Tag Archives: Rice University

Super-capacitors on automobiles

Queensland University of Technology* (QUT; Australia) researchers are hopeful they can adapt supercapacitors in the form of a fine film tor use in electric vehicles making them more energy-efficient. From a Nov. 6, 2014 news item on ScienceDaily,

A car powered by its own body panels could soon be driving on our roads after a breakthrough in nanotechnology research by a QUT team.

Researchers have developed lightweight “supercapacitors” that can be combined with regular batteries to dramatically boost the power of an electric car.

The discovery was made by Postdoctoral Research Fellow Dr Jinzhang Liu, Professor Nunzio Motta and PhD researcher Marco Notarianni, from QUT’s Science and Engineering Faculty — Institute for Future Environments, and PhD researcher Francesca Mirri and Professor Matteo Pasquali, from Rice University in Houston, in the United States.

A Nov. 6, 2014 QUT news release, which originated the news item, describes supercapacitors, the research, and the need for this research in more detail,

The supercapacitors – a “sandwich” of electrolyte between two all-carbon electrodes – were made into a thin and extremely strong film with a high power density.

The film could be embedded in a car’s body panels, roof, doors, bonnet and floor – storing enough energy to turbocharge an electric car’s battery in just a few minutes.

“Vehicles need an extra energy spurt for acceleration, and this is where supercapacitors come in. They hold a limited amount of charge, but they are able to deliver it very quickly, making them the perfect complement to mass-storage batteries,” he said.

“Supercapacitors offer a high power output in a short time, meaning a faster acceleration rate of the car and a charging time of just a few minutes, compared to several hours for a standard electric car battery.”

Dr Liu said currently the “energy density” of a supercapacitor is lower than a standard lithium ion (Li-Ion) battery, but its “high power density”, or ability to release power in a short time, is “far beyond” a conventional battery.

“Supercapacitors are presently combined with standard Li-Ion batteries to power electric cars, with a substantial weight reduction and increase in performance,” he said.

“In the future, it is hoped the supercapacitor will be developed to store more energy than a Li-Ion battery while retaining the ability to release its energy up to 10 times faster – meaning the car could be entirely powered by the supercapacitors in its body panels.

“After one full charge this car should be able to run up to 500km – similar to a petrol-powered car and more than double the current limit of an electric car.”

Dr Liu said the technology would also potentially be used for rapid charges of other battery-powered devices.

“For example, by putting the film on the back of a smart phone to charge it extremely quickly,” he said.

The discovery may be a game-changer for the automotive industry, with significant impacts on financial, as well as environmental, factors.

“We are using cheap carbon materials to make supercapacitors and the price of industry scale production will be low,” Professor Motta said.

“The price of Li-Ion batteries cannot decrease a lot because the price of Lithium remains high. This technique does not rely on metals and other toxic materials either, so it is environmentally friendly if it needs to be disposed of.”

A Nov. 10, 2014 news item on Azonano describes the Rice University (Texas, US) contribution to this work,

Rice University scientist Matteo Pasquali and his team contributed to two new papers that suggest the nano-infused body of a car may someday power the car itself.

Rice supplied high-performance carbon nanotube films and input on the device design to scientists at the Queensland University of Technology in Australia for the creation of lightweight films containing supercapacitors that charge quickly and store energy. The inventors hope to use the films as part of composite car doors, fenders, roofs and other body panels to significantly boost the power of electric vehicles.

A Nov. 7, 2014 Rice University news release, which originated the news item, offers a few technical details about the film being proposed for use as a supercapacitor on car panels,

Researchers in the Queensland lab of scientist Nunzio Motta combined exfoliated graphene and entangled multiwalled carbon nanotubes combined with plastic, paper and a gelled electrolyte to produce the flexible, solid-state supercapacitors.

“Nunzio’s team is making important advances in the energy-storage area, and we were glad to see that our carbon nanotube film technology was able to provide breakthrough current collection capability to further improve their devices,” said Pasquali, a Rice professor of chemical and biomolecular engineering and chemistry. “This nice collaboration is definitely bottom-up, as one of Nunzio’s Ph.D. students, Marco Notarianni, spent a year in our lab during his Master of Science research period a few years ago.”

“We built on our earlier work on CNT films published in ACS Nano, where we developed a solution-based technique to produce carbon nanotube films for transparent electrodes in displays,” said Francesca Mirri, a graduate student in Pasquali’s research group and co-author of the papers. “Now we see that carbon nanotube films produced by the solution-processing method can be applied in several areas.”

As currently designed, the supercapacitors can be charged through regenerative braking and are intended to work alongside the lithium-ion batteries in electric vehicles, said co-author Notarianni, a Queensland graduate student.

“Vehicles need an extra energy spurt for acceleration, and this is where supercapacitors come in. They hold a limited amount of charge, but with their high power density, deliver it very quickly, making them the perfect complement to mass-storage batteries,” he said.

Because hundreds of film supercapacitors are used in the panel, the electric energy required to power the car’s battery can be stored in the car body. “Supercapacitors offer a high power output in a short time, meaning a faster acceleration rate of the car and a charging time of just a few minutes, compared with several hours for a standard electric car battery,” Notarianni said.

The researchers foresee such panels will eventually replace standard lithium-ion batteries. “In the future, it is hoped the supercapacitor will be developed to store more energy than an ionic battery while retaining the ability to release its energy up to 10 times faster – meaning the car would be powered by the supercapacitors in its body panels,” said Queensland postdoctoral researcher Jinzhang Liu.

Here’s an image of graphene infused with carbon nantoubes used in the supercapacitor film,

A scanning electron microscope image shows freestanding graphene film with carbon nanotubes attached. The material is part of a project to create lightweight films containing super capacitors that charge quickly and store energy. Courtesy of Nunzio Motta/Queensland University of Technology - See more at: http://news.rice.edu/2014/11/07/supercharged-panels-may-power-cars/#sthash.0RPsIbMY.dpuf

A scanning electron microscope image shows freestanding graphene film with carbon nanotubes attached. The material is part of a project to create lightweight films containing super capacitors that charge quickly and store energy. Courtesy of Nunzio Motta/Queensland University of Technology

Here are links to and citations for the two papers published by the researchers,

Graphene-based supercapacitor with carbon nanotube film as highly efficient current collector by Marco Notarianni, Jinzhang Liu, Francesca Mirri, Matteo Pasquali, and Nunzio Motta. Nanotechnology Volume 25 Number 43 doi:10.1088/0957-4484/25/43/435405

High performance all-carbon thin film supercapacitors by Jinzhang Liu, Francesca Mirri, Marco Notarianni, Matteo Pasquali, and Nunzio Motta. Journal of Power Sources Volume 274, 15 January 2015, Pages 823–830 DOI: 10.1016/j.jpowsour.2014.10.104

Both articles are behind paywalls.

One final note, Dexter Johnson provides some insight into issues with graphene-based supercapacitors and what makes this proposed application attractive in his Nov. 7, 2014 post on the Nanoclast blog (on the IEEE [Institute of Electrical and Electronics Engineers] website; Note: Links have been removed),

The hope has been that someone could make graphene electrodes for supercapacitors that would boost their energy density into the range of chemical-based batteries. The supercapacitors currently on the market have on average an energy density around 28 Wh/kg, whereas a Li-ion battery holds about 200Wh/kg. That’s a big gap to fill.

The research in the field thus far has indicated that graphene’s achievable surface area in real devices—the factor that determines how many ions a supercapacitor electrode can store, and therefore its energy density—is not any better than traditional activated carbon. In fact, it may not be much better than a used cigarette butt.

Though graphene may not help increase supercapacitors’ energy density, its usefulness in this application may lie in the fact that its natural high conductivity will allow superconductors to operate at higher frequencies than those that are currently on the market. Another likely benefit that graphene will yield comes from the fact that it can be structured and scaled down, unlike other supercapacitor materials.

I recommend reading Dexter’s commentary in its entirety.

*’University of Queensland’ corrected to “Queensland University of Technology’ on Nov. 10, 2014 at 1335 PST.

Replacing copper wire in motors?

Finnish researchers at Lappeenranta University of Technology (LUT) believe it may be possible to replace copper wire used in motors with spun carbon nanotubes. From an Oct. 15, 2014 news item on Azonano,

Lappeenranta University of Technology (LUT) introduces the first electrical motor applying carbon nanotube yarn. The material replaces copper wires in windings. The motor is a step towards lightweight, efficient electric drives. Its output power is 40 W and rotation speed 15000 rpm.

Aiming at upgrading the performance and energy efficiency of electrical machines, higher-conductivity wires are searched for windings. Here, the new technology may revolutionize the industry. The best carbon nanotubes (CNTs) demonstrate conductivities far beyond the best metals; CNT windings may have double the conductivity of copper windings.

”If we keep the design parameters unchanged only replacing copper with carbon nanotube yarns, the Joule losses in windings can be reduced to half of present machine losses. By lighter and more ecological CNT yarn, we can reduce machine dimensions and CO2 emissions in manufacturing and operation. Machines could also be run in higher temperatures,” says Professor Pyrhönen [Juha Pyrhönen], leading the prototype design at LUT.

An Oct. ??, 2014 (?) LUT press release, which originated the news item, further describes the work,

Traditionally, the windings in electrical machines are made of copper, which has the second best conductivity of metals at room temperature. Despite the high conductivity of copper, a large proportion of the electrical machine losses occur in the copper windings. For this reason, the Joule losses are often referred to as copper losses. The carbon nanotube yarn does not have a definite upper limit for conductivity (e.g. values of 100 MS/m have already been measured).

According to Pyrhönen, the electrical machines are so ubiquitous in everyday life that we often forget about their presence. In a single-family house alone there can be tens of electrical machines in various household appliances such as refrigerators, washing machines, hair dryers, and ventilators.

“In the industry, the number of electrical motors is enormous: there can be up to tens of thousands of motors in a single process industry unit. All these use copper in the windings. Consequently, finding a more efficient material to replace the copper conductors would lead to major changes in the industry,” tells Professor Pyrhönen.

There are big plans for this work according to the press release,

The prototype motor uses carbon nanotube yarns spun and converted into an isolated tape by a Japanese-Dutch company Teijin Aramid, which has developed the spinning technology in collaboration with Rice University, the USA. The industrial applications of the new material are still in their infancy; scaling up the production capacity together with improving the yarn performance will facilitate major steps in the future, believes Business Development Manager Dr. Marcin Otto from Teijin Aramid, agreeing with Professor Pyrhönen.

“There is a significant improvement potential in the electrical machines, but we are now facing the limits of material physics set by traditional winding materials. Superconductivity appears not to develop to such a level that it could, in general, be applied to electrical machines. Carbonic materials, however, seem to have a pole position: We expect that in the future, the conductivity of carbon nanotube yarns could be even three times the practical conductivity of copper in electrical machines. In addition, carbon is abundant while copper needs to be mined or recycled by heavy industrial processes.”

The researchers have produced this video about their research,

There’s a reference to some work done at Rice University (Texas, US) with Teijin Armid (Japanese-Dutch company) and Technion Institute (Israel) with spinning carbon nanotubes into threads that look like black cotton (you’ll see the threads in the video). It’s this work that has made the latest research in Finland possible. I have more about the the Rice/Teijin Armid/Technion CNT project in my Jan. 11, 2013 posting, Prima donna of nanomaterials (carbon nanotubes) tamed by scientists at Rice University (Texas, US), Teijin Armid (Dutch/Japanese company), and Technion Institute (based in Israel).

Keeping your chef’s jackets clean and a prize for Teijin Aramid/Rice University

Australian start-up company, Fabricor Workwear launched a Kickstarter campaign on Sept. 18, 2014 to raise funds for a stain-proof and water-repellent chef’s jacket according to a Sept. 25, 2014 news item on Azonano,

An Australian startup is using a patented nanotechnology to create ‘hydrophobic’ chef jackets and aprons. Fabricor says this means uniforms that stay clean for longer, and saving time and money.

The company was started because cofounder and MasterChef mentor Adrian Li, was frustrated with keeping his chef jackets and aprons clean.

“As a chef I find it really difficult to keep my chef jacket white, and we like our jackets white,” Li said. …

The nanotechnology application works by modifying the fabric at a molecular level by permanently attaching hydrophobic ‘whiskers’ to individual fibres which elevate liquids, causing them to bead up and roll off.

The Fabricor: Stain-proof workwear for the hospitality industry Kickstarter campaign has this to say on its homepage (Note: Links have been removed),

Hi Kickstarters,

Thanks for taking the time check out our campaign.

Traditional chef jackets date back to the mid 19th century and since then haven’t changed much.

We’re tired of poor quality hospitality workwear that doesn’t last and hate spending our spare time and money washing or replacing our uniforms.

So we designed a range of stain-resistant Chef Jackets and Aprons using the world’s leading patented hydrophobic nanotechnology that repels water, dirt and oil.

Most stains either run off by themselves or can easily be rinsed off with a little water. This means they don’t need to be washed as often saving you time and money.

We’re really proud of what we’ve created and we hope you you’ll support us.

Adrian Li

Head Chef at Saigon Sally
Mentor on MasterChef Australia – Asian Street Food Challenge
Cofounder at Fabricor Workwear

At this point (Sept. 24, 2014), the campaign has raised approximately $2700US towards a $5000US goal and there are 22 days left to the campaign.

I did find more information at the Fabricor Workwear website in this Sept. 13, 2014 press release,

The fabric’s patented technology can extend the life of the apparel is because the apparel doesn’t have to be washed as often and can be washed in cooler temperatures, the company stated.

Fabricor’s products are not made with spray-application like many on the market which can destroy fabrics and contain carcinogenic chemical. Its hydrophobic properties are embedded into the weave during the production of the fabric.

Li said chefs spend too much money on chef jackets that are poorly designed and don’t last. The long-lasting fabric in Fabricor’s chef’s apparel retains its natural softness and breathability.

It seems to me that the claim about fewer washes can be made for all superhydrophobic textiles. As for carcinogenic chemicals in other superhydrophobic textiles, it’s the first I’ve heard of it, which may or may not be significant. I.e., I look at a lot of material but don’t focus on superhydrophobic textiles here and do not seek out research on risks specific to these textiles.

Teijin Aramid/Rice University

Still talking about textile fibres but on a completely different track, I received a news release this morning (Sept. 25, 2014) from Teijin Aramid about carbon nanotubes and fibres,

Researchers of Teijin Aramid, based in the Netherlands, and Rice University in the USA are awarded with the honorary ‘Paul Schlack Man-Made Fibers Prize’ for corporate-academic partnerships in fiber research. Their new super fibers are now driving innovation in aerospace, healthcare, automotive, and (smart) clothing.

The honorary Paul Schlack prize was granted by the European Man-made Fibers Association to Dr. Marcin Otto, Business Development Manager at Teijin Aramid and Prof. Dr. Matteo Pasquali from Rice University Texas, for the development of a new generation super fibers using carbon nanotubes (CNT). The new super fibers combine high thermal and electrical conductivity, as seen in metals, with the flexibility, robust handling and strength of textile fibers.

“The introduction of carbon nanotube fibers marked the beginning of a series of innovations in various industries”, says Marcin Otto, Business Development Manager at Teijin Aramid. “For example, CNT fibers can be lifesaving for heart patients: one string of CNT fiber in the cardiac muscle suffices to transmit vital electrical pulses to the heart. Or by replacing copper in data cables and light power cables by CNT fibers it’s possible to make satellites, aircraft and high end cars lighter and more robust at the same time.”

Since 1971, the Paul Schlack foundation annually grants one monetary prize to an individual young researcher for outstanding research in the field of fiber research, and an honorary prize to the leader(s) of excellent academic and corporate research partnerships to promote research at universities and research institutes.

For several years, leading researchers at Rice University and Teijin Aramid worked together on the development of CNT production. Teijin Aramid and Rice University published their research findings on carbon nanotubes fibers in the leading scientific journal, Science, beginning of 2013.

Teijin Aramid and some of its carbon nanotube projects have been mentioned here before, notably, in a Jan. 11, 2013 posting and in a Feb. 17, 2014.

Good luck on the Kickstarter campaign and congratulations on the award!

De-icing film for radar domes adapted for use on glass

Interesting to see that graphene is in use for de-icing. From a Sept. 16, 2014 news item  on ScienceDaily,

Rice University scientists who created a deicing film for radar domes have now refined the technology to work as a transparent coating for glass.

The new work by Rice chemist James Tour and his colleagues could keep glass surfaces from windshields to skyscrapers free of ice and fog while retaining their transparency to radio frequencies (RF).

A Sept. 16, 2014 Rice University news release on EurekAlert, which originated the news item, describes the technology and its new application in more detail,

The material is made of graphene nanoribbons, atom-thick strips of carbon created by splitting nanotubes, a process also invented by the Tour lab. Whether sprayed, painted or spin-coated, the ribbons are transparent and conduct both heat and electricity.

Last year the Rice group created films of overlapping nanoribbons and polyurethane paint to melt ice on sensitive military radar domes, which need to be kept clear of ice to keep them at peak performance. The material would replace a bulky and energy-hungry metal oxide framework.

The graphene-infused paint worked well, Tour said, but where it was thickest, it would break down when exposed to high-powered radio signals. “At extremely high RF, the thicker portions were absorbing the signal,” he said. “That caused degradation of the film. Those spots got so hot that they burned up.”

The answer was to make the films more consistent. The new films are between 50 and 200 nanometers thick – a human hair is about 50,000 nanometers thick – and retain their ability to heat when a voltage is applied. The researchers were also able to preserve their transparency. The films are still useful for deicing applications but can be used to coat glass and plastic as well as radar domes and antennas.

In the previous process, the nanoribbons were mixed with polyurethane, but testing showed the graphene nanoribbons themselves formed an active network when applied directly to a surface. They were subsequently coated with a thin layer of polyurethane for protection. Samples were spread onto glass slides that were then iced. When voltage was applied to either side of the slide, the ice melted within minutes even when kept in a minus-20-degree Celsius environment, the researchers reported.

“One can now think of using these films in automobile glass as an invisible deicer, and even in skyscrapers,” Tour said. “Glass skyscrapers could be kept free of fog and ice, but also be transparent to radio frequencies. It’s really frustrating these days to find yourself in a building where your cellphone doesn’t work. This could help alleviate that problem.”

Tour noted future generations of long-range Wi-Fi may also benefit. “It’s going to be important, as Wi-Fi becomes more ubiquitous, especially in cities. Signals can’t get through anything that’s metallic in nature, but these layers are so thin they won’t have any trouble penetrating.”

He said nanoribbon films also open a path toward embedding electronic circuits in glass that are both optically and RF transparent.

Here’s a link to and a citation for the paper,

Functionalized Graphene Nanoribbon Films as a Radiofrequency and Optically Transparent Material by Abdul-Rahman O. Raji, Sydney Salters, Errol L. G. Samuel, Yu Zhu, Vladimir Volman, and James M. Tour. ACS Appl. Mater. Interfaces, Article ASAP DOI: 10.1021/am503478w Publication Date (Web): September 4, 2014
Copyright © 2014 American Chemical Society

This paper is behind a paywall.

De-icing is a matter of some interest in the airlines industry as I noted in my Nov. 19, 2012 posting about de-icing airplane wings.

Following the sound of a nanoparticle through the body

I was hoping for some actual sound files of nanoparticles in the body but for some rason the researchers don’t seem to have made them freely available. However, there is this textual description in a Sept. 5, 2014 news item on Nanowerk,

Nanoparticles have become interesting means for biomedical applications. Thanks to their minute dimensions and large surface areas, they can often penetrate cellular membranes and deliver high payloads of targeting agents and drugs to achieve better specificity and therapeutic effects than non-targeted treatments. Yet, quantitative in vivo measurements of nanoparticle concentrations are essential for nanotechnology-based preclinical research.

To date, tedious ex vivo analysis of nanoparticle concentrations in organs of test animals remains a standard approach in such biodistribution studies. Most current imaging methods remain limited due to several disadvantages and/or high costs. Optoacoustic tomography (OAT), a method that utilizes ultrasound generated by absorption of nanosecond-scale laser pulses to recreate an image of the absorbing volume based on the spatial variation of optical absorption coefficients, is a potential alternative.

Usually, due to the unknown light distribution in a complex optical scattering environment, tomographic images of live animals contain only qualitative information and are not suitable for quantitative biodistribution analysis. …

A Sept. 3, 2014 Wiley-VCH publishers press release by K. Maedefessel-Herrmann, which originated the news item, provides more details about the work,

… A team of researchers from TomoWave Laboratories, Inc., Rice University, and the University of Houston now developed a methodology to correlate changes in optoacoustic signal intensity from organs of live animals detected with OAT in relation to changes of optical absorption coefficient in those organs caused by nanoparticle accumulation.

The researchers quantified localized OAT brightness changes induced by accumulation of single-walled carbon nanotubes (SWCNTs) in liver, kidney and spleen of nude mice. Using the intrinsic fluorescence properties of disaggregated nanotubes, they measured SWCNT concentrations in the parts-per-million range in the harvested organs and defined the corresponding changes in optical absorption coefficient. The observed increases in optoacoustic signal brightness in tissues were compared with the increases in optical absorption coefficients caused by SWCNT accumulation.
The combination of these methods allows one to perform sensitivity calibration of an OAT system for a selected type of animal and for a range of optical absorption coefficient values of their organs to enable non-invasive concentration measurements of optically absorbing nanoparticles and dyes in vivo.

Here’s a link to and a citation for the paper,

Enabling in vivo measurements of nanoparticle concentrations with three-dimensional optoacoustic tomography by Dmitri A. Tsyboulski, Anton V. Liopo, Richard Su, Sergey A. Ermilov, Sergei M. Bachilo, R. Bruce Weisman, and Alexander A. Oraevsky. Journal of Biophotonics, Volume 7, Issue 8, pages 581–588, August 2014. DOI: 10.1002/jbio.201200233  Article first published online: 2 APR 2013

This is an open access article.

Alberta’s summer of 2014 nano funding and the US nano community’s talks with the House of Representatives

I have two items concerning nanotechnology and funding. The first item features Michelle Rempel, Canada’s Minister of State for Western Economic Diversification (WD) who made two funding announcements this summer (2014) affecting the Canadian nanotechnology sector and, more specifically, the province of Alberta.

A June 20, 2014 WD Canada news release announced a $1.1M award to the University of Alberta,

Today, the Honourable Michelle Rempel, Minister of State for Western Economic Diversification, announced $1.1 million to help advance leading-edge atomic computing technologies.

Federal funds will support the University of Alberta with the purchase of an ultra-high resolution scanning tunneling microscope, which will enable researchers and scientists in western Canada and abroad to analyze electron dynamics and nanostructures at an atomic level. The first of its kind in North America, the microscope has the potential to significantly transform the semiconductor industry, as research findings aid in the prototype development and technology commercialization of new ultra low-power and low-temperature computing devices and industrial applications.

This initiative is expected to further strengthen Canada’s competitive position throughout the electronics value chain, such as microelectronics, information and communications technology, and the aerospace and defence sectors. The project will also equip graduate students with a solid foundation of knowledge and hands-on experience to become highly qualified, skilled individuals in today’s workforce.

One month later, a July 21, 2014 WD news release (hosted on the Alberta Centre for Advanced Micro and Nano Products [ACAMP]) announces this award,

Today, the Honourable Michelle Rempel, Minister of State for Western Economic Diversification, announced an investment of $3.3 million toward the purchase and installation of specialized advanced manufacturing and product development equipment at the Alberta Centre for Advanced Micro Nano Technology Products (ACAMP), as well as training on the use of this new equipment for small- and medium-sized enterprises (SMEs).

This support, combined with an investment of $800,000 from Alberta Innovates Technology Futures, will enable ACAMP to expand their services and provide businesses with affordable access to prototype manufacturing that is currently unavailable in western Canada. By helping SMEs accelerate the development and commercialization of innovative products, this project will help strengthen the global competitiveness of western Canadian technology companies.

Approximately 80 Alberta SMEs will benefit from this initiative, which is expected to result in the development of new product prototypes, the creation of new jobs in the field, as well as connections between SMEs and multi-national companies. This equipment will also assist ACAMP’s outreach activities across the western Canadian provinces.

I’m not entirely clear as to whether or not the June 2014 $1.1M award is considered part of the $3.3M award or if these are two different announcements. I am still waiting for answers to a June 20, 2014 query sent to Emily Goucher, Director of Communications to the Hon. Michelle Rempel,

Hi Emily!

Thank you for both the news release and the information about the embargo … happily not an issue at this point …

I noticed Robert Wolkow’s name in the release (I last posted about his work in a March 3, 2011 piece about his and his team’s entry into the Guinness Book of Records for the world’s smallest electron microscope tip (http://www.frogheart.ca/?tag=robert-wolkow) [Note: Wolkow was included in a list of quotees not included here in this July 29, 2014 posting]

I am assuming that the new microscope at the University of Alberta is specific to a different type of work than the one at UVic, which has a subatomic microscope (http://www.frogheart.ca/?p=10426)

Do I understand correctly that an STM is being purchased or is this an announcement of the funds and their intended use with no details about the STM available yet? After reading the news release closely, it looks to me like they do have a specific STM in mind but perhaps they don’t feel ready to make a purchase announcement yet?

If there is information about the STM that will be purchased I would deeply appreciate receiving it.

Thank you for your time.

As I wait, there’s more news from  the US as members of that country’s nanotechnology community testify at a second hearing before the House of Representatives. The first (a May 20, 2014 ‘National Nanotechnology Initiative’ hearing held before the Science, Space, and Technology
Subcommittee on Research and Technology) was mentioned in an May 23, 2014 posting  where I speculated about the community’s response to a smaller budget allocation (down to $1.5B in 2015 from $1.7B in 2014).

This second hearing is being held before the Energy and Commerce Subcommittee on Commerce, Manufacturing and Trade and features an appearance by James Tour from Rice University according to a July 28, 2014 news item on Azonano,

At the hearing, titled “Nanotechnology: Understanding How Small Solutions Drive Big Innovation,” Tour will discuss and provide written testimony on the future of nanotechnology and its impact on U.S. manufacturing and jobs. Tour is one of the most cited chemists in the country, and his Tour Group is a leader in patenting and bringing to market nanotechnology-based methods and materials.

Who: James Tour, Rice’s T.T. and W.F. Chao Chair in Chemistry and professor of materials science and nanoengineering and of computer science.

What: Exploring breakthrough nanotechnology opportunities.

When: 10:15 a.m. EDT Tuesday, July 29.

Where: Room 2322, Rayburn House Office Building, Washington, D.C.

The hearing will explore the current state of nanotechnology and the direction it is headed so that members can gain a better understanding of the policy changes that may be necessary to keep up with advancements. Ultimately, the subcommittee hopes to better understand what issues will confront regulators and how to assess the challenges and opportunities of nanotechnology.

You can find a notice for this July 2014 hearing and a list of witnesses along with their statements here. As for what a second hearing might mean within the context of the US National Nanotechnology Initiative, I cannot say with any certainty. But, this is the first time in six years of writing this blog where there have been two hearings post-budget but as a passive collector of this kind of information this may be a reflection of my information collection strategies rather than a response to a smaller budget allocation. Still, it’s interesting.

Carbyne stretches from theory to reality and reveals its conundrum-type self

Rice University (Texas, US) scientists have taken a rather difficult material, carbyne, and twisted it to reveal new properties according to a July 21, 2014 news item on ScienceDaily,

Applying just the right amount of tension to a chain of carbon atoms can turn it from a metallic conductor to an insulator, according to Rice University scientists.

Stretching the material known as carbyne — a hard-to-make, one-dimensional chain of carbon atoms — by just 3 percent can begin to change its properties in ways that engineers might find useful for mechanically activated nanoscale electronics and optics.

A July 21, 2014 Rice University news release (also on EurekAlert), which originated the news item, describes carbyne and some of the difficulties the scientists addressed in their research on the material,

Until recently, carbyne has existed mostly in theory, though experimentalists have made some headway in creating small samples of the finicky material. The carbon chain would theoretically be the strongest material ever, if only someone could make it reliably.

The first-principle calculations by Yakobson and his co-authors, Rice postdoctoral researcher Vasilii Artyukhov and graduate student Mingjie Liu, show that stretching carbon chains activates the transition from conductor to insulator by widening the material’s band gap. Band gaps, which free electrons must overcome to complete a circuit, give materials the semiconducting properties that make modern electronics possible.

In their previous work on carbyne, the researchers believed they saw hints of the transition, but they had to dig deeper to find that stretching would effectively turn the material into a switch.

Each carbon atom has four electrons available to form covalent bonds. In their relaxed state, the atoms in a carbyne chain would be more or less evenly spaced, with two bonds between them. But the atoms are never static, due to natural quantum uncertainty, which Yakobson said keeps them from slipping into a less-stable Peierls distortion.

“Peierls said one-dimensional metals are unstable and must become semiconductors or insulators,” Yakobson said. “But it’s not that simple, because there are two driving factors.”

One, the Peierls distortion, “wants to open the gap that makes it a semiconductor.” The other, called zero-point vibration (ZPV), “wants to maintain uniformity and the metal state.”

Yakobson explained that ZPV is a manifestation of quantum uncertainty, which says atoms are always in motion. “It’s more a blur than a vibration,” he said. “We can say carbyne represents the uncertainty principle in action, because when it’s relaxed, the bonds are constantly confused between 2-2 and 1-3, to the point where they average out and the chain remains metallic.”

But stretching the chain shifts the balance toward alternating long and short (1-3) bonds. That progressively opens a band gap beginning at about 3 percent tension, according to the computations. The Rice team created a phase diagram to illustrate the relationship of the band gap to strain and temperature.

How carbyne is attached to electrodes also matters, Artyukhov said. “Different bond connectivity patterns can affect the metallic/dielectric state balance and shift the transition point, potentially to where it may not be accessible anymore,” he said. “So one has to be extremely careful about making the contacts.”

“Carbyne’s structure is a conundrum,” he said. “Until this paper, everybody was convinced it was single-triple, with a long bond then a short bond, caused by Peierls instability.” He said the realization that quantum vibrations may quench Peierls, together with the team’s earlier finding that tension can increase the band gap and make carbyne more insulating, prompted the new study.

“Other researchers considered the role of ZPV in Peierls-active systems, even carbyne itself, before we did,” Artyukhov said. “However, in all previous studies only two possible answers were being considered: either ‘carbyne is semiconducting’ or ‘carbyne is metallic,’ and the conclusion, whichever one, was viewed as sort of a timeless mathematical truth, a static ‘ultimate verdict.’ What we realized here is that you can use tension to dynamically go from one regime to the other, which makes it useful on a completely different level.”

Yakobson noted the findings should encourage more research into the formation of stable carbyne chains and may apply equally to other one-dimensional chains subject to Peierls distortions, including conducting polymers and charge/spin density-wave materials.

According to the news release the research was funded by the U.S. Air Force Office of Scientific Research, the Office of Naval Research Multidisciplinary University Research Initiative, and the Robert Welch Foundation. (I can’t recall another instance of the air force and the navy funding the same research.) In any event, here’s a link to and a citation for the paper,

Mechanically Induced Metal–Insulator Transition in Carbyne by Vasilii I. Artyukhov, Mingjie Liu, and Boris I. Yakobson. Nano Lett., Article ASAP DOI: 10.1021/nl5017317 Publication Date (Web): July 3, 2014

Copyright © 2014 American Chemical Society

This paper is behind a paywall.

The researchers have provided an image to illustrate their work,

[downloaded from http://pubs.acs.org/doi/abs/10.1021/nl5017317]

[downloaded from http://pubs.acs.org/doi/abs/10.1021/nl5017317]

I’m not sure what the bird is doing in the image but it caught my fancy. There is another less whimsical illustration (you can see it in the  July 21, 2014 news item on ScienceDaily) and I believe the same caption can be used for the one I’ve chosen from the journal’s abstract page, “Carbyne chains of carbon atoms can be either metallic or semiconducting, according to first-principle calculations by scientists at Rice University. Stretching the chain dimerizes the atoms, opening a band gap between the pairs. Credit: Vasilii Artyukhov/Rice University.”

I last wrote about carbyne in an Oct. 9, 2013 posting where I noted that the material was unlikely to dethrone graphene as it didn’t appear to have properties useful in electronic applications. It seems the scientists have proved otherwise, at least in the laboratory.

Corporate influence, nanotechnology regulation, and Friends of the Earth (FoE) Australia

The latest issue of the newsletter, Chain Reaction # 121, July 2014, published by Friends of the Earth (FoE) Australia features an article by Louise Sales ‘Corporate influence over nanotechnology regulation‘ that has given me pause. From the Sales article,

I recently attended an Organisation for Economic Co-operation and Development (OECD) seminar on the risk assessment and risk management of nanomaterials. This was an eye-opening experience that graphically illustrated the extent of corporate influence over nanotechnology regulation globally. Representatives of the chemical companies DuPont and Evonik; the Nanotechnology Industries Association; and the Business and Industry Advisory Committee to the OECD (BIAC) sat alongside representatives of countries such as Australia, the US and Canada and were given equal speaking time.

BIAC gave a presentation on their work with the Canadian and United States Governments to harmonise nanotechnology regulation between the two countries. [US-Canada Regulatory Cooperative Council] [emphasis mine] Repeated reference to the involvement of ‘stakeholders’ prompted me to ask if any NGOs [nongovernmental organizations] were involved in the process. Only in the earlier stages apparently − ‘stakeholders’ basically meant industry.

A representative of the Nanotechnology Industries Association told us about the European NANoREG project they are leading in collaboration with regulators, industry and scientists. This is intended to ‘develop … new testing strategies adapted to innovation requirements’ and to ‘establish a close collaboration among authorities, industry and science leading to efficient and practically applicable risk management approaches’. In other words industry will be helping write the rules.

Interestingly, when I raised concerns about this profound intertwining of government and industry with one of the other NGO representatives they seemed almost dismissive of my concerns. I got the impression that most of the parties concerned thought that this was just the ‘way things were’. As under-resourced regulators struggle with the regulatory challenges posed by nanotechnology − the offer of industry assistance is probably very appealing. And from the rhetoric at the meeting one could be forgiven for thinking that their objectives are very similar − to ensure that their products are safe. Right? Wrong.

I just published an update about the US-Canada Regulatory Cooperation Council (RCC; in  my July 14, 2014 posting) where I noted the RCC has completed its work and final reports are due later this summer. Nowhere in any of the notices is there mention of BIAC’s contribution (whatever it might have been) to this endeavour.

Interestingly. BIAC is not an OECD committee but a separate organization as per its About us page,

BIAC is an independent international business association devoted to advising government policymakers at OECD and related fora on the many diversified issues of globalisation and the world economy.

Officially recognised since its founding in 1962 as being representative of the OECD business community, BIAC promotes the interests of business by engaging, understanding and advising policy makers on a broad range of issues with the overarching objectives of:

  • Positively influencing the direction of OECD policy initiatives;

  • Ensuring business and industry needs are adequately addressed in OECD policy decision instruments (policy advocacy), which influence national legislation;

  • Providing members with timely information on OECD policies and their implications for business and industry.

Through its 38 policy groups, which cover the major aspects of OECD work most relevant to business, BIAC members participate in meetings, global forums and consultations with OECD leadership, government delegates, committees and working groups.

I don’t see any mention of safety either in the excerpt or elsewhere on their About us page.

As Sales notes in her article,

Ultimately corporations have one primary driver and that’s increasing their bottom line.

I do wonder why there doesn’t seem to have been any transparency regarding BIAC’s involvement with the RCC and why no NGOs (according to Sales) were included as stakeholders.

While I sometimes find FoE and its fellow civil society groups a bit shrill and over-vehement at times, It never does to get too complacent. For example, who would have thought that General Motors would ignore safety issues (there were car crashes and fatalities as a consequence) over the apparently miniscule cost of changing an ignition switch. From What is the timeline of the GM recall scandal? on Vox.com,

March 2005: A GM project engineering manager closed the investigation into the faulty switches, noting that they were too costly to fix. In his words: “lead time for all solutions is too long” and “the tooling cost and piece price are too high.” Later emails unearthed by Reuters suggested that the fix would have cost GM 90 cents per car. [emphasis mine]

March 2007: Safety regulators inform GM of the death of Amber Rose, who crashed her Chevrolet Cobalt in 2005 after the ignition switch shut down the car’s electrical system and air bags failed to deploy. Neither the company nor regulators open an investigation.

End of 2013: GM determines that the faulty ignition switch is to blame for at least 31 crashes and 13 deaths.

According to a July 17, 2014 news item on CBC (Canadian Broadcasting Corporation) news online, Mary Barra, CEO of General Motors, has testified on the mater before the US Senate for a 2nd time, this year,

A U.S. Senate panel posed questions to a new set of key players Thursday [July 17, 2014] as it delves deeper into General Motors’ delayed recall of millions of small cars.

An internal report found GM attorneys signed settlements with the families of crash victims but didn’t tell engineers or top executives about mounting problems with ignition switches. It also found that GM’s legal staff acted without urgency.

GM says faulty ignition switches were responsible for at least 13 deaths. It took the company 11 years to recall the cars.

Barra will certainly be asked about how she’s changing a corporate culture that allowed a defect with ignition switches to remain hidden from the car-buying public for 11 years. It will be Barra’s second time testifying before the panel.

H/T ICON (International Council on Nanotechnology) July 16, 2014 news item. Following on the topic of transparency, ICON based at Rice University in Texas (US) has a Sponsors webpage.

Nanophotonics transforms Raman spectroscopy at Rice University (US)

This new technique for sensing molecules is intriguing. From a July 15, 2014 news item on Azonano,

Nanophotonics experts at Rice University [Texas, US] have created a unique sensor that amplifies the optical signature of molecules by about 100 billion times. Newly published tests found the device could accurately identify the composition and structure of individual molecules containing fewer than 20 atoms.

The new imaging method, which is described this week in the journal Nature Communications, uses a form of Raman spectroscopy in combination with an intricate but mass reproducible optical amplifier. Researchers at Rice’s Laboratory for Nanophotonics (LANP) said the single-molecule sensor is about 10 times more powerful that previously reported devices.

A July 15, 2014 Rice University news release (also on EurekAlert), which originated the news item, provides more detail about the research,

“Ours and other research groups have been designing single-molecule sensors for several years, but this new approach offers advantages over any previously reported method,” said LANP Director Naomi Halas, the lead scientist on the study. “The ideal single-molecule sensor would be able to identify an unknown molecule — even a very small one — without any prior information about that molecule’s structure or composition. That’s not possible with current technology, but this new technique has that potential.”

The optical sensor uses Raman spectroscopy, a technique pioneered in the 1930s that blossomed after the advent of lasers in the 1960s. When light strikes a molecule, most of its photons bounce off or pass directly through, but a tiny fraction — fewer than one in a trillion — are absorbed and re-emitted into another energy level that differs from their initial level. By measuring and analyzing these re-emitted photons through Raman spectroscopy, scientists can decipher the types of atoms in a molecule as well as their structural arrangement.

Scientists have created a number of techniques to boost Raman signals. In the new study, LANP graduate student Yu Zhang used one of these, a two-coherent-laser technique called “coherent anti-Stokes Raman spectroscopy,” or CARS. By using CARS in conjunction with a light amplifier made of four tiny gold nanodiscs, Halas and Zhang were able to measure single molecules in a powerful new way. LANP has dubbed the new technique “surface-enhanced CARS,” or SECARS.

“The two-coherent-laser setup in SECARS is important because the second laser provides further amplification,” Zhang said. “In a conventional single-laser setup, photons go through two steps of absorption and re-emission, and the optical signatures are usually amplified around 100 million to 10 billion times. By adding a second laser that is coherent with the first one, the SECARS technique employs a more complex multiphoton process.”

Zhang said the additional amplification gives SECARS the potential to address most unknown samples. That’s an added advantage over current techniques for single-molecule sensing, which generally require a prior knowledge about a molecule’s resonant frequency before it can be accurately measured.

Another key component of the SECARS process is the device’s optical amplifier, which contains four tiny gold discs in a precise diamond-shaped arrangement. The gap in the center of the four discs is about 15 nanometers wide. Owing to an optical effect called a “Fano resonance,” the optical signatures of molecules caught in that gap are dramatically amplified because of the efficient light harvesting and signal scattering properties of the four-disc structure.

Fano resonance requires a special geometric arrangement of the discs, and one of LANP’s specialties is the design, production and analysis of Fano-resonant plasmonic structures like the four-disc “quadrumer.” In previous LANP research, other geometric disc structures were used to create powerful optical processors.

Zhang said the quadrumer amplifiers are a key to SECARS, in part because they are created with standard e-beam lithographic techniques, which means they can be easily mass-produced.

“A 15-nanometer gap may sound small, but the gap in most competing devices is on the order of 1 nanometer,” Zhang said. “Our design is much more robust because even the smallest defect in a one-nanometer device can have significant effects. Moreover, the larger gap also results in a larger target area, the area where measurements take place. The target area in our device is hundreds of times larger than the target area in a one-nanometer device, and we can measure molecules anywhere in that target area, not just in the exact center.”

Halas, the Stanley C. Moore Professor in Electrical and Computer Engineering and a professor of biomedical engineering, chemistry, physics and astronomy at Rice, said the potential applications for SECARS include chemical and biological sensing as well as metamaterials research. She said scientific labs are likely be the first beneficiaries of the technology.

“Amplification is important for sensing small molecules because the smaller the molecule, the weaker the optical signature,” Halas said. “This amplification method is the most powerful yet demonstrated, and it could prove useful in experiments where existing techniques can’t provide reliable data.”

Here’s a link to and a citation for the paper,

Coherent anti-Stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance by Yu Zhang, Yu-Rong Zhen, Oara Neumann, Jared K. Day, Peter Nordlander & Naomi J. Halas. Nature Communications 5, Article number: 4424 doi:10.1038/ncomms5424 Published 14 July 2014

This paper is behind a paywall.

Better RRAM memory devices in the short term

Given my recent spate of posts about computing and the future of the chip (list to follow at the end of this post), this Rice University [Texas, US] research suggests that some improvements to current memory devices might be coming to the market in the near future. From a July 12, 2014 news item on Azonano,

Rice University’s breakthrough silicon oxide technology for high-density, next-generation computer memory is one step closer to mass production, thanks to a refinement that will allow manufacturers to fabricate devices at room temperature with conventional production methods.

A July 10, 2014 Rice University news release, which originated the news item, provides more detail,

Tour and colleagues began work on their breakthrough RRAM technology more than five years ago. The basic concept behind resistive memory devices is the insertion of a dielectric material — one that won’t normally conduct electricity — between two wires. When a sufficiently high voltage is applied across the wires, a narrow conduction path can be formed through the dielectric material.

The presence or absence of these conduction pathways can be used to represent the binary 1s and 0s of digital data. Research with a number of dielectric materials over the past decade has shown that such conduction pathways can be formed, broken and reformed thousands of times, which means RRAM can be used as the basis of rewritable random-access memory.

RRAM is under development worldwide and expected to supplant flash memory technology in the marketplace within a few years because it is faster than flash and can pack far more information into less space. For example, manufacturers have announced plans for RRAM prototype chips that will be capable of storing about one terabyte of data on a device the size of a postage stamp — more than 50 times the data density of current flash memory technology.

The key ingredient of Rice’s RRAM is its dielectric component, silicon oxide. Silicon is the most abundant element on Earth and the basic ingredient in conventional microchips. Microelectronics fabrication technologies based on silicon are widespread and easily understood, but until the 2010 discovery of conductive filament pathways in silicon oxide in Tour’s lab, the material wasn’t considered an option for RRAM.

Since then, Tour’s team has raced to further develop its RRAM and even used it for exotic new devices like transparent flexible memory chips. At the same time, the researchers also conducted countless tests to compare the performance of silicon oxide memories with competing dielectric RRAM technologies.

“Our technology is the only one that satisfies every market requirement, both from a production and a performance standpoint, for nonvolatile memory,” Tour said. “It can be manufactured at room temperature, has an extremely low forming voltage, high on-off ratio, low power consumption, nine-bit capacity per cell, exceptional switching speeds and excellent cycling endurance.”

In the latest study, a team headed by lead author and Rice postdoctoral researcher Gunuk Wang showed that using a porous version of silicon oxide could dramatically improve Rice’s RRAM in several ways. First, the porous material reduced the forming voltage — the power needed to form conduction pathways — to less than two volts, a 13-fold improvement over the team’s previous best and a number that stacks up against competing RRAM technologies. In addition, the porous silicon oxide also allowed Tour’s team to eliminate the need for a “device edge structure.”

“That means we can take a sheet of porous silicon oxide and just drop down electrodes without having to fabricate edges,” Tour said. “When we made our initial announcement about silicon oxide in 2010, one of the first questions I got from industry was whether we could do this without fabricating edges. At the time we could not, but the change to porous silicon oxide finally allows us to do that.”

Wang said, “We also demonstrated that the porous silicon oxide material increased the endurance cycles more than 100 times as compared with previous nonporous silicon oxide memories. Finally, the porous silicon oxide material has a capacity of up to nine bits per cell that is highest number among oxide-based memories, and the multiple capacity is unaffected by high temperatures.”

Tour said the latest developments with porous silicon oxide — reduced forming voltage, elimination of need for edge fabrication, excellent endurance cycling and multi-bit capacity — are extremely appealing to memory companies.

“This is a major accomplishment, and we’ve already been approached by companies interested in licensing this new technology,” he said.

Here’s a link to and a citation for the paper,

Nanoporous Silicon Oxide Memory by Gunuk Wang, Yang Yang, Jae-Hwang Lee, Vera Abramova, Huilong Fei, Gedeng Ruan, Edwin L. Thomas, and James M. Tour. Nano Lett., Article ASAP DOI: 10.1021/nl501803s Publication Date (Web): July 3, 2014

Copyright © 2014 American Chemical Society

This paper is behind a paywall.

As for my recent spate of posts on computers and chips, there’s a July 11, 2014 posting about IBM, a 7nm chip, and much more; a July 9, 2014 posting about Intel and its 14nm low-power chip processing and plans for a 10nm chip; and, finally, a June 26, 2014 posting about HP Labs and its plans for memristive-based computing and their project dubbed ‘The Machine’.