Tag Archives: Research Council of Norway

Nanomechanics and Applied Nanotechnology PhD candidate position in Norway

The application deadline is March 19, 2014. Thank you to Zhiliang Zhang  for your March 6, 2014 posting on iMechanica for this information,

NTNU Nanomechanical Lab at the Norwegian University of Science and Technology (NTNU) is looking for a PhD candidate within the field of Nanomechanics-nanotechnology-enabled petroleum engineering. The position is part of a knowledge-building project financed by The Research Council of Norway and industrial partners.

The Norwegian University of Science and Technology (NTNU) in Trondheim undated announcement  provides more details,

NTNU Nanomechanical Lab at the Department of Structural Engineering is looking for a PhD candidate within the field of nanotechnology-enabled petroleum engineering. Two positions are a part of a knowledge-building project financed by The Research Council of Norway, Det norske oljeselskap ASA and Wintershall Holding GmbH. The goal of the project is to design and control nanoparticles enabling interfacial wettability alteration and enhanced flow transport in confined space towards petroleum applications through multiscale experiments and simulations. The PhD candidate will work closely with other specialists involved in the project

Applications with CV, possible publications and other scientific works, certified copies of transcripts and reference letters must be submitted electronically via www.jobbnorge.no. Mark your application with ref.no. IVT-59/14.

In case of questions, please visit http://www.ntnu.no/nml and contact Assoc. Prof. Jianying He, [email protected], 73594686; Prof. Zhiliang Zhang, [email protected], 73592530; Prof. Ole Torsæter, [email protected], 73594941. No application should be sent to these email addresses

They’re asking for a three-year commitment and a master’s degree (or equivalent) in nanotechnology, material science, mechanical/structural engineering, or related fields and there’s no mention of language skills. Good luck!

I last wrote about Norway and its petroleum interests in a Jan. 22, 2014 post titled: Norwegians hoping to recover leftover oil with nanotechnology-enabled solutions.

Norwegians hoping to recover leftover oil with nanotechnology-enabled solutions

Sabina Griffith’s Jan. 21, 2013 article for Dailyfusion.net profiles two petroleum-themed research projects funded by the Research Council of Norway,

Two new research projects are receiving funding from the Research Council of Norway to develop nanoparticles that can dislodge leftover oil that remains trapped in reservoirs after conventional recovery has been completed.

Every percentage point of enhanced oil recovery rate represents billions in revenues.

“Nanotechnology is a generic technology with the potential for a wide variety of industrial applications,” says Aase Marie Hundere, Special Adviser at the Research Council and part of the NANO2021 program secretariat. “The petroleum industry is Norway’s largest, with vast international potential. Collaboration with the PETROMAKS 2 program provides an excellent opportunity to attract projects that involve specific users from industry.”

A Jan. 17, 2014 Research Council of Norway news release by Claude R. Olsen/Else Lie. Translation: Darren McKellep/Carol B. Eckmann describes first one project and its proponents,

Plugging errant water paths with gel

One of the problems with reservoirs that have been producing petroleum for an extended period is that the water injected flushes less and less oil out. Eventually the injected water is wasted, flowing through the same water-saturated zones rather than being diverted through new areas still containing mobile oil.

SINTEF [Scandinavia’s largest independent research organization] Petroleum Research is heading a project to develop chemical systems that can seal off these zones by sending a solution of nanoparticles and polymers down into the reservoir to the areas where the operator wants to prevent water from flowing. Once they are in position the particles, together with the polymers, will form a gelatinous structure (a gel) that prevents water from flowing through.
It may take the particles weeks or months to make their way through the reservoir, so the project researchers will have to figure out how to keep the gel from forming before the particles have reached their intended destination.

Another critical point will be to discover how the particles are transported through the porous rock: Will they slip through easily to their destination or get caught up in the pore walls along the way?

Together with NTNU, the University of Kansas and a number of petroleum companies, SINTEF will investigate two alternative solutions. Both are based on silica nanoparticles whose surface has been engineered to bind polymers together and form a gel. Developed by SINTEF Materials and Chemistry, the nanoparticles are similar to those used in certain products by Norwegian paint producer Jotun and in other products.

In the first alternative, chemicals will be used to deactivate the surface of the nanoparticles – keeping them passive for weeks or even months – before being activated to bind the polymers together at their destination point.

In the second alternative, active nanoparticles will be packaged into larger nanoparticles that transport them to the point where they are to be released in order to form the gel. The smaller particles will be produced by SINTEF. The University of Kansas has developed the transport particles and is already testing them in field experiments at North American oil reservoirs.

Project manager Torleif Holt of SINTEF Petroleum Research sees great potential for the technology, if successful.

“In the course of our three-and-a-half-year project period, we hope to have learned enough to know whether this method is viable,” he explains. “We would then able to estimate the quantities of nanoparticles needed and have some idea about when this is a financially feasible option.”

Here’s an image of trapped oil, gas, and water,

Functionalised particles to speed up oil flow While the SINTEF project focuses on plugging holes, the NTNU-led project is looking to speed up the flow of oil. Much of a reservoir’s oil remains trapped in small rock pores. NTNU researchers will be customising nanoparticles that can help to dislodge this oil and dramatically increase the amount of oil that can be recovered.  One method will utilise “Janus particles”, which feature a special surface of two different hemispheres: one is hydrophilic (attracted to water), the other hydrophobic (attracted to oil). Down in the reservoir, where both oil and water are found, the nanoparticles will spin like wheels and push the oil forward. “This is an early-stage project,” says project manager Jianying He, an associate professor at the NTNU Nanomechanical Lab. “But the idea is very exciting and has major potential for raising the recovery rate of Norwegian oil.” The petroleum companies Det norske and Wintershall are signed on as partners, and project researchers will be communicating with Statoil as well. The University of Houston is the research partner. The second method involves changing the surface charge of nanoparticles to make them capable of slipping between a reservoir’s oil and rock. If development proceeds as planned, Professor He estimates that the nanoparticles will be on the market in roughly seven years. She sees two challenges to using nanoparticles for enhanced recovery: HSE and production capacity. HSE should not be problematic in this case, as studies show that silica-based particles are not hazardous to the environment. Production capacity, however, may prove to be an obstacle to large-scale utilisation of nanoparticles. Petroleum companies would need millions of tonnes of nanoparticles daily. Currently there is no facility that can produce such quantities.  [downloaded from http://www.forskningsradet.no/en/Newsarticle/Nanotechnology_to_recover_stubborn_oil/1253992231414/p117731575391]

Microscope image of reservoir rock. The rock pores (shown in blue) may contain trapped oil, gas and water. Nanoparticles can be used to recover more of the residual oil. (Photo: Ingrid Anne Munz) [downloaded from http://www.forskningsradet.no/en/Newsarticle/Nanotechnology_to_recover_stubborn_oil/1253992231414/p117731575391]

The news release then describes the other project and its proponents,

Functionalised particles to speed up oil flow

While the SINTEF project focuses on plugging holes, the NTNU [Norges teknisk-naturvitenskapelige universitet; Norwegian University of Science and Technology]-led project is looking to speed up the flow of oil. Much of a reservoir’s oil remains trapped in small rock pores. NTNU researchers will be customising nanoparticles that can help to dislodge this oil and dramatically increase the amount of oil that can be recovered.

One method will utilise “Janus particles”, which feature a special surface of two different hemispheres: one is hydrophilic (attracted to water), the other hydrophobic (attracted to oil). Down in the reservoir, where both oil and water are found, the nanoparticles will spin like wheels and push the oil forward.

“This is an early-stage project,” says project manager Jianying He, an associate professor at the NTNU Nanomechanical Lab. “But the idea is very exciting and has major potential for raising the recovery rate of Norwegian oil.”

The petroleum companies Det norske and Wintershall are signed on as partners, and project researchers will be communicating with Statoil as well. The University of Houston is the research partner.

The second method involves changing the surface charge of nanoparticles to make them capable of slipping between a reservoir’s oil and rock.

If development proceeds as planned, Professor He estimates that the nanoparticles will be on the market in roughly seven years. She sees two challenges to using nanoparticles for enhanced recovery: HSE  [health, safety, and environment?] and production capacity. HSE should not be problematic in this case, as studies show that silica-based particles are not hazardous to the environment.

Production capacity, however, may prove to be an obstacle to large-scale utilisation of nanoparticles. Petroleum companies would need millions of tonnes of nanoparticles daily. Currently there is no facility that can produce such quantities.

I had no idea Norway was so dependent on the petroleum industry. As for the nanoparticles referred to throughout the descriptions for both projects, I’d love to know more about them.

“Sensational” 15% can become up to 50% oil recovery rate from dead oil wells with nanoparticle-enhanced water

Texas, the Middle East, and/or Alberta leap to mind before Norway and China when one thinks of research into oil extraction, which makes this June 14, 2013 news item on Nanwerk about a Norway-China collaboration particularly intriguing,

When petroleum companies abandon an oil well, more than half the reservoir’s oil is usually left behind as too difficult to recover. Now, however, much of the residual oil can be recovered with the help of nanoparticles and a simple law of physics.

Oil to be recovered is confined in tiny pores within rock, often sandstone. Often the natural pressure in a reservoir is so high that the oil flows upwards when drilling reaches the rocks containing the oil.

In order to maintain the pressure within a reservoir, oil companies have learned to displace the produced oil by injecting water. This water forces out the oil located in areas near the injection point. The actual injection point may be hundreds or even thousands of metres away from the production well.

Eventually, however, water injection loses its effect. Once the oil from all the easily reached pores has been recovered, water begins emerging from the production well instead of oil, at which point the petroleum engineers have had little choice but to shut down the well.

The petroleum industry and research community have been working for decades on various solutions to increase recovery rates. One group of researchers at the Centre for Integrated Petroleum Research (CIPR) in Bergen, collaborating with researchers in China, has developed a new method for recovering more oil from wells – and not just more, far more. [emphasis mine]

The Chinese scientists had already succeeded in recovering a sensational 15 per cent of the residual oil in their test reservoir when they formed a collaboration with the CIPR researchers to find out what had actually taken place down in the reservoir. Now the Norwegian partner in the collaboration has succeeded in recovering up to 50 per cent of the oil remaining in North Sea rock samples.

The ?, 2013 article (Nanoparticles helping to recover more oil) by Claude R. Olsen/Else Lie. Translation: Darren McKellep/Carol B. Eckmann for the Research Council of Norway, which originated the news item, explains what is left after the easy oil has been extracted and how this news technique squeezes more oil out of the well,

Water in an oil reservoir flows much like the water in a river, accelerating in narrow stretches and slowing where the path widens.

When water is pumped into a reservoir, the pressure difference forces the water away from the injection well and towards the production well through the tiny rock pores. These pores are all interconnected by very narrow tunnel-like passages, and the water accelerates as it squeezes its way through these.

The new method is based on infusing the injection water with particles that are considerably smaller than the tunnel diameters. When the particle-enhanced water reaches a tunnel opening, it will accelerate faster than the particles, leaving the particles behind to accumulate and plug the tunnel entrance, ultimately sealing the tunnel.

This forces the following water to take other paths through the rock’s pores and passages – and in some of these there is oil, which is forced out with the water flow. The result is more oil extracted from the production well and higher profits for the petroleum companies.

The article writers do not provide a description of the nanoparticles but they do describe the genesis of this Norwegian-Sino collaboration,

The idea for this method of oil recovery came from the two Chinese researchers Bo Peng and Ming yuan Li who completed their doctorates in Bergen 10 and 20 years ago, respectively. The University of Bergen and China University of Petroleum in Beijing have been cooperating for over a decade on petroleum research, and this laid the foundation for collaboration on understanding and refining the particle method.

At first it was not known if the particles could be used in seawater, since the Chinese had done their trials with river water and onshore oilfields. Trials in Bergen using rock samples from the North Sea showed that the nanoparticles also work in seawater and help to recover an average of 20?30 per cent, and up to 50 per cent, more residual oil.

 

 

Nano sense of snow

According to a Dec. 19, 2012 news item on Azonano there’s a nanotechnology-enabled sensor which can identify snow depth,

Snow is the be-all and end-all for alpine ski resorts. Now a tiny sensor has been developed to determine how much cold gold there is on the slopes and how much more should be produced. The sensor is based on Norwegian radar technology and is no larger than a match head.

The processor chip from Novelda is the result of high-level nanotechnology. The minuscule Norwegian-designed silicon chip has already become an international success. Customers around the world are creating applications based on the technology.

The US-based company Flat Earth has drawn on Novelda’s technology to develop the SDS-715 snow-depth sensor. [emphasis mine] It is capable of measuring snow depth from 15 cm to 2 m with a margin of error of 3.5 cm.

The sensor is mounted beneath the vehicle that prepares the tracks. Snow depth is measured at one-second intervals. A separate application can be used to display snow depths via Google Earth.

There are widespread applications for the nanoscale sensor. Eirik Næss-Ulseth, Chairman of the Board in Novelda, envisions integrating the chips into athletic garments to replace pulse sensors that are currently held in place with an elastic band.

“We have already proven that the chips can be used to measure pulse and breathing rates at a distance,” he explains.

Novelda was founded as a spin-off company from the University in Oslo. …

The Research Council of Norway provided the Dec. 17, 2012 news release, written by Siw Ellen Jakobsen/Else Lie and translated by Glenn Wells/Carol B. Eckmann, which originated the news item. Oddly, Novelda issued a June 5, 2011 news release about a similar, if not identical, product,

Flat Earth Incorporated announced today they have developed the first mobile snow depth sensor based on the Novelda AS NVA6000 CMOS impulse radar chip. The SDS-715 provides a non-contact approach for determining snow depth on the go. [emphasis mine] Measurement range is 0.15 to 2.0 meters with an accuracy of approximately 3.5 cm, snow condition dependent.

This rugged low cost snow depth measurement system is designed for snow grooming operations at Alpine and Nordic ski resorts. Snow depth beneath the snowcat is measured every second, approximately every 3 meters at 8 kmph. The SDS-715 is cheaper than current ground penetrating radar systems on the market today. When used with Flat Earth’s CatWorks Snowcat navigation and information system, depth maps of the resort trails can be created and viewed in Google Earth.

For those new to marketing and promotion, it never hurts to reissue or send more information about a previously announced product, especially when it can be tied in with a season. Still, this is a bit longer than usual between campaigns.

For anyone interested in Flat Earth; nanoscale radar products and consulting, the company’s website is under construction and due to be unveiled sometime December 2012 (or, later this month).

Graphene, replacing silicon, and epitaxial growth

Researchers in Norway have created a semiconductor on a graphene substrate—absolutely no silicon in the substrate. From the Sept. 28, 2012 news item on Nanowerk,

Norwegian researchers are the world’s first to develop a method for producing semiconductors from graphene. This finding may revolutionise the technology industry.
The method involves growing semiconductor-nanowires on graphene. To achieve this, researchers “bomb” the graphene surface with gallium atoms and arsenic molecules, thereby creating a network of minute nanowires.
The result is a one-micrometre thick hybrid material which acts as a semiconductor. By comparison, the silicon semiconductors in use today are several hundred times thicker. The semiconductors’ ability to conduct electricity may be affected by temperature, light or the addition of other atoms.

The Research Council of Norway’s Sept.28, 2012 news release, which originated the news item, offers this,

Graphene is the thinnest material known, and at the same time one of the strongest. It consists of a single layer of carbon atoms and is both pliable and transparent. The material conducts electricity and heat very effectively. And perhaps most importantly, it is very inexpensive to produce.

“Given that it’s possible to make semiconductors out of graphene instead of silicon, we can make semiconductor components that are both cheaper and more effective than the ones currently on the market,” explains Helge Weman of the Norwegian University of Science and Technology (NTNU). Dr Weman is behind the breakthrough discovery along with Professor Bjørn-Ove Fimland.

“A material comprising a pliable base that is also transparent opens up a world of opportunities, one we have barely touched the surface of,” says Dr Weman. “This may bring about a revolution in the production of solar cells and LED components. Windows in traditional houses could double as solar panels or a TV screen. Mobile phone screens could be wrapped around the wrist like a watch. In short, the potential is tremendous.”

The researchers have patented this work and founded a startup company, CrayoNano. They provide a video animation of the process,

The narrator mentions epataxial growth and the gallium arsenide nanowires being grown on the graphene substrate. For anyone not familiar with ‘epataxial growth’, I found a definition in another Sept. 28, 2012 news item about graphene research on Nanowerk,

One of the best ways of producing high quality graphene is to grow it epitaxially (in layers) from crystals of silicon carbide. For use in electronic devices, it is important to be able to count the number of graphene layers that are grown, as single and double layers of graphene have different electrical properties.

This research out of the UK is based on using silicon as a substrate and you can find out more (excerpted from the  news item about the National Physical Laboratory’s graphene research on Nanowerk),

Recent National Physical Laboratory research, published in the Journal of Applied Physics (“Identification of epitaxial graphene domains and adsorbed species in ambient conditions using quantified topography measurements” [open access]), looked at different topography approaches of determining graphene thickness and investigated the factors that can influence the accuracy of the results, such as atmospheric water and other adsorbates on the graphene surface.

Getting back to graphene substrates, the Research Council of Norway’s news release provides the reminder that this research is about business,

The researchers will now begin to create prototypes directed towards specific areas of application. They have been in contact with giants in the electronics industry such as Samsung and IBM. “There is tremendous interest in producing semiconductors out of graphene, so it shouldn’t be difficult to find collaborative partners,” Dr Weman adds.

The researchers are hoping to have the new semiconductor hybrid materials on the commercial market in roughly five years.

Dexter Johnson in a Sept. 28, 2012 posting on his Nanoclast blog, which is hosted by the IEEE (Institute of Electrical and Electronics Engineers), provides some business perspective,

Weman notes: “Companies like IBM and Samsung are driving this development in the search for a replacement for silicon in electronics as well as for new applications, such as flexible touch screens for mobile phones. Well, they need not wait any more. Our invention fits perfectly with the production machinery they already have. We make it easy for them to upgrade consumer electronics to a level where design has no limits.”

As magnanimous as Weman’s invitation sounds, one can’t help but think it comes from concern. The prospect of a five-year-development period before a product gets to market might be somewhat worrying for a group of scientists who just launched a new startup. A nice licensing agreement from one of the big electronics companies must look appealing right about now.