Tag Archives: Robert J. Zimmer

Nanotechnology-enabled water resource collaboraton between Israel and Chicago

A June 25, 2013 news item on Azonano describes a collaborative agreement between the University of Chicago and Ben-Gurion University of the Negev (Israel) to work together and fund nanotechnology-enabled solutions for more water in the Middle East and elsewhere,

The University of Chicago and Ben-Gurion University of the Negev will begin funding a series of ambitious research collaborations that apply the latest discoveries in nanotechnology to create new materials and processes for making clean, fresh drinking water more plentiful and less expensive by 2020.

The announcement came June 23 following a meeting in Jerusalem among Israeli President Shimon Peres, Chicago Mayor Rahm Emanuel, University of Chicago President Robert J. Zimmer, Ben-Gurion University President Rivka Carmi and leading scientists in the field. The joint projects will explore innovative solutions at the water-energy nexus, developing more efficient ways of using water to produce energy and using energy to treat and deliver clean water.

There are more details in the June 23, 2013 University of Chicago news release, which originated the news item (Note: Links have been removed),

The University of Chicago also brings to the effort two powerful research partners already committed to clean water research: the Argonne National Laboratory in Lemont, Ill., and the Marine Biological Laboratory in Woods Hole, Mass.

“We feel it is critical to bring outstanding scientists together to address water resource challenges that are being felt around the world, and will only become more acute over time,” said Zimmer. “Our purification challenges in the Great Lakes region right now are different from some of the scarcity issues some of our colleagues at Ben-Gurion are addressing, but our combined experience will be a tremendous asset in turning early-stage technologies into innovative solutions that may have applications far beyond local issues.”

“Clean, plentiful water is a strategic issue in the Middle East and the world at large, and a central research focus of our university for more than three decades,” said Carmi. “We believe that this partnership will enhance state-of-the-art science in both universities, while having a profound effect on the sustainable availability of clean water to people around the globe.”

The first wave of research proposals include fabricating new materials tailored to remove contaminants, bacteria, viruses and salt from drinking water at a fraction of the cost of current technologies; biological engineering that will help plants maximize their own drought-resistance mechanisms; and polymers that can change the water retention properties of soil in agriculture.

UChicago, BGU and Argonne have jointly committed more than $1 million in seed money over the next two years to support inaugural projects, with the first projects getting under way this fall.

One proposed project would attempt to devise multi-functional and anti-fouling membranes for water purification. These membranes, engineered at the molecular level, could be switched or tuned to remove a wide range of biological and chemical contaminants and prevent the formation of membrane-fouling bacterial films. Keeping those membranes free of fouling would extend their useful lives and decrease energy usage while reducing the operational cost of purifying water.

Another proposal focuses on developing polymers for soil infusion or seed coatings to promote water retention. Such polymers conjure visions of smart landscapes that can substantially promote agricultural growth while reducing irrigation needs.

Officials from both the U.S. and Israel hailed the collaboration as an example of the potential for collaborative innovation that can improve quality of life and boost economic vitality.

You can read more about the University of Chicago’s March 8, 2013 memorandum of understanding with the Ben-Gurion University of the Negev in this March 19,2013 University of Chicago news article by Steve Koppes.

Sidenote: In early May 2013, internationally renowned physicist Stephen Hawking participated in an ‘academic’ boycott of Israel over its position on Palestine. The May 9, 2013 article, Stephen Hawking: Furore deepens over Israel boycott, by Harriet Sherwood, Matthew Kalman, and Sam Jones for the Guardian newspaper reveals some of the content of Hawking’s letter to the organizers and his reasons for participating in the boycott,

Hawking, a world-renowned scientist and bestselling author who has had motor neurone disease for 50 years, cancelled his appearance at the high-profile Presidential Conference, which is personally sponsored by Israel’s president, Shimon Peres, after a barrage of appeals from Palestinian academics.

The full text of the letter [from Hawking], dated 3 May, said: “I accepted the invitation to the Presidential Conference with the intention that this would not only allow me to express my opinion on the prospects for a peace settlement but also because it would allow me to lecture on the West Bank. However, I have received a number of emails from Palestinian academics. They are unanimous that I should respect the boycott. In view of this, I must withdraw from the conference. Had I attended, I would have stated my opinion that the policy of the present Israeli government is likely to lead to disaster.”

But Palestinians welcomed Hawking’s decision. “Palestinians deeply appreciate Stephen Hawking’s support for an academic boycott of Israel,” said Omar Barghouti, a founding member of the Boycott, Divestment and Sanctions movement. “We think this will rekindle the kind of interest among international academics in academic boycotts that was present in the struggle against apartheid in South Africa.”

Steve Caplan in a May 13, 2013 piece (Occam’s Corner hosted by the Guardian) explained why he profoundly disagreed with Hawking’s position (Note: Links have been removed),

My respect for Hawking as a scientist and person of enormous courage has made my dismay at his recent decision all the greater. In these very virtual pages I have previously opined on the folly of imposing an academic boycott on Israel. The UK, which sports many of the supporters of this policy – dubiously known as the Boycott Divestment and Sanctions (BDS) – also appears to be particularly fertile ground for anti-Semitism. To what degree British anti-Semitism, the anti-Israel BDS lobby and legitimate criticism of Israel’s policies are related is an inordinately complex question, but it is clear that anti-Semitism plays a role among some BDS supporters.

The decision by Hawking to join the boycotters of Israel and Israeli academics is particularly ironic in light of the fact that the conference is being hosted in honor of the 90th birthday of Israel’s president, Shimon Peres. More than any other Israeli leader, Peres has been committed to negotiations and comprehensive peace with the Palestinians, and he was awarded the Nobel Peace Prize for his efforts. At 90, despite his figurehead position, Peres remains steadfastly optimistic in his relentless goal of a fair two-state solution for Israel and the Palestinians.

Caplan’s summary of how the ‘Palestine problem’ was created and how we got to the current state of affairs is one of most the clear-headed I’ve seen,

Pinning the blame on one side with a propaganda machine and a sleeve full of slogans is easy to do, but there is nothing simple or straightforward about the Israeli-Palestinian conflict. From the very birth of the State of Israel in 1948, the mode by which the Palestinian refugee problem was created has been debated intensely by historians. There is little question that a combination of intimidation by Israelis and acquiescence of the refugees to calls by Palestinian and Arab leaders to flee (and return with the victorious Arab armies) were the major causes of Palestinian uprooting.

To what degree was each side responsible? The Palestinians and Arab countries initiated the war in 1948, vetoing by force the United Nations Partition Plan to divide the country between Israelis and Palestinians – in an attempt to prevent any Jewish state from arising. And at the time, Israelis doubtlessly showed little concern at the growing numbers of Palestinians who fled or were forced from their homes. And later, after the Six-Day War in 1967, the Israelis displayed poor judgment (that unfortunately continues to this day) in allowing her citizens to build settlements in these conquered territories.

Both sides have suffered from poor leadership over the years.

Caplan also discusses the relationship between Israel’s government and its academics as he explains why he is opposed academic boycotts,

… in any case, Israeli academics and scientists are neither government mouthpieces nor puppets. There have frequently been serious disagreements between the government and the universities in Israel, highlighting the independence of Israel’s academic institutions. One such example is the Israeli government’s decision last year to upgrade the status of a college built in Ariel – a town inside the West Bank – to that of a university. This was vehemently opposed by Israel’s institutions of higher learning (and by perhaps 50% of the general population).

A second example is the unsuccessful attempt by the Israeli government to shut down Ben-Gurion University’s Department of Politics and Government – which was attacked for its leftist views. The rallying opposition and petition by Israeli academics across the country who warned of the danger to academic freedom helped prevent the department’s closure.

You’ll note the reference to Ben-Gurion University in that last paragraph excerpted from Caplan’s piece, which brings this posting back to where it started, collaboration between two universities to come up with solutions that address problems with access to water. In the end, I am inclined to agree with Caplan that we need to open up and maintain the lines of communication.

ETA June 27, 2013: There is no hint in the University of Chicago news releases that these water projects will benefit any parties other than Israel and the US but it is tempting to hope that this work might also have an impact in Palestine given its current water crisis there as described in a June 26, 2013 news item in the World Bulletin (Note: Links have been removed),

A tiny wedge of land jammed between Israel, Egypt and the Mediterranean sea, the Gaza Strip is heading inexorably into a water crisis that the United Nations says could make the Palestinian enclave unliveable in just a few years.

With 90-95 percent of the territory’s only aquifer contaminated by sewage, chemicals and seawater, neighbourhood desalination facilities and their public taps are a lifesaver for some of Gaza’s 1.6 million residents.

But these small-scale projects provide water for only about 20 percent of the population, forcing many more residents in the impoverished Gaza Strip to buy bottled water at a premium.

“There is a crisis. There is a serious deficit in the water resources in Gaza and there is a serious deterioration in the water quality,” said Rebhi El Sheikh, deputy chairman of the Palestinian Water Authority (PWA).

A NASA study of satellite data released this year showed that between 2003 and 2009 the region lost 144 cubic km of stored freshwater – equivalent to the amount of water held in the Dead Sea – making an already bad situation much worse.

But the situation in Gaza is particularly acute, with the United Nations warning that its sole aquifer might be unusable by 2016, with the damage potentially irreversible by 2020.

H/T June 26, 2013 Reuters news item.

TRIUMF looks for new Director as Nigel S. Lockyer exits for the Fermilab (US)

The circumstances around Nigel S. Lockyer’s departure as Director of Canada’s National Laboratory for Particle and Nuclear Physics, TRIUMF,  are very interesting. Just weeks ago, TRIUMF announced a major innovation for producing medical isotopes (my June 9, 2013 posting), which should have an enormous impact on cities around the world and their access to medical isotopes. (Briefly, cities with cyclotrons could produce, using the technology developed by TRIUMF,  their own medical isotopes without using material from nuclear reactors.)

Also in the recent past, Canada’s much storied McGill University joined the TRIUMF consortium (I’m surprized it took this long), from the May 10, 2013 news release,

At its recent Board of Management meeting, TRIUMF approved McGill University as an associate member of the consortium of universities that owns and operates Canada’s national laboratory for particle and nuclear physics. McGill joins 17 other Canadian universities in leading TRIUMF.

Paul Young, Chair of the Board and Vice President for Research at the University of Toronto, said, “The addition of McGill to the TRIUMF family is a great step forward. McGill brings world-class scientists and students to TRIUMF and TRIUMF brings world-leading research tools and partnerships to McGill.”

The university’s closer association with TRIUMF will allow it to participate in discussions about setting the direction of the laboratory as well provide enhanced partnerships for new research infrastructure that strengthens efforts on McGill’s campuses. Dr. Rose Goldstein, McGill Vice-Principal (Research and International Relations), said, “We are delighted to formalize our long-standing involvement in TRIUMF. It is an important bridge to international research opportunities at CERN and elsewhere. Associate membership in TRIUMF will also help McGill advance its Strategic Research Plan, especially in the priority area of exploring the natural environment, space, and the universe.”

McGill University has been involved in TRIUMF-led activities for several decades, most notably as part of the Higgs-hunting efforts at CERN. TRIUMF constructed parts of the Large Hadron Collider that ultimately produced Higgs bosons. The co-discovery was made by the ATLAS experiment for which TRIUMF led Canadian construction of several major components, and McGill played a key role in the development of the experiment’s trigger system. McGill and TRIUMF have also worked together on particle-physics projects in Japan and the U.S.

Professor Charles Gale, chair of the Department of Physics, played a key role in formalizing the relationship between TRIUMF and McGill. He said, “Our department is one of the top in North America in research, teaching, and service. Undoubtedly our work with TRIUMF has helped contribute to that and I expect both institutions to blossom even further.” Professor of physics and Canadian Research Chair in Particle Physics Brigitte Vachon added, “TRIUMF provides key resources to my students and me that make our research at CERN possible; the discovery of the Higgs boson is a perfect example of what such collaboration can achieve.”

Nigel S. Lockyer, director of TRIUMF, commented, “The addition of McGill to the TRIUMF team is welcome and long overdue. We have been working together for decades in subatomic physics and this acknowledgment of the partnership enhances both institutions and builds stronger ties in areas such as materials science and nuclear medicine.”

A scant month after McGill joins the consortium and weeks after a major announcement about medical isotopes, Lockyer announces his departure for the Fermilabs in the US, from the May 20, 2013 TRIUMF news release,

In his capacity as Chairman of the Board of Directors of Fermi Research Alliance, LLC, University of Chicago President Robert J. Zimmer today announced that TRIUMF’s director Nigel S. Lockyer has been selected to become the next director of the U.S. Department of Energy’s Fermi National Accelerator Laboratory, located outside Chicago.  Lockyer is expected to complete his work at TRIUMF this summer and begin at Fermilab in the autumn.

Paul Young, Chair of TRIUMF’s Board of Management and Vice President of Research and Innovation at the University of Toronto said, “Nigel was selected from a truly outstanding set of international candidates for this challenging and important position.  Although it will be a short-term loss, this development is a clear recognition of Nigel’s vision and passion for science and the international leadership taken by TRIUMF and Canada in subatomic physics.  On behalf of the entire TRIUMF Board, we wish Nigel, TRIUMF, and Fermilab every success in the future.”

Lockyer set TRIUMF upon a new course when he arrived six years ago, focusing the team on “Advancing isotopes for science and medicine.”  Based on TRIUMF’s existing infrastructure and talent, this initiative ranged from expanding the nuclear-medicine program so that it is now playing a leading role in resolving the medical-isotope crisis to the formulation and funding of a new flagship facility called ARIEL that will double TRIUMF’s capabilities for producing exotic isotopes used in science and for developing tomorrow’s medical isotopes.  At the heart of ARIEL is a next-generation electron accelerator using modern superconducting radio-frequency technology.

Commenting on Nigel’s leadership of TRIUMF, Paul Young added, “One look at TRIUMF’s current trajectory and you can see that this is a man of great ambition and talent.  Working with the Board and a great team at the lab, he propelled TRIUMF to new heights.  We have all been fortunate at TRIUMF to have Nigel as a colleague and leader.”

Reflecting on his time at TRIUMF and the upcoming transition to Fermilab, Nigel Lockyer said, “Knowing that TRIUMF is in good hands with a superb leadership team and seeing its growing string of accomplishments has helped make this decision a tiny bit easier.  The laboratory’s future is secure and TRIUMF knows exactly what it is doing.  I am proud to have contributed to TRIUMF’s successes and it is my hope to ignite the same energy and enthusiasm in the U.S. by heading the team at Fermilab.”  He added, “I also expect to foster a new level of partnership between the U.S. and Canada in these key areas of science and technology.”

“Nigel has had a profound impact on TRIUMF,” said David B. MacFarlane, chair of the National Research Council’s Advisory Committee on TRIUMF and Associate Laboratory Director at the U.S. SLAC National Accelerator Laboratory.  “He articulated an ambitious new vision for the laboratory and energetically set it upon a path toward an exciting world-class program in rare-isotope beams and subatomic-physics research.  When ARIEL comes online, the lab will be fulfilling the vision that Nigel and his team boldly initiated.”  David MacFarlane added, “The TRIUMF community will certainly miss his warmth, his insatiable scientific curiosity, his creativity, and his faith in the laboratory and its entire staff.  However, I fully expect these same characteristics will serve Nigel well in his new leadership role as Fermilab director.”

As per standard practice, the TRIUMF Board of Management will announce plans and timelines for the international search process and interim leadership within the next few weeks.

Before speculating on the search process and interim leadership appointment, I have a comment of sorts about the Fermilab, which was last mentioned here in my Feb. 1, 2012 posting where I excerpted this interesting comment from a news release,

From the Feb. 1, 2012 news release on EurekAlert,

In this month’s Physics World, reviews and careers editor, Margaret Harris, visits the Fermi National Accelerator Laboratory (Fermilab) to explore what future projects are in the pipeline now that the Tevatron particle accelerator has closed for good.

After 28 years of ground-breaking discoveries, the Tevatron accelerator has finally surrendered to the mighty Large Hadron Collider (LHC) at CERN [European Laboratory for Particle Physics], placing Fermilab, in some people’s mind, on the brink of disappearing into obscurity. [emphasis mine]

It seems the Fermilab is in eclipse and Lockyer is going there to engineer a turnaround. It makes one wonder what the conditions were when he arrived at TRIUMF six years ago (2006?). Leading on from that thought, the forthcoming decisions as to whom will be the interim Director and/or the next Director should be intriguing.

Usually an interim position is filled by a current staff member, which can lead to some fraught moments amongst internal competitors.  That action, however fascinating, does not tend to become fodder for public consumption.

Frankly, I’m more interested in the board’s perspective. What happens if they pick an internal candidate while they prepare for the next stage when they’re conducting their international search? Based on absolutely no inside information whatsoever, I’m guessing that Tim Meyer, Head, Strategic Planning & Communications for TRIUMF, would be a viable internal candidate for interim director.

From a purely speculative position, let’s assume he makes a successful play to become the interim Director. At this point, the board will have to consider what direction is the right one for TRIUMF while weighing up the various candidates for the permanent position.  Assuming the interim Director is ambitious and wants to become the permanent Director, the dynamics could get very interesting indeed.

From the board’s perspective, you want the best candidate and you want to keep your staff. In Canada, there’s one TRIUMF; there are no other comparable institutions in the country.  Should an internal candidate such as Meyer get the interim position but not the permanent one (assuming he’d want to be the permanent Director) he would have very few options in Canada.

Based on this speculation, I can safety predict some very interesting times ahead for TRIUMF and its board. In the meantime, I wish Lockyer all the best as he moves back to the US to lead the Fermilab.