carefully / moving a perhaps / fraction of flower here placing / an inch of air there… / without breaking anything.”

This was written to celebrate the publication of a paper by Wim L. Noorduin and others, from the press release (Note: Links have been removed),

By simply manipulating chemical gradients in a beaker of fluid, Wim L. Noorduin, a postdoctoral fellow at the Harvard School of Engineering and Applied Sciences (SEAS) and lead author of a paper appearing on the cover of the May 17 issue of Science, has found that he can control the growth behavior of these crystals to create precisely tailored structures.

“For at least 200 years, people have been intrigued by how complex shapes could have evolved in nature. This work helps to demonstrate what’s possible just through environmental, chemical changes,” says Noorduin.

The precipitation of the crystals depends on a reaction of compounds that are diffusing through a liquid solution. The crystals grow toward or away from certain chemical gradients as the pH of the reaction shifts back and forth. The conditions of the reaction dictate whether the structure resembles broad, radiating leaves, a thin stem, or a rosette of petals.

Replicating this type of effect in the laboratory was a matter of identifying a suitable chemical reaction and testing, again and again, how variables like the pH, temperature, and exposure to air might affect the nanoscale structures.

The project fits right in with the work of Joanna Aizenberg, an expert in biologically inspired materials science, biomineralization, and self-assembly, and principal investigator for this research.

Aizenberg is the Amy Smith Berylson Professor of Materials Science at Harvard SEAS, Professor of Chemistry and Chemical Biology in the Harvard Department of Chemistry and Chemical Biology, and a Core Faculty Member of the Wyss Institute for Biologically Inspired Engineering at Harvard.

Here are some details about how the scientists created their ‘flowers, from the press release,

To create the flower structures, Noorduin and his colleagues dissolve barium chloride (a salt) and sodium silicate (also known as waterglass) into a beaker of water. Carbon dioxide from air naturally dissolves in the water, setting off a reaction which precipitates barium carbonate crystals. As a byproduct, it also lowers the pH of the solution immediately surrounding the crystals, which then triggers a reaction with the dissolved waterglass. This second reaction adds a layer of silica to the growing structures, uses up the acid from the solution, and allows the formation of barium carbonate crystals to continue.

“You can really collaborate with the self-assembly process,” says Noorduin. “The precipitation happens spontaneously, but if you want to change something then you can just manipulate the conditions of the reaction and sculpt the forms while they’re growing.”

Increasing the concentration of carbon dioxide, for instance, helps to create ‘broad-leafed’ structures. Reversing the pH gradient at the right moment can create curved, ruffled structures.

Noorduin and his colleagues have grown the crystals on glass slides and metal blades; they’ve even grown a field of flowers in front of President Lincoln’s seat on a one-cent coin.

“When you look through the electron microscope, it really feels a bit like you’re diving in the ocean, seeing huge fields of coral and sponges,” describes Noorduin. “Sometimes I forget to take images because it’s so nice to explore.”

Here’s a link to and a citation for the paper,

Rationally Designed Complex, Hierarchical Microarchitectures by Wim L. Noorduin, Alison Grinthal, L. Mahadevan, and Joanna Aizenberg. Science 17 May 2013: Vol. 340 no. 6134 pp. 832-837 DOI: 10.1126/science.1234621

H/T to the May 17, 2013 news item on Azonano.