Tag Archives: reverse osmosis

Nanopores and a new technique for desalination

There’s been more than one piece here about water desalination and purification and/or remediation efforts and at least one of them claims to have successfully overcome issues such as reverse osmosis energy needs which are hampering adoption of various technologies. Now, researchers at the University of Illinois at Champaign Urbana have developed another new technique for desalinating water while reverse osmosis issues according to a Nov. 11, 2015 news item on Nanowerk (Note: A link has been removed) ,

University of Illinois engineers have found an energy-efficient material for removing salt from seawater that could provide a rebuttal to poet Samuel Taylor Coleridge’s lament, “Water, water, every where, nor any drop to drink.”

The material, a nanometer-thick sheet of molybdenum disulfide (MoS2) riddled with tiny holes called nanopores, is specially designed to let high volumes of water through but keep salt and other contaminates out, a process called desalination. In a study published in the journal Nature Communications (“Water desalination with a single-layer MoS2 nanopore”), the Illinois team modeled various thin-film membranes and found that MoS2 showed the greatest efficiency, filtering through up to 70 percent more water than graphene membranes. [emphasis mine]

I’ll get to the professor’s comments about graphene membranes in a minute. Meanwhile, a Nov. 11, 2015 University of Illinois news release (also on EurekAlert), which originated the news item, provides more information about the research,

“Even though we have a lot of water on this planet, there is very little that is drinkable,” said study leader Narayana Aluru, a U. of I. professor of mechanical science and engineering. “If we could find a low-cost, efficient way to purify sea water, we would be making good strides in solving the water crisis.

“Finding materials for efficient desalination has been a big issue, and I think this work lays the foundation for next-generation materials. These materials are efficient in terms of energy usage and fouling, which are issues that have plagued desalination technology for a long time,” said Aluru, who also is affiliated with the Beckman Institute for Advanced Science and Technology at the U. of I.

Most available desalination technologies rely on a process called reverse osmosis to push seawater through a thin plastic membrane to make fresh water. The membrane has holes in it small enough to not let salt or dirt through, but large enough to let water through. They are very good at filtering out salt, but yield only a trickle of fresh water. Although thin to the eye, these membranes are still relatively thick for filtering on the molecular level, so a lot of pressure has to be applied to push the water through.

“Reverse osmosis is a very expensive process,” Aluru said. “It’s very energy intensive. A lot of power is required to do this process, and it’s not very efficient. In addition, the membranes fail because of clogging. So we’d like to make it cheaper and make the membranes more efficient so they don’t fail as often. We also don’t want to have to use a lot of pressure to get a high flow rate of water.”

One way to dramatically increase the water flow is to make the membrane thinner, since the required force is proportional to the membrane thickness. Researchers have been looking at nanometer-thin membranes such as graphene. However, graphene presents its own challenges in the way it interacts with water.

Aluru’s group has previously studied MoS2 nanopores as a platform for DNA sequencing and decided to explore its properties for water desalination. Using the Blue Waters supercomputer at the National Center for Supercomputing Applications at the U. of I., they found that a single-layer sheet of MoS2 outperformed its competitors thanks to a combination of thinness, pore geometry and chemical properties.

A MoS2 molecule has one molybdenum atom sandwiched between two sulfur atoms. A sheet of MoS2, then, has sulfur coating either side with the molybdenum in the center. The researchers found that creating a pore in the sheet that left an exposed ring of molybdenum around the center of the pore created a nozzle-like shape that drew water through the pore.

“MoS2 has inherent advantages in that the molybdenum in the center attracts water, then the sulfur on the other side pushes it away, so we have much higher rate of water going through the pore,” said graduate student Mohammad Heiranian, the first author of the study. “It’s inherent in the chemistry of MoS2 and the geometry of the pore, so we don’t have to functionalize the pore, which is a very complex process with graphene.”

In addition to the chemical properties, the single-layer sheets of MoS2 have the advantages of thinness, requiring much less energy, which in turn dramatically reduces operating costs. MoS2 also is a robust material, so even such a thin sheet is able to withstand the necessary pressures and water volumes.

The Illinois researchers are establishing collaborations to experimentally test MoS2 for water desalination and to test its rate of fouling, or clogging of the pores, a major problem for plastic membranes. MoS2 is a relatively new material, but the researchers believe that manufacturing techniques will improve as its high performance becomes more sought-after for various applications.

“Nanotechnology could play a great role in reducing the cost of desalination plants and making them energy efficient,” said Amir Barati Farimani, who worked on the study as a graduate student at Illinois and is now a postdoctoral fellow at Stanford University. “I’m in California now, and there’s a lot of talk about the drought and how to tackle it. I’m very hopeful that this work can help the designers of desalination plants. This type of thin membrane can increase return on investment because they are much more energy efficient.”

Here’s a link to and a citation for the paper,

Water desalination with a single-layer MoS2 nanopore by Mohammad Heiranian, Amir Barati Farimani, & Narayana R. Aluru. Nature Communications 6, Article number: 8616 doi:10.1038/ncomms9616 Published 14 October 2015

Graphene membranes

In a July 13, 2015 essay on Nanotechnology Now, Tim Harper provides an overview of the research into using graphene for water desalination and purification/remediation about which he is quite hopeful. There is no mention of an issue with interactions between water and graphene. It should be noted that Tim Harper is the Chief Executive Officer of G20, a company which produces a graphene-based solution (graphene oxide sheets), which can desalinate water and can purify/remediate it. Tim is a scientist and while you might have some hesitation given his fiscal interests, his essay is worthwhile reading as he supplies context and explanations of the science.

The Gaza is running out of water by 2016 if the United Nations predictions are correct

If the notion that people are in imminent danger of dying from thirst isn’t compelling enough, there’s this account of the situation and a possible solution in an August 24, 2015 posting by observers, Abou Assi and Majdi Fathi, with journalist, Dorothée Myriam Kellou for observers.france24.com,

Each year, Gaza’s population uses 180 million cubic metres of water but only has capacity for 60 million cubic metres of water usage per year. Running out of water is a constant fear for Gazans.

To understand the context of the crisis, we first spoke to our Observer Majdi Fathi, a photographer who lives in Gaza. He described the daily struggles of living in a place with a shortage of potable water.

The water that comes out of the taps in Gaza is too salty to drink. We only use it for washing. We have to buy bottled water to drink. Each family goes to water vendors. [Editor’s note : Often, families buy water from private companies who run desalination plants with little regulation. Though the water quality is often criticised, it’s still very expensive]. People frequently pay about $2 for 500 litres of water. There are ten people in my family and we can live on 500 litres for about 25 days. Though the authorities give some free water to the very poorest, it’s not enough.

We are all worried about the water shortage. Often, the taps run dry and we end up having to use the drinking water that we purchased for cleaning. Buying water from vendors is not a long-term, sustainable solution!

In a June 25, 2013 posting, I included (in an update) some information about the Gaza situation in the context of water issues in Israel and a special project with the University of Chicago designed to address those issues,

ETA June 27, 2013: There is no hint in the University of Chicago news releases that these water projects will benefit any parties other than Israel and the US but it is tempting to hope that this work might also have an impact in Palestine given its current water crisis there as described in a June 26, 2013 news item in the World Bulletin (Note: Links have been removed),

A tiny wedge of land jammed between Israel, Egypt and the Mediterranean sea, the Gaza Strip is heading inexorably into a water crisis that the United Nations says could make the Palestinian enclave unliveable in just a few years.

With 90-95 percent of the territory’s only aquifer contaminated by sewage, chemicals and seawater, neighbourhood desalination facilities and their public taps are a lifesaver for some of Gaza’s 1.6 million residents.

But these small-scale projects provide water for only about 20 percent of the population, forcing many more residents in the impoverished Gaza Strip to buy bottled water at a premium.

“There is a crisis. There is a serious deficit in the water resources in Gaza and there is a serious deterioration in the water quality,” said Rebhi El Sheikh, deputy chairman of the Palestinian Water Authority (PWA).

A NASA study of satellite data released this year showed that between 2003 and 2009 the region lost 144 cubic km of stored freshwater – equivalent to the amount of water held in the Dead Sea – making an already bad situation much worse.

But the situation in Gaza is particularly acute, with the United Nations warning that its sole aquifer might be unusable by 2016, with the damage potentially irreversible by 2020.

Abou Assi, a Palestinian engineer, thinks he may have a solution (from the observers.france24.com Aug. 24, 2015 posting),

The water table, which is the main source of drinking water in Gaza, is being over-exploited and is also polluted by both nitrates used in agriculture and by sea water. Gaza’s groundwater could run out as soon as next year, according to the United Nations.

While I was working on my masters in engineering at the Islamic University in Gaza, I started looking for a radical solution to the problem. Seeing as Gaza is located on the shores of the Mediterranean, I started considering a filtration system that could desalinate sea water.

There are seven different desalination plants in Gaza. They each produce between 45 and 80 cubic metres of water an hour. The problem is that all of these factories use the reverse osmosis procedure [Editor’s note: This is a water purification system that uses a semipermeable membrane to remove larger particles, including salt molecules, from water molecules].

Even though the method is ingenious, it requires a lot of energy. This is a problem in Gaza, because we also have a major energy shortage. Our power plant, which provides Gaza with about a third of its energy, regularly stops working due to fuel shortages.

My team and I conducted 170 experiments in 14 months before we managed to create a machine that reduced the salinity of the seawater enough to make it drinkable.

The machine is very simple: it pumps sea water very quickly through iron pipes. The water passes through electrical boxes that push the water through membranes made from nanomaterials. The membranes have tiny, microscopic pores that block the sodium chloride (salt) molecules but allow the water molecules to go through. After the water is filtered, the useful minerals are re-injected. After all this, the water that comes out of the taps is clean enough to drink!

With this machine, it’s possible to treat one cubic metre of water per day, using 60% less energy than with the old system. The water meets the quality standards of the World Health Organisation, which puts limits on a number of substances, including chlorine, limestone, lead, nitrates, pesticides and bacteria. For now, some so-called “drinkable” water in Gaza has nitrate levels that can reach up to 220 mg per litre even though the WHO recommends a limit of 50 mg per litre. Poorly treated drinking water can cause many health problems, especially for children. [Editor’s note: The WHO recently noted an increase in cases of children with diarrhea in Gaza].

Assi has gone into debt to finance his research despite the fact he has received grants for this work (from the observers.france24.com Aug. 24, 2015 posting),

In order to transition from the prototype to a practical application, I need more financial support. I would like to create a model of a smaller version that could be put into people’s homes in Gaza. In order to develop this, all I need is about $20,000.

That said, in order to really resolve the drinking water crisis across Gaza, we would need to build a desalination plant that uses this technique. That would be expensive — about $300,000 million – and there would always be the fear that the plant would be bombed, like with the power plant.

We have attempted to discuss our ideas with officials in both Gaza and Ramallah but, for the time being, we have received no response. We hope for support both from Palestinian institutions and from the international community.

There doesn’t yet seem to be a website or Facebook page or other means of contacting and/or lending other kinds of support to Assi. Hopefully, he will have something soon.

In a February 24, 2014 posting, I featured a nanotechnology laboratory in Oman where they were studying and working to develop desalination technologies. (I noticed that Assi received a grant for his work from the  Middle East Desalination Research Center in Oman.)