Tag Archives: Rolf Heuer

arts@CERN: welcomes new artist-resident (Semiconductor) and opens calls for new artist-residencies

It’s exciting to hear that CERN (European Particle Physics Laboratory) has an open call for artists but it’s also a little complicated, so read carefully. From an Oct. 12, 2015 CERN press release,

CERN1 has today announced three new open calls giving a chance to artists to immerse themselves in the research of particle physics and its community. Two new international partners have joined the Accelerate @ CERN programme: the Abu Dhabi Music & Arts Foundation (ADMAF) from UAE2 and Rupert, the centre for Art and Education from Vilnius, Lithuania3. The Collide @ CERN Geneva award is also now calling for entries, continuing the fruitful collaboration with The Republic and Canton of Geneva and the City of Geneva4. Last but not least, the Collide @ CERN Ars Electronica winning artists start their residency at CERN this week.

“Science and the arts are essential parts of a vibrant, healthy culture, and the Arts @ CERN programme is bringing them closer together,” said CERN DG Rolf Heuer. “With CERN’s diverse research programme, including the LHC’s second run getting underway, there’s no better place in the world to do that than here.”

With the support of The Abu Dhabi Music & Arts Foundation (ADMAF), Arts @ CERN gives the chance for an Emirati visual artist to come to CERN for a fully funded immersion in high-energy physics in the Accelerate @ CERN programme. Thanks to the support by Rupert, Centre for Art and Education in Vilnius, the same door opens to Lithuanian artists who wish to deepen their knowledge in science and use it as a source of inspiration for their work. Each of the two open calls begins today for artists to win a one-month research stay at CERN. Applications can be submitted up to 11 January 2016.

Funded by The Republic and Canton of Geneva and The City of Geneva, Collide @ CERN Geneva has operated successfully since 2012. Arts @ CERN announces the fourth open call for artists from Geneva, this time celebrating the city’s strength in digital writing. Today, the competition opens to writers [emphasis mine] who were born, live or work in the Geneva region, and would like to win a three-month residency where scientific and artistic creativity collide.  The winner will also receive a stipend of 15,000CHF. The deadline for applications is 11 January 2016.

“Arts and science have always been interlinked as major cultural forces, and this is the fundamental reason for CERN to continue to proactively pursue this relationship,” said Mónica Bello, Head of Arts @ CERN. “The arts programme here continues to flourish.”

Semiconductor, the artist duo formed by Ruth Jarman and Joe Gerdhardt, are the winners of the Collide @ CERN Ars Electronica award5. Out of 161 projects from 53 countries, the jury6 awarded Semiconductor for their broad sense of speculation, complexity and wonder, using strategies of analysis and translation of the phenomena into tangible and beautiful forms. Their two-month Collide @ CERN residency starts on 12 October 2015.

Footnote(s)

1. CERN, the European Organization for Nuclear Research, is the world’s leading laboratory for particle physics. It has its headquarters in Geneva. At present, its member states are Austria, Belgium, Bulgaria, the Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Israel, Italy, the Netherlands, Norway, Poland, Portugal, Slovakia, Spain, Sweden, Switzerland and the United Kingdom. Romania is a Candidate for Accession. Serbia is an Associate Member in the pre-stage to Membership. Pakistan and Turkey are Associate Members. India, Japan, the Russian Federation, the United States of America, the European Union, JINR and UNESCO have observer status.

6. Members of the Jury for Collide @ CERN Ars Electronica were: Mónica Bello (ES), Michael Doser (AT), Horst Hörtner (AT), Gerfried Stocker (AT) and Mike Stubbs (UK).

Here are a few more links,

Online submissions for artists CERN.ch/arts

Further information:

Arts@CERN website
Accelerate@CERN website
Collide@CERN Facebook site (link is external)
Twitter ArtsAtCern (link is external)

Good luck!

Tears of joy as physicists announce they’re pretty sure they found the Higgs Boson

Physicists are jubilant over the announcement from CERN (European Particle Physics Laboratory) that (from the CERN website),

The ATLAS and CMS experiments at CERN today presented their latest results in the search for the long-sought Higgs boson. Both experiments see strong indications for the presence of a new particle, which could be the Higgs boson, in the mass region around 126 gigaelectronvolts (GeV). [emphases mine]

The depth of feeling is extraordinary given the announcement  is cautious. When you consider that this pursuit of the Higgs boson is international in scope (approximately 150 scientists from Canada and I assume much larger contingents from elsewhere) and the effort has spanned several years, it’s fascinating and instructive to observe the jubilance.

Here’s a sampling from the July 4, 2012 live blog Lizzy Davies of the UK’s Guardian newspaper (with tweets from Guardian science correspondent Ian Sample and others) wrote during the announcement,

7:17 am … The elusive “God particle” has become the most sought-after particle in modern science. Its discovery would be proof of an invisible energy field that fills the vacuum of space, and excitement in the scientific community is at fever pitch.

8.02am: And we’re off. First up is Joe Incandela, the leader of the team using the CMS detector to search for new particles. He’ll be followed by Fabiola Gianotti from the other team using the Atlas detector.

He says the results are “very strong, very solid”.

8.13am: As Incandela speaks, the brilliant Ian Sample is live-tweeting from Cern.

Ian Sample @iansample

I’ve been told that anyone who thinks they haven’t found a new particle after this has lost touch with reality. #cern #lhc #higgs #ichep2012

Ian Sample @iansample

Incandela “Many people went many days without sleep.” #ichep2012 #lhc #cern #higgs

And we’re keeping our observations extremely serious in keeping with the potentially historic nature of the day.

Ian Sample @iansample

Does Joe Incandela (cms spokesman) not look a little like George Clooney? #ichep2012 #lhc #higgs #lhc

8.39am: Big applause.

Anil Ananthaswamy @edgeofphysics

Combined significance of all results 5 standard deviations. Room breaks into applause, whistles #Higgs #LHC

9.44am: Rolf Heuer, Director General of CERN, offers this verdict:

As a layman I would say: I think we have it. You agree?

The audience claps. I think that’s a yes.

9.46am: Heuer flashes up on screen a slide that says Cern have discovered “a particle consistent with the Higgs boson- but which one?”

So, while this is undoubtedly a milestone with “global implications”, he says, it is also the beginning of a lot more research and investigation. But, he adds, “I think we can be very, very optimistic”.

9.49am: Peter Higgs, who first proposed the idea of this boson in 1964 and is now 83, may have shed a tear or two there- a sight which seems to have got everyone else going too.

Manlio De Domenico @manlius84

Peter #Higgs is crying… it’s a great day for physics. I am proud of being a physician :°)

I definitely wanted to get that “George Clooney” comment in here so you can have a sense of just how giddy people can get (if you didn’t already know) in the midst of an important announcement.

Jeff Forshaw, particle physics professor at the University of Manchester, provides some perspective about the importance of this announcement in his July 4, 2012 posting for the Guardian,

Fundamental science like this is thrilling, not least because of the way that years of hard work, experimentation and mathematical analysis have led us to a worldview of astonishing simplicity and beauty.

We have learned that the universe is made up of particles and that those particles dance around in a crazy quantum way. But the rules of the game are simple – they can be codified (almost) on the back of an envelope and they express the fact that, at its most elemental level, the universe is governed by symmetry. Symmetry and simplicity go hand in hand – half a snowflake is enough information to anticipate what the other half looks like – and so it is with those dancing particles. The discovery that nature is beautifully symmetric means we have very little choice in how the elementary particles do their dance – the rules simply “come for free”. Why the universe should be built in such an elegant fashion is not understood yet, but it leaves us with a sense of awe and wonder that we should be privileged to live in such a place.

Now, physicists will begin again as they try to better our understanding of the universe. But for today they will celebrate and I have some quotes from the Canadian contingent about this latest announcement (from the July 4, 2012 TRIUMF news release),

Likening the quest for the Higgs to Christopher Columbus’s voyage of
discovery to the New World, Nigel S. Lockyer, director of TRIUMF [based at the University of British Columbia in Vancouver, Canada], said,”With ATLAS and the LHC, we set sail in the direction toward what we thought was the land of the Higgs. Last December, we saw a smudge on the horizon and knew we could be getting close to land. With these latest results, we’ve
seen the shoreline! We know we’ll make it to dry land, but the ship is not
in to shore just yet.”

The results presented today are labeled preliminary. They are based on data
collected in 2011 and 2012, with the 2012 data still under analysis.
Publication of the analyses shown today is expected around the end of July.
A more complete picture of today’s observations will emerge later this year
after the LHC provides the experiments with more data.

“The observation of a new particle at about 125 GeV, or 130 times the mass
of the proton, by both the ATLAS and CMS groups is already a tremendous
achievement,” said Rob McPherson, spokesperson of the ATLAS Canada
collaboration, a professor of physics at the University of Victoria and
Institute of Particle Physics scientist. “While our preliminary measurements
show this new particle is consistent with the Higgs boson, we need more data
to be sure that it is definitely the Higgs.”

The next step will be to determine the precise nature of the particle and
its significance for our understanding of the universe. Are its properties
as expected for the long-sought Higgs boson, the final\ missing ingredient
in the Standard Model of particle physics? Or is it something more exotic?
The Standard Model describes the fundamental particles from which we, and
every visible thing in the universe, are made, and the forces acting between
them. All the matter that we can see, however, appears to be no more than
about 4% of the total. A more exotic version of the Higgs particle could be
a bridge to understanding the 96% of the universe that remains obscure.

Don’t forget there’s an open house from 9 am to 11 am today at TRIUMF where you can find out more about the Higgs boson and the latest announcement.

ETA July 4, 2012 1:30 pm PST: You can still attend a live Q&A being held by the journal Nature tomorrow (July 5, 2012) at 2 pm BST or 6 am PST: Live Q&A: Higgs found, so what’s next?

Trickster researchers at the University of Maryland and graphene photodetectors

Trickster figures are a feature in mythologies around the world. They’re always mischievous, tricking humans and other beings into doing things they shouldn’t.

Tricksters can be good and/or villainous. For example, Raven in the Pacific Northwest gave us the sun, moon, and stars but stole them in the first place from someone else.

I don’t think the researchers at the University of Maryland have done anything comparable (i.e., stealing) with their graphene discovery but the analogy does amuse me. From the June 3, 2012 news release by Lee Tune,

Researchers at the Center for Nanophysics and Advanced Materials of the University of Maryland have developed a new type of hot electron bolometer a sensitive detector of infrared light, that can be used in a huge range of applications from detection of chemical and biochemical weapons from a distance and use in security imaging technologies such as airport body scanners, to chemical analysis in the laboratory and studying the structure of the universe through new telescopes. [emphasis mine]

Before launching into why I highlighted the part about the universe and the telescopes, here’s the problem the researchers were solving (from the news release),

Most photon detectors are based on semiconductors. Semiconductors are materials which have a range of energies that their electrons are forbidden to occupy, called a “band gap”. The electrons in a semiconductor can absorb photons of light having energies greater than the band gap energy, and this property forms the basis of devices such as photovoltaic cells.

Graphene, a single atom-thick plane of graphite, is unique in that is has a bandgap of exactly zero energy; graphene can therefore absorb photons of any energy. This property makes graphene particularly attractive for absorbing very low energy photons (terahertz and infrared) which pass through most semiconductors. Graphene has another attractive property as a photon absorber: the electrons which absorb the energy are able to retain it efficiently, rather than losing energy to vibrations of the atoms of the material. This same property also leads to extremely low electrical resistance in graphene.

University of Maryland researchers exploited these two properties to devise the hot electron bolometer. It works by measuring the change in the resistance that results from the heating of the electrons as they absorb light.

Normally, graphene’s resistance is almost independent of temperature, unsuitable for a bolometer.

Here’s how the researchers solved the problem (from the news release),

So the Maryland researchers used a special trick: when bilayer graphene is exposed to an electric field it has a small band gap, large enough that its resistance becomes strongly temperature dependent, but small enough to maintain its ability to absorb low energy infrared photons.

The researchers found that their bilayer graphene hot electron bolometer operating at a temperature of 5 Kelvin had comparable sensitivity to existing bolometers operating at similar temperatures, but was more than a thousand times faster.  They extrapolated the performance of the graphene bolometer to lower temperature and found that it may beat all existing technologies.

As usual, there is more work to be done (from the news release),

Some challenges remain. The bilayer graphene bolometer has a higher electrical resistance than similar devices using other materials which may make it difficult to use at high frequencies. Additionally, bilayer graphene absorbs only a few percent of incident light.  But the Maryland researchers are working on ways to get around these difficulties with new device designs, and are confident that a graphene has a bright future as a photo-detecting material.

As for why I highlighted the passage about telescopes and the structure of the universe, our local particle physics laboratory (TRIUMF located in Vancouver, Canada) is hosting the Physics at the Large Hadron Collider (PLHC) conference this week. This is a big deal, from the 7th annual PLHC conference home page (Note: I have removed some links),

PLHC2012 is the seventh conference in the series. The previous conferences in this series were held in Prague (2003), Vienna (2004), Cracow (2006), Split (2008), Hamburg (2010) and Perugia (2011). The conference consists of invited and contributed talks, as well as posters, covering experiment and theory.

Topics at the conference

  • Beauty Physics
  • Heavy Ion Physics
  • Standard Model & Beyond
  • Supersymmetry
  • Higgs Boson

There was a June 3, 2012 public event (mentioned in my May 15, 2012 posting) featuring Rolf Heuer, Director General of CERN (European Particle Physics Laboratory) which houses the Large Hadron Collider and experiments where they are attempting to discern the structure of the universe. (I did attend Heuer’s talk and I think one needs to be more of a physics aficionado than I am.  Thankfully I had watched the Perimeter Institute’s webcast  (What the Higgs is going on?) when the big Higgs Boson announcement was made in December 2012 (mentioned in my Dec. 14, 2012 posting) and that helped.

There is of course an alternate view of the universe and its structure as presented by the story of Raven (from the Wikipedia essay [Note: I have removed a link]),

Raven steals the sun

This is an ancient story told on the Queen Charlotte Islands and includes how Raven helped to bring the Sun, Moon, Stars, Fresh Water, and Fire to the world.

Long ago, near the beginning of the world, Gray Eagle was the guardian of the Sun, Moon and Stars, of fresh water, and of fire. Gray Eagle hated people so much that he kept these things hidden. People lived in darkness, without fire and without fresh water.

Gray Eagle had a beautiful daughter, and Raven fell in love with her. In the beginning, Raven was a snow-white bird, and as a such, he pleased Gray Eagle’s daughter. She invited him to her father’s longhouse.

When Raven saw the Sun, Moon and stars, and fresh water hanging on the sides of Eagle’s lodge, he knew what he should do. He watched for his chance to seize them when no one was looking. He stole all of them, and a brand of fire also, and flew out of the longhouse through the smoke hole. As soon as Raven got outside he hung the Sun up in the sky. It made so much light that he was able to fly far out to an island in the middle of the ocean. When the Sun set, he fastened the Moon up in the sky and hung the stars around in different places. By this new light he kept on flying, carrying with him the fresh water and the brand of fire he had stolen.

He flew back over the land. When he had reached the right place, he dropped all the water he had stolen. It fell to the ground and there became the source of all the fresh-water streams and lakes in the world. Then Raven flew on, holding the brand of fire in his bill. The smoke from the fire blew back over his white feathers and made them black. When his bill began to burn, he had to drop the firebrand. It struck rocks and hid itself within them. That is why, if you strike two stones together, sparks of fire will drop out.

Raven’s feathers never became white again after they were blackened by the smoke from the firebrand. That is why Raven is now a black bird.

While it’s less poetic in tone, there is an image from the University of Maryland illustrating their graphene photodetector,

Electrons in bilayer graphene are heated by a beam of light. Illustration by Loretta Kuo and Michelle Groce, University of Maryland .

TRIUMF steps out: art/sci collaboration exhibition and CERN bigwig talks to Vancouverrites

Timidly to be sure but  TRIUMF (Canada’s national laboratory for particle and nuclear physics, located in Vancouver) is stepping out with a couple of public engagement projects.

First is the art/science collaboration between art students at the Emily Carr University of Art + Design and scientists at TRIUMF, which is being displayed at Science World. From the April 4, 2012 news release on the TRIUMF website,

For the first time, a collection of these pieces will be displayed at Science World in the Telus World of Science, Thursday, April 5 through Sunday, May 27, 2012. The pieces will be hung around the premises, providing visitors of all ages an opportunity to contemplate science from an artistic perspective.

“Through contemporary art in its many forms, the narrative of science enters the human story and becomes materially transformed,” says Associate Professor Ingrid Koenig, (TRIUMF’s Artist in Residence). “By visiting TRIUMF, students see examples of how the biggest questions about the universe are actually physically examined in a lab. They are surprised by the messiness factor, and puzzled by how the abstractness of physics comes to terms with human experience.”

Liz Toohey-Wiese (’11), one of the artists selected for this year’s exhibit, co-created a piece with Dan Crawford . They used typed words on recipe cards to visually explain a very strange concept in physics: particle duality in quantum mechanics. In quantum mechanics, a particle can exist in multiple states at once, until one is selected or chosen.

Says Toohey-Wiese, “I realized that quantum mechanics is like a day. Anything is possible in the morning when you wake up, and at the end of the day, you can look back and see what did happen.”

Toohey-Wiese/Crawford collaboration at Vancouver's Science World from April 5 - May 27, 2012

Unfortunately, this is not a very good image but hopefully you can get some idea of what Toohey-Wiese and Crawford are conveying.

I did check out the Science World website but was unable to find any reference to this art/sci collaboration show however I did find TRIUMF’s 2nd public engagement project, an evening talk (Sunday, June 3, 2012 from 6:30-8 pm, doors open at 6 pm) with CERN Director General Rolf Heuer titled, Unveiling the Universe. From the event webpage,

CERN Director General Rolf Heuer will speak at Science World at TELUS World of Science to engage the public with the many scientific adventures taking place at CERN, including ephemeral neutrinos that apparently disobeyed Einstein’s laws, doppelganger-like anti-atoms likely never before seen in the universe, and the frantic search for the one fundamental particle to rule them all, the Higgs. This free lecture takes place in the OMNIMAX® Theatre at Science World, and will be the opening lecture for the Physics at the Large Hadron Collider (PLHC) Conference by TRIUMF hosted at UBC the following week.

I suspect CERN (European Particle Physics Laboratory)  supplied this image, which I quite like,

CERN Director General Rolf Heuer

Free tickets can be ordered at www.plhc2012.eventbrite.ca. You may want to get your ticket soon, I think this is going to be very popular.