Tag Archives: Room-Temperature Quantum Bit Storage Exceeding 39 Minutes Using Ionized Donors in Silicon-28

Surviving 39 minutes at room temperature—recordbreaking for quantum materials

There are two news releases about this work which brings quantum computing a step closer to reality. I’ll start with the Nov. 15, 2013 Simon Fraser University (SFU; located in Vancouver, Canada) news release (Note: A link has been removed),,

An international team of physicists led by Simon Fraser University professor Mike Thewalt has overcome a key barrier to building practical quantum computers, taking a significant step to bringing them into the mainstream.

In their record-breaking experiment conducted on SFU’s Burnaby campus, [part of Metro Vancouver] the scientists were able to get fragile quantum states to survive in a solid material at room temperature for 39 minutes. For the average person, it may not seem like a long time, but it’s a veritable eternity to a quantum physicist.

“This opens up the possibility of truly long-term coherent information storage at room temperature,” explains Thewalt.

Quantum computers promise to significantly outperform today’s machines at certain tasks, by exploiting the strange properties of subatomic particles. Conventional computers process data stored as strings of ones or zeroes, but quantum objects are not constrained to the either/or nature of binary bits.

Instead, each quantum bit – or qubit – can be put into a superposition of both one and zero at the same time, enabling them to perform multiple calculations simultaneously. For instance, this ability to multi-task could allow quantum computers to crack seemingly secure encryption codes.

“A powerful universal quantum computer would change technology in ways that we already understand, and doubtless in ways we do not yet envisage,” says Thewalt, whose research was published in Science today.

“It would have a huge impact on security, code breaking and the transmission and storage of secure information. It would be able to solve problems which are impossible to solve on any conceivable normal computer. It would be able to model the behaviour of quantum systems, a task beyond the reach of normal computers, leading, for example, to the development of new drugs by a deeper understanding of molecular interactions.”

However, the problem with attempts to build these extraordinary number-crunchers is that superposition states are delicate structures that can collapse like a soufflé if nudged by a stray particle, such as an air molecule.

To minimize this unwanted process, physicists often cool their qubit systems to almost absolute zero (-273 C) and manipulate them in a vacuum. But such setups are finicky to maintain and, ultimately, it would be advantageous for quantum computers to operate robustly at everyday temperatures and pressures.

“Our research extends the demonstrated coherence time in a solid at room temperature by a factor of 100 – and at liquid helium temperature by a factor of 60 (from three minutes to three hours),” says Thewalt.

“These are large, significant improvements in what is possible.”

The November 15, 2013 University of Oxford news release (also on EurekAlert), features their own researcher and more information (e.g., the previous record for maintaining coherence of a solid state at room temperature),

An international team including Stephanie Simmons of Oxford University report in this week’s Science a test performed as part of a project led by Mike Thewalt of Simon Fraser University, Canada, and colleagues. …

In the experiment, the team raised the temperature of a system, in which information is encoded in the nuclei of phosphorus atoms in silicon, from -269°C to 25°C and demonstrated that the superposition states survived at this balmy temperature for 39 minutes – outside of silicon the previous record for such a state’s survival at room temperature was around two seconds. [emphasis mine] The team even found that they could manipulate the qubits as the temperature of the system rose, and that they were robust enough for this information to survive being ‘refrozen’ (the optical technique used to read the qubits only works at very low temperatures).

‘Thirty-nine minutes may not seem very long but as it only takes one-hundred-thousandth of a second to flip the nuclear spin of a phosphorus ion – the type of operation used to run quantum calculations – in theory over two million operations could be applied in the time it takes for the superposition to naturally decay by 1%. Having such robust, as well as long-lived, qubits could prove very helpful for anyone trying to build a quantum computer,’ said Stephanie Simmons of Oxford University’s Department of Materials, an author of the paper.

The team began with a sliver of silicon doped with small amounts of other elements, including phosphorus. Quantum information was encoded in the nuclei of the phosphorus atoms: each nucleus has an intrinsic quantum property called ‘spin’, which acts like a tiny bar magnet when placed in a magnetic field. Spins can be manipulated to point up (0), down (1), or any angle in between, representing a superposition of the two other states.

The team prepared their sample at just 4°C above absolute zero (-269°C) and placed it in a magnetic field. Additional magnetic field pulses were used to tilt the direction of the nuclear spin and create the superposition states. When the sample was held at this cryogenic temperature, the nuclear spins of about 37% of the ions – a typical benchmark to measure quantum coherence – remained in their superposition state for three hours. The same fraction survived for 39 minutes when the temperature of the system was raised to 25°C.

There is still some work ahead before the team can carry out large-scale quantum computations. The nuclear spins of the 10 billion or so phosphorus ions used in this experiment were all placed in the same quantum state. To run calculations, however, physicists will need to place different qubits in different states. ‘To have them controllably talking to one another – that would address the last big remaining challenge,’ said Simmons.

Even for the uninitiated, going from a record of two seconds to 39 minutes has to raise an eyebrow.

Here’s a link to and a citation for the paper,

Room-Temperature Quantum Bit Storage Exceeding 39 Minutes Using Ionized Donors in Silicon-28.by Kamyar Saeedi, Stephanie Simmons, Jeff Z. Salvail, Phillip Dluhy, Helge Riemann, Nikolai V. Abrosimov, Peter Becker, Hans-Joachim Pohl, John J. L. Morton, & Mike L. W. Thewalt.  Science 15 November 2013: Vol. 342 no. 6160 pp. 830-833 DOI: 10.1126/science.1239584

This paper is behind a paywall.

ETA Nov. 18 ,2013:  The University College of London has also issued a Nov. 15, 2013 news release on EurekAlert about this work. While some of this is repetitive, I think there’s enough new information to make this excerpt worthwhile,

The team even found that they could manipulate the qubits as the temperature of the system rose, and that they were robust enough for this information to survive being ‘refrozen’ (the optical technique used to read the qubits only works at very low temperatures). 39 minutes may not sound particularly long, but since it only takes a tiny fraction of a second to run quantum computations by flipping the spin of phosphorus ions (electrically charged phosphorus atoms), many millions of operations could be carried out before a system like this decays.

“This opens up the possibility of truly long-term coherent information storage at room temperature,” said Mike Thewalt (Simon Fraser University), the lead researcher in this study.

The team began with a sliver of silicon doped with small amounts of other elements, including phosphorus. They then encoded quantum information in the nuclei of the phosphorus atoms: each nucleus has an intrinsic quantum property called ‘spin’, which acts like a tiny bar magnet when placed in a magnetic field. Spins can be manipulated to point up (0), down (1), or any angle in between, representing a superposition of the two other states.

The team prepared their sample at -269 °C, just 4 degrees above absolute zero, and placed it in a magnetic field. They used additional magnetic field pulses to tilt the direction of the nuclear spin and create the superposition states. When the sample was held at this cryogenic temperature, the nuclear spins of about 37 per cent of the ions – a typical benchmark to measure quantum coherence – remained in their superposition state for three hours. The same fraction survived for 39 minutes when the temperature of the system was raised to 25 °C.