Tag Archives: Rosie Redfield

Part 2 (b) of 3: Science Culture: Where Canada Stands; an expert assessment (reconstructed)

Carrying on from part 2 (a) of this commentary on the Science Culture: Where Canada Stands assessment by the Council of Canadian Academies (CAC).

One of the most intriguing aspects of this assessment was the reliance on an unpublished inventory of Canadian science outreach initiatives (informal science education) that was commissioned by the Korean Foundation for the Advancement of Science and Creativity,

The system of organizations, programs, and initiatives that supports science culture in any country is dynamic. As a result, any inventory provides only a snapshot at a single point in time, and risks quickly becoming out of date. No sustained effort has been made to track public science outreach and engagement efforts in Canada at the national or regional level. Some of the Panel’s analysis relies on data from an unpublished inventory of public science communication initiatives in Canada undertaken in 2011 by Bernard Schiele, Anik Landry, and Alexandre Schiele for the Korean Foundation for the Advancement of Science and Creativity (Schiele et al., 2011). This inventory identified over 700 programs and organizations across all provinces and regions in Canada, including over 400 initiatives related to museums, science centres, zoos, or aquariums; 64 associations or NGOs involved in public science outreach; 49 educational initiatives; 60 government policies and programs; and 27 media programs. (An update of this inventory completed by the Panel brings the total closer to 800 programs.) The inventory is used throughout the chapter [chapter five] to characterize different components of the Canadian system supporting public science outreach, communication, and engagement. (p. 130 PDF; p. 98 print)

I’m fascinated by the Korean interest and wonder if this due to perceived excellence or to budgetary considerations. The cynic in me suspects the Korean foundation was interested in the US scene but decided that information from the Canadian scene would be cheaper to acquire and the data could be extrapolated to give a perspective on the US scene.

In addition to the usual suspects (newspapers, television, radio, science centres, etc.), the Expert Panel did recognize the importance of online science sources (they would have looked foolish if they hadn’t),

Canadians are increasingly using the internet to seek out information relating to science. This activity can take the form of generalized searches about science-related issues or more targeted forms of information acquisition. For example, Canadians report using the internet to seek out information on health and medical issues an average of 47 times a year, or nearly every week. Other forms of online exposure to scientific content also appear to be common. For example, 46% of Canadians report having read a blog post or listserv related to science and technology at least once in the last three months, and 62% having watched an online video related to science and technology.

An increasing reliance on the internet as the main source of information about science and technology is consistent with the evolution of the media environment, as well as with survey data from other countries. Based on the Panel’s survey, 17% of Canadians, for example, report reading a printed newspaper daily, while 40% report reading about the news or current events online every day. (p. 13/2 PDF; p. 100/1 print)

In common with the rest of the world, Canadians are producing and enjoying science festivals,

In Canada there are two established, large-scale science festivals. Science Rendezvous [founded in 2008 as per its Wikipedia entry] takes place in about 20 cities across the country and combines a variety of programming to comprise a day-long free event (Science Rendezvous, 2013).

The annual Eureka! Festival in Montréal (see Figure 5.6 [founded in 2007 as per its program list]) has over 100 activities over three days; it attracted over 68,000 attendees in 2012 (Eureka! Festival, 2013). More science festivals have recently been created. The University of Toronto launched the Toronto Science Festival in fall 2013 (UofT, 2013), and Beakerhead, a new festival described as a “collision of art and culture, technology, and engineering,” was launched in 2013 in Calgary (Beakerhead, 2013). Two Canadian cities have also recently won bids to host STEMfest (Saskatoon in 2015 and Halifax in 2018), an international festival of science, technology, engineering, and mathematics (Global STEM States, 2014). (pp. 145/6 PDF; pp. 113/4 PDF)

The assessment notes have a grand total of five radio and television programmes devoted to science: The Nature of Things, Daily Planet, Quirks and Quarks, Découverte, and Les années lumière (p. 150 PDF; p. 118 print) and a dearth of science journalism,

Dedicated science coverage is notably absent from the majority of newspapers and other print journalism in Canada. As shown in Table 5.3, none of the top 11 newspapers by weekly readership in Canada has a dedicated science section, including nationals such as The Globe and Mail and National Post. Nine of these newspapers have dedicated technology sections, which sometimes contain sub-sections with broader coverage of science or environment stories; however, story coverage tends to be dominated by technology or business (or gaming) stories. Few Canadian newspapers have dedicated science journalists on staff, and The Globe and Mail is unique among Canadian papers in having a science reporter, a medicine and health reporter, and a technology reporter. (p. 152 PDF; p. 120 print)

Not stated explicitly in the assessment is this: those science and technology stories you see in the newspaper are syndicated stories, i.e., written by reporters for the Associated Press, Reuters, and other international press organizations or simply reprinted (with credit) from another newspaper.

The report does cover science blogging with this,

Science blogs are another potential source of information about developments in science and technology. A database compiled by the Canadian Science Writers’ Association, as of March of 2013, lists 143 Canadian science blogs, covering all areas of science and other aspects of science such as science policy and science culture (CSWA, 2013). Some blogs are individually authored and administered, while others are affiliated with larger networks or other organizations (e.g., Agence Science-Presse, PLOS Blogs). Canadian science blogger Maryse de la Giroday has also published an annual round-up of Canadian science blogs on her blog (www.frogheart.ca) for the past three years, and a new aggregator of Canadian science blogs was launched in 2013 (www.scienceborealis.ca). [emphases mine]

Data from the Panel’s survey suggest that blogs are becoming a more prominent source of information about science and technology for the general public. As noted at the beginning of the chapter, 46% of Canadians report having read a blog post about science or technology at least once in the past three months. Blogs are also influencing the way that scientific research is carried out and disseminated. A technical critique in a blog post by Canadian microbiologist Rosie Redfield in 2010, for example, catalyzed a widely publicized debate on the validity of a study published in Science, exploring the ability of bacteria to incorporate arsenic into their DNA. The incident demonstrated the potential impact of blogs on mainstream scientific research. CBC highlighted the episode as the Canadian science story of the year (Strauss, 2011), and Nature magazine identified Redfield as one of its 10 newsmakers of the year in 2011 as a result of her efforts to replicate the initial study and publicly document her progress and results (Hayden, 2011).

The impact of online information sources, however, is not limited to blogs, with 42% of Canadians reporting having heard about a science and technology news story though social media sources like Twitter and Facebook in the last three months. And, as noted earlier, the internet is often used to search for information about specific science and technology topics, both for general issues such as climate change, and more personalized information on medical and health issues.(pp. 153/4 PDF; pp. 121/2 print)

Yes, I got a shout out as did Rosie Redfield. We were the only two science bloggers namechecked. (Years ago, the Guardian newspaper was developing a science blog network and the editor claimed he couldn’t find many female science bloggers after fierce criticism of its first list of bloggers. This was immediately repudiated not only by individuals but someone compiled a list of hundreds of female science bloggers.) Still, the perception persists and I’m thrilled that the panel struck out in a different direction. I was also pleased to see Science Borealis (a Canadian science blog aggregator) mentioned. Having been involved with its founding, I’m also delighted its first anniversary was celebrated in Nov. 2014.

I doubt many people know we have a science press organization in Canada, Agence Science-Presse, but perhaps this mention in the assessment will help raise awareness in Canada’s English language media,

Founded in 1978 with the motto Parce que tout le monde s’intéresse à la science (“because everyone is interested in science”), Agence Science-Presse is a not-for-profit organization in Quebec that supports media coverage of science by distributing articles on scientific research or other topical science and technology issues to media outlets in Canada and abroad. The organization also supports science promotion activities aimed at youth. For example, it currently edits and maintains an aggregation of blogs designed for young science enthusiasts and science journalists (Blogue ta science). (p. 154 PDF; p. 122)

The final chapter (the 6th) of the assessment makes five key recommendations for ‘Cultivating a strong science culture':

  1. Support lifelong science learning
  2. Make science inclusive
  3. Adapt to new technologies
  4. Enhance science communication and engagement
  5. Provide national or regional leadership

Presumably the agriculture reference in the chapter title is tongue-in-cheek. Assuming that’s not one of my fantasies, it’s good to see a little humour.

On to the first recommendation, lifelong learning,

… Science centres and museums, science programs on radio and television, science magazines and journalism, and online resources can all help fulfil this function by providing accessible resources for adult science learning, and by anticipating emerging information needs based on topical issues.

Most informal science learning organizations already provide these opportunities to varying degrees; however, this conception of the relative roles of informal and formal science learning providers differs from the traditional understanding, which often emphasizes how informal environments can foster engagement in science (particularly among youth), thereby triggering additional interest and the later acquisition of knowledge (Miller, 2010b). [emphasis mine] Such a focus may be appropriate for youth programming, but neglects the role that these institutions can play in ongoing education for adults, who often seek out information on science based on specific, well-defined interests or needs (e.g., a medical diagnosis, a newspaper article on the threat of a viral pandemic, a new technology brought into the workplace) (Miller, 2012). [emphases mine] Informal science learning providers can take advantage of such opportunities by anticipating these needs, providing useful and accessible information, and then simultaneously building and deepening knowledge of the underlying science through additional content.

I’m glad to see the interest in adult informal science education although the emphasis on health/medical and workplace technology issues suggests the panel underestimates, despite the data from its own survey, Canadians’ curiosity about and interest in science and technology. The panel also underestimates the tenacity with which many gatekeepers hold to the belief that no one is interested in science. It took me two years before a local organizer would talk to me about including one science-themed meeting in his programme (the final paragraph in my April 14, 2014 post describes some of the process  and my April 18, 2014 post describes the somewhat disappointing outcome). In the end, it was great to see a science-themed ‘city conversation’ but I don’t believe the organizer found it to be a success, which means it’s likely to be a long time before there’s another one.

The next recommendation, ‘Making science inclusive’, is something that I think needs better practice. If one is going to be the change one wants to see that means getting people onto your expert panels that reflect your inclusiveness and explaining to your audience how your expert panel is inclusive.

The ‘Adapting to new technologies’ recommendation is where I expected to see some mention of the social impact of such emerging technologies as robotics, nanotechnology, synthetic biology, etc. That wasn’t the case,

Science culture in Canada and other countries is now evolving in a rapidly changing technological environment. Individuals are increasingly turning to online sources for information about science and technology, and science communicators and the media are also adapting to the new channels of communication and outreach provided over the internet. As people engage more with new forms of technology in their home and work lives, organizations may be able to identify new ways to take advantage of available technologies to support learning and foster science interest and engagement. At the same time, as noted in Chapter 2, this transition is also challenging traditional models of operation for many organizations such as science centres, museums, and science media providers, forcing them to develop new strategies.

Examples of the use of new technologies to support learning are now commonplace. Nesta, an innovation-oriented organization based in the United Kingdom, conducted a study investigating the extent to which new technologies are transforming learning among students (Luckin et al., 2012) (p. 185 PDF; p. 153 print)

Admittedly, the panel was not charged with looking too far into the future but it does seem odd that in a science culture report there isn’t much mention (other than a cursory comment in an early chapter) of these emerging technologies and the major changes they are bringing with them. If nothing else, the panel might have wanted to make mention of artificial intelligence how the increasing role of automated systems may be affecting science culture in Canada. For example, in my July 16, 2014 post I made described a deal Associated Press (AP) signed with a company that automates the process of writing sports and business stories. You may well have read a business story (AP contracted for business stories) written by an artificial intelligence system or, if you prefer the term, an algorithm.

The recommendation for ‘Enhancing science communication and engagement’ is where I believe the Expert Panel should be offered a bouquet,

… Given the significance of government science in many areas of research, government science communication constitutes an important vector for increasing public awareness and understanding about science. In Canada current policies governing how scientists working in federal departments and agencies are allowed to interact with the media and the public have come under heavy criticism in recent years …

Concerns about the federal government’s current policies on government scientists’ communication with the media have been widely reported in Canadian and international
press in recent years (e.g., Ghosh, 2012; CBC, 2013c; Gatehouse, 2013; Hume, 2013; Mancini, 2013; Munro, 2013). These concerns were also recently voiced by the editorial board of Nature (2012), which unfavourably compared Canada’s current approach with the more open policies now in place in the United States. Scientists at many U.S. federal agencies are free to speak to the media without prior departmental approval, and to
express their personal views as long as they clearly state that they are not speaking on behalf of the government. In response to such concerns, and to a formal complaint filed by the Environmental Law Clinic at the University of Victoria and Democracy Watch, on April 2, 2013 Canada’s Information Commissioner launched an investigation into whether current policies and policy instruments in seven federal departments and agencies are “restricting or prohibiting government scientists from speaking with or sharing research with the media and the Canadian public” (OICC, 2013).

Since these concerns have come to light, many current and former government scientists have discussed how these policies have affected their interactions with the media. Marley Waiser, a former scientist with Environment Canada, has spoken about how that department’s policies prevented her from discussing her research on chemical pollutants in Wascana Creek near Regina (CBC, 2013c). Dr. Kristi Miller, a geneticist with the Department of Fisheries and Oceans, was reportedly prevented from speaking publicly about a study she published in Science, which investigated whether a viral infection might be the cause of declines in Sockeye salmon stocks in the Fraser River (Munro, 2011).

According to data from Statistics Canada (2012), nearly 20,000 science and technology professionals work for the federal government. The ability of these researchers to communicate with the media and the Canadian public has a clear bearing on Canada’s science culture. Properly supported, government scientists can serve as a useful conduit for informing the public about their scientific work, and engaging the public in discussions about the social relevance of their research; however, the concerns reported above raise questions about the extent to which current federal policies in Canada are limiting these opportunities for public communication and engagement. (pp. 190/1 PDF; p. 158/9 print)

Kudos for including the information and for this passage as well,

Many organizations including science centres and museums, research centres, and even governments may be perceived as having a science promotion agenda that portrays only the benefits of science. As a result, these organizations are not always seen as promoters of debate through questioning, which is a crucial part of the scientific process. Acknowledging complexity and controversy is another means to improve the quality of public engagement in science in a range of different contexts. (p. 195 PDF; p. 163 print)

One last happy note, which is about integrating the arts and design into the STEM (science, technology, engineering, and mathematics communities),

Linking Science to the Arts and Design U.S. advocates for “STEM to STEAM” call for an incorporation of the arts in discussions of science, technology, engineering, and mathematics in an effort to “achieve a synergistic balance” (Piro, 2010). They cite positive outcomes such as cognitive development, reasoning skills, and concentration abilities. Piro (2010) argues that “if creativity, collaboration, communication, and critical thinking — all touted as hallmark skills for 21st-century success — are to be cultivated, we need to ensure that STEM subjects are drawn closer to the arts.” Such approaches offer new techniques to engage both student and adult audiences in science learning and engagement opportunities.

What I find fascinating about this STEM to STEAM movement is that many of these folks don’t seem to realize is that until fairly recently the arts and sciences recently have always been closely allied.  James Clerk Maxwell was also a poet, not uncommon amongst 19th century scientists.

In Canada one example of this approach is found in the work of Michael R. Hayden, who has conducted extensive genetic research on Huntington disease. In the lead-up to the 2000 Human Genome Project World Conference, Hayden commissioned Vancouver’s Electric Company Theatre to fuse “the spheres of science and art in a play that explored the implications of the revolutionary technology of the Human Genome Project” (ECT, n.d.). This play, The Score, was later adapted into a film. Hayden believes that his play “transforms the scientific ideas explored in the world of the laboratory into universal themes of human identity, freedom and creativity, and opens up a door for a discussion between the scientific community and the public in general” (Genome Canada, 2006). (p. 196 PDF; p. 164 print)

I’m not sure why the last recommendation presents an either/or choice, ‘Providing national or regional leadership’, while the following content suggests a much more fluid state,

…  it should be recognized that establishing a national or regional vision for science culture is not solely the prerogative of government. Such a vision requires broad support and participation from the community of affected stakeholders to be effective, and can also emerge from that community in the absence of a strong governmental role.

The final chapter (the seventh) restates the points the panel has made throughout its report. Unexpectedly, part 2 got bigger, ’nuff said.

Part 2 (a) of 3: Science Culture: Where Canada Stands; an expert assessment (reconstructed)

Losing over 2000 words, i.e., part 2 of this commentary on the Science Culture: Where Canada Stands assessment by the Council of Canadian Academies (CAC) on New Year’s Eve 2014 was a bit of blow. So, here’s my attempt at reconstructing my much mourned part 2.

There was acknowledgement of Canada as a Arctic country and an acknowledgement of this country’s an extraordinary geographical relationship to the world’s marine environment,

Canada’s status as an Arctic nation also has a bearing on science and science culture. Canada’s large and ecologically diverse Arctic landscape spans a substantial part of the circumpolar Arctic, and comprises almost 40% of the country’s landmass (Statistics Canada, 2009). This has influenced the development of Canadian culture more broadly, and also created opportunities in the advancement of Arctic science. Canada’s northern inhabitants, the majority of whom are Indigenous peoples, represent a source of knowledge that contributes to scientific research in the North (CCA, 2008).

These characteristics have contributed to the exploration of many scientific questions including those related to environmental science, resource development, and the health and well-being of northern populations. Canada also has the longest coastline of any country, and these extensive coastlines and marine areas give rise to unique research opportunities in ocean science (CCA, 2013a). (p. 55 PDF; p. 23 print)

Canada’s aging population is acknowledged in a backhand way,

Like most developed countries, Canada’s population is also aging. In 2011 the median age in Canada was 39.9 years, up from 26.2 years in 1971 (Statistics Canada, n.d.). This ongoing demographic transition will have an impact on science culture in Canada in years to come. An aging population will be increasingly interested in health and medical issues. The ability to make use of this kind of information will depend in large part on the combination of access to the internet, skill in navigating it, and a conceptual toolbox that includes an understanding of genes, probability, and related constructs (Miller, 2010b). (p. 56 PDF; p. 24 print)

Yes, the only science topics of interest for an old person are health and medicine. Couldn’t they have included one sentence suggesting an aging population’s other interests and other possible impacts on science culture?

On the plus side, the report offers a list of selected Canadian science culture milestones,

• 1882 – Royal Society of Canada is established.
• 1916 – National Research Council is established.
• 1923 – Association canadienne-française pour l’avancement des sciences (ACFAS) is established.
• 1930 – Canadian Geographic is first published by the Royal Canadian Geographical Society.
• 1951 – Massey–Lévesque Commission calls for the creation of a national science and technology museum.
• 1959 – Canada sees its first science fairs in Winnipeg, Edmonton, Hamilton, Toronto, Montréal, and Vancouver; volunteer coordination eventually grows into Youth Science Canada.
• 1960 – CBC’s Nature of Things debuts on television; Fernand Séguin hosts “Aux frontières de la science.”
• 1962 – ACFAS creates Le Jeune scientifique, which becomes Québec Science in 1970.
• 1966 – Science Council of Canada is created to advise Parliament on science and technology issues.
• 1967 – Canada Museum of Science and Technology is created.
• 1969 – Ontario Science Centre opens its doors (the Exploratorium in San Francisco opens the same year).
• 1971 – Canadian Science Writers’ Association is formed.
• 1975 – Symons Royal Commission on Canadian Studies speaks to how understanding the role of science in society is important to understanding Canadian culture and identity.
• 1975 – Quirks and Quarks debuts on CBC Radio.
• 1976 – OWL children’s magazine begins publication.
• 1977 – Association des communicateurs scientifiques du Québec is established.
• 1978 – L’Agence Science-Presse is created.
• 1981 – Association des communicateurs scientifiques creates the Fernand-Séguin scholarship to identify promising young science journalists.
• 1982 – Les Débrouillards is launched in Quebec. (p. 58 PDF; p. 26 print)

The list spills onto the next page and into the 2000’s.

It’s a relief to see the Expert Panel give a measured response to the claims made about science culture and its various impacts, especially on the economy (in my book, some of the claims have bordered on hysteria),

The Panel found little definitive empirical evidence of causal relationships between the dimensions of science culture and higher-level social objectives like stronger economic performance or more effective public policies. As is the case with much social science research, isolating the impacts of a single variable on complex social phenomena is methodologically challenging, and few studies have attempted to establish such relationships in any detail. As noted in 1985 by the Bodmer report (a still-influential report on public understanding of science in the United Kingdom), although there is good reason prima facie to believe that improving public understanding of science has national economic benefits, empirical proof for such a link is often elusive (RS & Bodmer, 1985). This remains the case today. Nevertheless, many pieces of evidence suggest why a modern, industrialized society should cultivate a strong science culture. Literature from the domains of cognitive science, sociology, cultural studies, economics, innovation, political science, and public policy provides relevant insights. (p. 63 PDF; p. 31 print)

Intriguingly, while the panel has made extensive use of social science methods for this assessment there are some assumptions made about skill sets required for the future,

Technological innovation depends on the presence of science and technology skills in the workforce. While at one point it may have been possible for relatively low-skilled individuals to substantively contribute to technological development, in the 21st century this is no longer the case. [emphasis mine] Advanced science and technology skills are now a prerequisite for most types of technological innovation. (p. 72 PDF; p. 40 print)

Really, it’s no longer possible for relatively low-skilled individuals to contribute to technological development? Maybe the expert panel missed this bit in my March 27, 2013 post,

Getting back to Bittel’s Slate article, he mentions Foldit (here’s my first piece in an Aug. 6, 2010 posting [scroll down about 1/2 way]), a protein-folding game which has generated some very exciting science. He also notes some of that science was generated by older, ‘uneducated’ women. Bittel linked to Jeff Howe’s Feb. 27, 2012 article about Foldit and other crowdsourced science projects for Slate where I found this very intriguing bit,

“You’d think a Ph.D. in biochemistry would be very good at designing protein molecules,” says Zoran Popović, the University of Washington game designer behind Foldit. Not so. “Biochemists are good at other things. But Foldit requires a narrow, deeper expertise.”

Or as it turns out, more than one. Some gamers have a preternatural ability to recognize patterns, an innate form of spatial reasoning most of us lack. Others—often “grandmothers without a high school education,” says Popovic—exercise a particular social skill. “They’re good at getting people unstuck. They get them to approach the problem differently.” What big pharmaceutical company would have anticipated the need to hire uneducated grandmothers? (I know a few, if Eli Lilly HR is thinking of rejiggering its recruitment strategy.) [emphases mine]

It’s not the idea that technical and scientific skills are needed that concerns me; it’s the report’s hard line about ‘low skills’ (which is a term that is not defined). In addition to the notion that future jobs require only individuals with ‘high level’ skills; there’s the notion (not mentioned in this report but gaining general acceptance in the media) that we shouldn’t ever have to perform repetitive and boring activities. It’s a notion which completely ignores a certain aspect of the learning process. Very young children repeat over and over and over and over … . Apprenticeships in many skills-based crafts were designed with years of boring, repetitive work as part of the training. It seems counter-intuitive but boring, repetitive activities can lead to very high level skills such as the ability to ‘unstick’ a problem for an expert with a PhD in biochemistry.

Back to the assessment, the panel commissioned a survey, conducted in 2013, to gather data about science culture in Canada,

The Panel’s survey of Canadian science culture, designed to be comparable to surveys undertaken in other countries as well as to the 1989 Canadian survey, assessed public attitudes towards science and technology, levels and modes of public engagement in science, and public science knowledge or understanding. (The evidence reported in this chapter on the fourth dimension, science and technology skills, is drawn from other sources such as Statistics Canada and the OECD).

Conducted in April 2013, the survey relied on a combination of landline and mobile phone respondents (60%) and internet respondents (40%), randomly recruited from the general population. In analyzing the results, responses to the survey were weighted based on Statistics Canada data according to region, age, education, and gender to ensure that the sample was representative of the Canadian public. 7 A total of 2,004 survey responses were received, with regional breakdowns presented in Table 4.1. At a national level, survey results are accurate within a range of plus or minus 2.2% 19 times out of 20 (i.e., at the 95% confidence interval), and margins of error for regional results range from 3.8% to 7.1%). Three open-ended questions were also included in the survey, which were coded using protocols previously applied to these questions in other international surveys. 8 All open-ended questions were coded independently by at least three bilingual coders, and any discrepancies in coding were settled through a review by a fourth coder. (p. 79 PDF; p. 47 print)

The infographic’s data in part 1 of this commentary, What Do Canadians Think About Science and Technology (S&T)? is based on the survey and other statistical information included in the report especially Chapter four focused on measurements (pp. 77  – 127 PDF; pp. 45 – 95 print). While the survey presents a somewhat rosier picture of the Canadian science culture than the one I experience on a daily basis, the data seems to have been gathered in a thoughtful fashion. Regardless of the assessment’s findings and my opinions,  how Canadians view science became a matter of passionate debate in the Canadian science blogging community (at least parts of it) in late 2014 as per a Dec. 3, 2014 posting by the Science Borealis team on their eponymous blog (Note: Links have been removed),

The CBC’s Rick Mercer is a staunch science advocate, and his November 19th rant was no exception. He addressed the state of basic science in Canada, saying that Canadians are “passionate and curious about science.”

In response, scientist David Kent wrote a post on the Black Hole Blog in which he disagreed with Mercer, saying, “I do not believe Mr. Mercer’s idea that Canadians as a whole are interested although I, like him, would wish it to be the case.”

Kent’s post has generated some fierce discussion, both in the comments on his original post and in the comments on a Facebook post by Evidence for Democracy.

Here at Science Borealis, we rely on a keen and enthusiastic public to engage with the broad range of science-based work our bloggers share, so we decided to address some of the arguments Kent presented in his post.

Anecdotal evidence versus data

Kent says “Mr. Mercer’s claims about Canadians’ passions are anecdotal at best, and lack any evidence – indeed it is possible that Canadians don’t give a hoot about science for science’s sake.”

Unfortunately, Kent’s own argument is based on anecdotal evidence (“To me it appears that… the average Canadian adult does not particularly care about how or why something works.”).

If you’re looking for data, they’re available in a recent Council of Canadian Academies report that specifically studied science culture in Canada. Results show that Canadians are very interested in science.

You can find David Kent’s Nov. 26, 2014 post about Canadians, Rick Mercer and science here. Do take a look at the blog’s comments which feature a number of people deeply involved in promoting and producing Canadian science culture.

I promised disturbing statistics in the head for this posting and here they are in the second paragraph,

Canadian students perform well in PISA [Organization for Economic Cooperation and Development’s (OECD) Programme for International Student Assessment (PISA)] , with relatively high scores on all three of the major components of the assessment (reading, science, and mathematics) compared with students in other countries (Table 4.4). In 2012 only seven countries or regions had mean scores on the science assessment higher than Canada on a statistically significant basis: Shanghai–China, Hong Kong–China, Singapore, Japan, Finland, Estonia, and Korea (Brochu et al., 2013). A similar pattern holds for mathematics scores, where nine countries had mean scores higher than Canada on a statistically significant basis: Shanghai–China, Singapore, Hong Kong–China, Chinese Taipei, Korea, Macao–China, Japan, Lichtenstein, and Switzerland (Brochu et al., 2013). Regions scoring higher than Canada are concentrated in East Asia, and tend to be densely populated, urban areas. Among G8 countries, Canada ranks second on mean science and mathematics scores, behind Japan.

However, the 2012 PISA results also show statistically significant declines in Canada’s scores on both the mathematics and science components. Canada’s science score declined by nine points from its peak in 2006 (with a fall in ranking from 3rd to 10th), and the math score declined by 14 points since first assessed in 2003 (a fall from 7th to 13th) (Brochu et al., 2013). Changes in Canada’s standing relative to other countries reflect both the addition of new countries or regions over time (i.e., the addition of regions such as Hong Kong–China and Chinese Taipei in 2006, and of Shanghai–China in 2009) and statistically significant declines in mean scores.

My Oct. 9, 2013 post discusses the scores in more detail and as the Expert Panel notes, the drop is disconcerting and disturbing. Hopefully, it doesn’t indicate a trend.

Part 2 (b) follows immediately.

International Women’s Day March 8, 2014: women bridging ‘the valley of death'; celebrating the Year of Crystallography; describing success; and righting a wrong

To celebrate International Women’s Day 2014 and to thank Carla Caprioli (@carlacap) for reminding me of the date, here are a few stories about women and science that I find uplifting in one fashion or another, First, I have an excerpt from a piece written by Australian, Cathy Foley where she describes how women could be instrumental in bridging the scientific/technical ‘valley of death’, from a Feb. 20, 2014 news item on phys.org,

As International Women’s Day approaches on March 8 [2014] and my time as NSW [Australia’s state of New South Wales] Premier’s Woman of the Year draws to a close, I have been thinking about diversity in the workplace, and in particular, the relationship between diversity and innovation.

Science and technology that lead to innovation are critical for the changes that lead to a better quality of life, greater business opportunities and a happier, healthier and more equitable society.

There is strong evidence that companies operating with a gender-balance actually enhance their innovation quotient and gain a competitive advantage.

Reports also suggest that advances in gender equality correlate positively with higher Gross National Product (GNP) and that increasing women’s labour force participation and earnings generates greater economic benefits for a family’s health and education. Surely this can only be a good thing.

Foley then goes on to present her case that women can be instrumental in bridging the ‘valley of death’, that gap between laboratory research and commercialization.

Next up, Georgina Ferry’s Jan. 29, 2014 article for Nature (magazine) about women, crystallography, and the International Year of Crystallograpy,

Georgina Ferry celebrates the egalitarian, collaborative culture that has so far produced two female Nobel prizewinners.

“It takes a very special breed of scientist to do this work … it is an area of science in which women dominate.” So said the professor introducing distinguished British crystallographer Judith Howard in 2004 as she received an honorary degree from the University of Bristol, UK.

Some 15 years previously, Howard had received an invitation to apply for a new chair in structural chemistry at Durham University, UK, framed in similarly irksome terms: “because aren’t women supposed to be good at that sort of thing?” Her former PhD supervisor, the Nobel prizewinner Dorothy Hodgkin, encouraged Howard not to let such comments get in her way. Howard got the job, established one of the world’s leading laboratories for low- and variable-temperature structural chemistry, served as head of the department of chemistry, was elected a Fellow of the Royal Society and became the founding director of Durham’s interdepartmental Biophysical Sciences Institute.

Whatever their level of distinction, female crystallographers have always in fact been in the minority. But there is a relationship between the outstanding achievements of some of them and the reputation and culture of the field that is worth examining as we celebrate the International Year of Crystallography.

Ferry goes on to present a fascinating history of the contribution women have made to the field of crystallography.

Next up is a March 7, 2014 posting about women and success written by Athene Donald for the Guardian science blogs (Note: Links have been removed),

At the more everyday level of academic science, how should success be measured? As part of its work on gender equality, and to coincide with International Women’s Day, the University of Cambridge is publishing a book entitled The Meaning of Success containing a fascinating series of 26 interviews with women identified as “successful” by their colleagues, plus an accompanying narrative written by Jo Bostock. These women aren’t only scientists, they aren’t only academics, but through them come some loud and clear messages about how they collectively view success, with the issues highlighted not necessarily the obvious ones.

The stories revealed in the interviews in The Meaning of Success suggest that women take a very broad view of success, how they achieved it and what it means to them. Take chemistry professor Jane Clarke, who only started research in her 40s after a career as a schoolteacher. She says:

I am one of the world leaders in my field and I’m tremendously proud of that. And I’ve done it in such a way that I can hold my head up and say that I never trampled on anybody. I’ve also done it starting late, in an unusual way, and I think that’s something to be proud of. It shows that there’s more than one way of having a successful scientific career, and you should never be told otherwise.

Or plant scientist and Director of the Sainsbury Laboratory, Professor Ottoline Leyser, who says:

I want to break the mould of what you need to be like to be successful. I think success needs to be about collegiality and recognising that the whole should be far more than the sum of the parts. Of course it’s nice if you’re elected to the Royal Society, but it’s a byproduct, not the object of the exercise.

From the University of Cambridge’s perspective this book is meant to start an internal dialogue about how we measure and value success to ensure that we truly do recruit and reward the best wherever that is to be found, not just facilitate the progression of lookalikes to those already in post.

The quote from Ottoline Leyser in the excerpt from Donald’s posting reminded me of some research about reference letters and how the words used to describe the candidates affect their applications (from a Nov. 9, 2010 piece by Jessica Stark on phys.org),

A recommendation letter could be the chute in a woman’s career ladder, according to ongoing research at Rice University. The comprehensive study shows that qualities mentioned in recommendation letters for women differ sharply from those for men, and those differences may be costing women jobs and promotions in academia and medicine.

Funded by the National Science Foundation, Rice University professors Michelle Hebl and Randi Martin and graduate student Juan Madera, now an assistant professor at the University of Houston, reviewed 624 letters of recommendation for 194 applicants for eight junior faculty positions at a U.S. university. They found that letter writers conformed to traditional gender schemas when describing candidates. Female candidates were described in more communal (social or emotive) terms and male candidates in more agentic (active or assertive) terms. [emphasis mine]

Thematically, we have Foley suggesting that women’s communal qualities can be an advantage for bridging the ‘valley of death’, Ferry noting that while women are a minority in the field of crystallography , their success has been due to “a collaborative ethos,” and Donald’s suggestion that we redefine success.

Finally, here’s an excerpt from Rosie Redfield’s Feb. 6, 2014 post on her RRResearch blog where she attempts to redress an old wrong,

A few days ago a French student in my Useful Genetics Coursera course posted a link to an article in Le Monde (sorry, it’s both in French and behind a paywall, but this link might get you a translation).  It reported that a Jan. 31 award ceremony for the discovery of the cause of Down syndrome, part of the 7th Human and Medical Genetics Congress  in Bordeaux, had been blocked by a Down syndrome support organization (Fondation Jerome-Lejeune).  The back story is very depressing, an egregious example of a woman scientist being denied credit for her discovery.

The woman is Dr. Marthe Gautier, now 88 years old.  In 1956 she was a young physician, returning to Paris from a year’s study of pediatric cardiology at Harvard.  She was given a clinical/teaching position at a local hospital, with no funds for research.  The Head of the Pediatric Unit, Raymond Turpin, was interested in mongolism (as Down syndrome was then called); years earlier he had proposed that it might be caused by a chromosome abnormality.  Human cytogenetics was not well understood, but a big breakthrough came this same year, when the true chromosome number was finally established as 46 (not 48).  When Turpin complained that nobody was investigating his hypothesis, Gautier proposed that she take this problem on, since her Harvard training had introduced her to both cell culture and histology.  Turpin agreed to provide a tissue sample from a patient.

For this work she was given a disused laboratory with a fridge, a centrifuge, and a poor quality microscope, but no funding.  And of course she still had her other responsibilities.  But she was keen and resourceful, so she took out a personal loan to buy glassware, kept a live cockerel as a source of serum, and used her own blood when she needed human serum.

By the end of 1957 she had everything working with normal human cells, and could clearly distinguish the 46 chromosomes.  So she asked Prof. Turpin for the patient sample.  After 6 months wait it arrived, and she quickly was able to prepare slides showing that it had not 46 but 47 chromosomes, with three copies of a small chromosome.  But her microscope was very poor, and she could not identify the chromosome or take the photographs of her slides that a publication would need.

All this time Prof. Turpin had never visited her lab, but she’d had frequent visits from a protege of his, Jerome Lejeune.  When she showed Lejeune her discovery, he offered to take the slides to another laboratory where they could be photographed.  …

You may be able to partially guess where this story is going (it bears some similarity to Rosalind Franklin’s which is briefly described in Ferry’s article) but you may want to check out Redfield’s Gautier for at least one twist. In any event, the good part of the story is that Redfield wrote that post and she’s working on a Wikiipedia entry as part of an informal collaborative movement to ensure that Gautier finally gets credit for her work. On that theme, one of my favourite sites, Grandma Got STEM [science, technology, engineering,mathematics] does something similar by soliciting posts that recognize all kinds of contributions women have made. Happy International Women’s Day 2014.

ETA March 10, 2014: Here’s one more article I’d like to add by Maia Weinstock for Scientific American, 15 Works of Art Depicting Women in Science [Photo Essay].  This art piece by Orlando Leibovitz is one of the 15 featured in the article,

 Lise Meitner and Nuclear Fission, 2009 Acrylic on Jute, 54 x 48 inches Credit: Orlando Leibovitz. [downloaded from http://www.orlandoleibovitz.com/Lise_Meitner_and_Nuclear_Fission.html]


Lise Meitner and Nuclear Fission, 2009
Acrylic on Jute, 54 x 48 inches
Credit: Orlando Leibovitz. [downloaded from http://www.orlandoleibovitz.com/Lise_Meitner_and_Nuclear_Fission.html]

Leibovitz has a series titled, ‘Painted Physics‘ where you can find the Meitner piece and others. From the Weinstock article in Scientific American (Note: Links have been removed),

Both Marie Curie and German-born physicist Lise Meitner were responsible for some of the most important advances in physics of the 20th century. Meitner’s contribution was the discovery of nuclear fission, the splitting of atoms that led to the development of nuclear energy and atomic weapons.  Unlike Curie, who was showered with two Nobel Prizes, Meitner was snubbed when her collaborator, Otto Hahn, took home a solo Nobel in physics for their work. But Meitner’s accomplishments eventually earned her something even more enduring: a place on the periodic table of elements. She is the namesake of meitnerium, element 109.

I was pleasantly surprised by the whimsy with which Orlando Leibovitz, a self-taught artist based in Santa Fe, N.M., represented Meitner’s signature work. …

Leibovitz adds: “Lise Meitner’s discoveries continue to have a monumental impact on our lives. The way she overcame the discrimination she faced as a woman, as a physicist and as a Jew in Nazi Germany is a dramatic story. Meitner wrote, ‘Science makes people reach selflessly for truth and objectivity. It teaches people to accept reality with wonder and admiration….’ She lived that sentiment every day of her life. That is a story worth painting.”

The Weinstock article appears to be a review of sorts for an art exhibit that Weinstock is curating, from the Scientific American article (Note: A link has been removed),

… The artists in the following collection of works featuring women in science have contributed boldly to the dual goals of celebrating women in the STEM fields and portraying them positively through the lens of visual media. A selection of these will be featured at a women-in-STEM art exhibit that I will guest curate at the Art.Science.Gallery. in Austin, Texas, from September 13 through October 15, 2014.

While the Art.Science.Gallery doesn’t yet list Weinstock’s show as an upcoming event, there are some intriguing exhibits and images being featured currently.

2012 Canadian science blog roundup and some thoughts on a Canadian science blog network

This is my 3rd annual roundup of Canadian science blogs and the science blogging scene in Canada seems to be getting more lively (see my Dec. 31, 2010 posting and Dec. 29, 2011 posting to compare).

As I did last year, I will start with

Goodbyes

Don’t leave Canada appears to be gone as there hasn’t been posting there since May 4, 2011. I’m sorry to see it go as Rob Annan provided thoughtful commentary on science policy on a regular basis for years. Thank you, Rob. (BTW, he’s now the director of policy, research and evaluation at MITACS.)

Cool Science, John McKay’s blog has been shut down as of Oct. 24, 2012,

Hi everyone. This will mark the final post of the CoolScience.ca site and it will be quietly taken offline in November. I will also be closing down the Twitter and Facebook accounts and moving everything over to my professional accounts that are all focused on communicating science, technology, engineering and medicine.

The Dark Matter science blog by Tom Spears, which I reluctantly (as it was a ‘newspaper blog’ from the Ottawa Citizen)included last year  has since disappeared as has NeuroDojo, a blog written by a Canadian scientist in Texas.

Goodbye ish

Marc Leger’s Atoms and Numbers blog’s latest posting is dated Oct. 23, 2012 but the pattern here seems similar to Marie-Claire’s (see the next one) where the posting is erratic but relatively regular (once or twice per month) until October of this year.

Marie-Claire Shanahan is posting less frequently on her Boundary Vision blog with the last posting there on Oct. 9, 2012.

The Bubble Chamber blog from the University of Toronto’s Science Policy Work Group seems to be fading away with only one posting for 2012, Reply to Wayne Myrvold on the Higgs Boson.

Colin Schulz’s CMBR blog hasn’t had a new posting since July 13, 2012’s 11 Things You Didn’t Know About Canada. In any event, it looks like the blog is no longer primarily focused on science.

The Exponential Book blog by Massimo Boninsegni features an Oct. 24, 2012 posting and a similar posting pattern to Marie-Claire & Marc.

exposure/effect which was new last year has gone into a fairly lengthy hiatus as per its last post in January 30, 2012 posting.

Theoretical biologist, Mario Pineda-Krch of Mario’s Entangled Bank blog is also taking a lengthy hiatus as the last posting on that blog was June 11, 2012.

Nicole Arbour’s Canadian science blog for the UK High Commission in Ottawa hasn’t featured a posting since Oct. 15, 2012’s The Power of We: Adapting to climate change.

Gregor Wolbring’s Nano and Nano- Bio, Info, Cogno, Neuro, Synbio, Geo, Chem… features an Aug. 4, 2012 posting which links to one of his nano articles, (Nanoscale Science and Technology and People with Disabilities in Asia: An Ability Expectation Analysis) published elsewhere.

Jeff Sharom’s Science Canada blog highlights links to editorials and articles on Canadian science policy but doesn’t seem to feature original writing by Sharom or anyone else, consequently, it functions more as a reader/aggregator than a blog.

The Black Hole blog which was always more focused on prospect for Canadian science graduates than Canadian science, hence always a bit of a stretch for inclusion here, has moved to the University Affairs website where it focuses more exclusively on the Canadian academic scene with posts such as this, Free journal access for postdocs in between positions  from Dec. 12, 2012.

Returning to the roundup:

John Dupuis’ Confessions of a Science Librarian whose Dec. 26, 2012 posting, Best Science (Fiction) Books 2012: io9 seems timely for anyone taking a break at this time of year and looking for some reading material.

Daniel Lemire’s blog is known simply as Daniel Lemire. He’s a computer scientist in Montréal who writes one of the more technical blogs I’ve come across and his focus seems to be databases although his Dec. 10, 2012 posting covers the topic of how to get things accomplished when you’re already busy.

Dave Ng, a professor with the Michael Smith Laboratories at the University of British Columbia, is a very active science communicator who maintain the Popperfont blog. The latest posting (Dec. 24, 2012) features Sciencegeek Advent Calendar Extravaganza! – Day 24.

Eric Michael Johnson continues with his The Primate Diaries blog on the Scientific American blog network. His Dec. 6, 2012 posting is a reposted article but he has kept up a regular (once per month, more or less) posting schedule,

Author’s Note: The following originally appeared at ScienceBlogs.com and was subsequently a finalist in the 3 Quarks Daily Science Prize judged by Richard Dawkins. Fairness is the basis of the social contract. As citizens we expect that when we contribute our fair share we should receive our just reward. When social benefits are handed out …

Rosie Redfield is keeping with both her blogs, RRTeaching (latest posting, Dec. 6, 2012) and RRResearch (Nov. 17, 2012).

Sci/Why is a science blog being written by Canadian children’s writers who discuss science, words, and the eternal question – why?

Mathematician Nassif Ghoussoub’s Piece of Mind blog continues to feature incisive writing about science, science funding, policy and academe.

Canadian science writer Heather Pringle continues to post on the The Last Word on Nothing, a blog shared collectively by a number of well known science writers. Her next posting is scheduled for Jan. 3, 2013, according to the notice on the blog.

A little off my usual beat but I included these last year as they do write about science albeit medical and/or health science:

Susan Baxter’s blog Curmudgeon’s Corner features her insights into various medical matters, for example there’s her Dec. 1, 2012 posting on stress, the immune system, and the French antipathy towards capitalism.

Peter Janiszewski and Travis Saunders co-own two different blogs, Obesity Panacea, which is part of the PLoS (Public Library of Science) blogs network, and Science of Blogging which features very occasional posting but it’s worth a look for nuggets like this Oct. 12, 2012 (?) posting on social media for scientists.

After posting the 2011 roundup,

I had a number of suggestions for more Canadian science blogs such as these four who are part of the Scientific American SA) blogging network (in common with Eric Michael Johnson),

Dr. Carin Bondar posts on the SA blog, PsiVid, along with Joanne Manaster. There’s more than one Canadian science blogger who co-writes a blog. This one is self-described as, A cross section of science on the cyberscreen.

Glendon Mellow, a professional science illustrator,  posts on The Flying Trilobite (his own blog) and Symbiartic: the art of science and the science of art, an SA blog he shares with Kalliopi Monoyios.

Larry Moran, a biochemist at the University of Toronto, posts on science and anything else that tickles his fancy on his Sandwalk blog.

Eva Amsen who posts on a number of blogs including the NODE; the community site for developmental biologists  (which she also manages) but the best place to find a listing of her many blogs and interests is at easternblot.net, where she includes this self-description on the About page,

Online Projects

  • Musicians and Scientists – Why are so many people involved in both music and science? I’m on a mission to find out.
  • the NodeMy day job is managing a community site for developmental biologists around the world. The site is used by equal numbers of postdocs, PhD students, and lab heads.
  • SciBarCamp/SciBarCamb – I co-instigated SciBarCamp, an unconference for scientists, in Toronto in 2008. Since then I have co-organized five similar events in three countries, and have advised others on how to run science unconferences.
  • You Learn Something New Every Day – a Tumblr site that automatically aggregates tweets with the hashtag #ylsned, and Flickr photos tagged ylsned, to collect the interesting bits of trivia that people come across on a daily basis.
  • Lab Waste – During my last months in the lab as a PhD student, I made a mini-documentary (using CC-licensed materials) about the excessive amount of disposable plastics used in research labs. It screened in 2009 in the “Quirky Shorts” program of the Imagine Science Film Festival in New York.
  • Expression Patterns – In 2007 I was invited to blog on Nature Network. The complete archives from 2007-2012 are now on this site.
  • easternblot.net – Confusingly, my other science blog was named after this entire domain. It ran from 2005 to 2010, and can be found at science.easternblot.net

I believe Amsen is Canadian and working in the UK but if anyone could confirm, I would be much relieved.

Someone, who according to their About page prefers to remain anonymous but lives in Victoria, BC, and posts (somewhat irregularly, the last posting is dated Nov. 10, 2012) on The Olive Ridley Crawl,

I am an environmental scientist blogging about environmental and development issues that interest me. I prefer to be anonymous(e) because I work with some of the companies I may talk about and I want to avoid conflict of interest issues at work. This gets tricky because I am at the periphery of a lot of events happening in the world of my greatest expertise, persistent organic pollutants, endocrine disrupting compounds, their effects on health and the policy fights around chemicals, their use the controversies! So, I’ve reluctantly moved away from writing about what I know most about, which means this blog suffers severely. I still soldier on, though!

I was born, and grew up in India, so I am interested in all things South Asian and tend to view most all Western government and Western institution actions through a colonialist scratched lens! I am also becoming much more active about my feminism, so who knows what that will do to this blog. I have been meaning to write a monstrous essay about women, the environment and justice, but that’s a task!

I used to live in Chapel Hill, NC with a partner of long vintage (the partnership, that is, not her!) and a crazy cat who thinks he’s a dog. We moved to Victoria, BC in 2008 and I’ve been busy learning about Canadian policy, enjoying this most beautiful town I live in.

Why Olive Ridley? Well, the Olive Ridley sea turtle (Lepidochelys Olivacea) nests on the coasts of Madras, India and I got my start in the wonderful world of conservation working on the Olive Ridley with the Students’ Sea Turtle Conservation Network. So, I do have fond memories for this beautiful creature. And yes, as my dear partner reminds me, I did meet her on the beach when I was doing this work.

Agence Science-Presse (based in Québec and headed by Pascal Lapointe) features three blogs of its own:

Blogue ta science : les billets dédiés aux jeunes.

Discutez avec notre expert : avez-vous suivi notre enquête CSI ?

Autour des Blogues : les actualités de nos blogueurs et de la communauté.

There’s also a regular podcast under the Je vote pour la science banner.

genegeek appears to be Canadian (it has a domain in Canada) but the blog owner doesn’t really identify herself (there’s a photo) on the About page but no name and no biographical details. I did receive a tweet last year about genegeek from C. Anderson who I imagine is the blog owner.

There’s also the Canadian BioTechnologist2.0 blog, which is sponsored by Bio-Rad Canada and is written by an employee.

These next ones were added later in the year:

Chuck Black writes two blogs as he noted in June 2012,

I write two blogs which, while they focus more on space than science, do possess strong science components and overlap with some of the other blogs here.

They are: Commercial Space and Space Conference News.

Andy Park also came to my attention in June 2012. He writes the  It’s the Ecology, Stupid! blog.

Something About Science is a blog I featured in an Aug. 17, 2012 posting and I’m glad to see blogger, Lynn K, is still blogging.

New to the roundup in 2012:

SSChow, Sarah Chow’s blog, focuses on science events in Vancouver (Canada) and science events at the University of British Columbia and miscellaneous matters pertinent to her many science communication efforts.

The Canadian federal government seems to be trying its hand at science blogging with the Science.gc.ca Blogs (http://www.science.gc.ca/Blogs-WSE6EBB690-1_En.htm). An anemic effort given that boasts a total of six (or perhaps it’s five) posting in two or three years.

The Canadian Science Writers Association (CSWA) currently features a blog roll of its members’ blogs. This is a new initiative from the association and one I’m glad to see.  Here’s the list (from the CSWA member blog page),

Anne Steinø (Research Through the Eyes of a Biochemist)
Arielle Duhame-Ross (Salamander Hours)
Bob McDonald (I’m choking on this one since it’s a CBC [Canadian Broadcasting Corporation] blog for its Quirks and Quarks science pr0gram)
Cadell Last (The Ratchet)
Edward Willett
Elizabeth Howell (she seems to be blogging again and the easiest way for me to get to her postings was to click on the Archives link [I clicked on December 2012 to get the latest] after doing that I realized that the images on the page link to postings)
Heather Maughan
Justin Joschko
Kimberly Gerson (Endless Forms Most Beautiful)
Mark Green (a CSWA member, he was born and educated in the US where he lives and works; ordinarily I would not include him, even with his  CSWA membership status,  but he writes a monthly science column for a Cape Breton newspaper, which has made me pause)
Pamela Lincez (For the Love of Science)
Sarah Boon (Watershed Moments)
Susan Eaton (she seems to be reposting articles written [presumably by her] for the AAPG [American Association of Petroleum Geologists] Explorer and other organizations in her blog]

Barry Shell’s site (listed as a CSWA member blog) doesn’t match my admittedly foggy notion of a blog. It seems more of an all round Canadian science resource featuring profiles of Canadian scientists, a regularly updated news archive, and more. Science.ca is extraordinary and I’m thankful to have finally stumbled across it but it doesn’t feature dated posts in common with the other blogs listed here, even the most commercial ones.

Tyler Irving (I had no idea he had his own blog when I mentioned him in my Sept. 25, 2012 posting about Canadian chemists and the Canadian Chemical Institute’s publications) posts at the Scientific Canadian.

I choke again, as I do when mentioning blogs that are corporate media blogs, but in the interest of being as complete as possible Julia Belluz writes the Scien-ish blog about health for MacLean’s magazine.

Genome Alberta hosts a couple of blogs: Genomics and Livestock News & Views.

Occam’s Typewriter is an informal network of science bloggers two of whom are Canadian:

Cath Ennis (VWXYNot?) and Richard Wintle (Adventures in Wonderland). Note: The Guardian Science Blogs network seems to have some sort of relationship with Occam’s Typewriter as you will see postings from the Occam’s network featured as part of Occam’s Corner on the Guardian website.

My last blogger in this posting is James Colliander from the University of  Toronto’s Mathematics Department. He and Nassif (Piece of Mind blog mentioned previously) seem to share a similar interest in science policy and funding issues.

ETA Jan.2.13: This is a social science oriented blog maintained by a SSHRC- (Social Science and Humanities Research Council) funded network cluster called the Situating Science Cluster and the blog’s official name is: Cluster Blog. This is where you go to find out about Science and Technology Studies (STS) and History of Science Studies, etc. and events associated with those studies.

I probably should have started with this definition of a Canadian blogger, from the Wikipedia entry,

A Canadian blogger is the author of a weblog who lives in Canada, has Canadian citizenship, or writes primarily on Canadian subjects. One could also be considered a Canadian blogger if one has a significant Canadian connection, though this is debatable.

Given how lively the Canadian science blogging scene has become, I’m not sure I can continue with these roundups as they take more time each year.  At the very least, I’ll need to define the term Canadian Science blogger, in the hope of reducing the workload,  if I decide to continue after this year.

There’s a rather interesting Nov. 26, 2012 article by Stephanie Taylor for McGill Daily about the Canadian public’s science awareness and a dearth of Canadian science communication,

Much of the science media that Canadians consume and have access to is either American or British: both nations have a robust, highly visible science media sector. While most Canadians wouldn’t look primarily to American journalism for political news and analysis, science doesn’t have the same inherent national boundaries that politics does. While the laws of physics don’t change depending on which side of the Atlantic you’re on, there are scientific endeavours that are important to Canadians but have little importance to other nations. It’s unlikely that a British researcher would investigate the state of the Canadian cod fishery, or that the British press would cover it, but that research is critical to a substantial number of Canadians’ livelihoods.

On the other hand, as Canadian traditional media struggles to consistently cover science news, there’s been an explosion of scientists of all stripes doing a lot of the necessary big picture, broad context, critical analysis on the internet. The lack of space restrictions and accessibility of the internet (it’s much easier to start a blog than try to break in to traditional media) mean that two of the major barriers to complex discussion of science in the media are gone. Blogs struggle to have the same reach as newspapers and traditional media, though, and many of the most successful science blogs are under the online umbrella of mainstream outlets like Scientific American and Discover. Unfortunately and perhaps unsurprisingly, there is currently no Canadian science blog network like this. [emphasis mine]

Yes, let’s create a Canadian science blog network. I having been talking to various individuals about this over the last year (2012) and while there’s interest, someone offered to help and then changed their mind. Plus, I was hoping to persuade the the Canadian Science Writers Association to take it on but I think they were too far advanced in their planning for a member’s network to consider something more generalized (and far more expensive). So, if anyone out there has ideas about how to do this, please do comment and perhaps we can get something launched in 2013.

University of British Columbia (Canada) boards the Coursera train

The last time I featured an online education story was in my Aug. 9, 2011 posting about Stanford University and a free, Artificial Intelligence online course. It was a hugely successful effort and seems to have, at least partially, inspired a whole new institutional approach to offering education.

Universities still want to make money but instead of charging for the courses, they’ll be charging for the certification in these new online education ventures. That’s the theory behind Coursera, founded by Daphne Koller and Andrew Ng at Stanford University (California).

Today, Sept. 19 2012,  Coursera announced that the number of participating educational institutions has doubled. From the Sept. 19, 2012 article by Anya Kamenetz for Fast Company,

Having already teamed up with more colleges than any of its rivals, Coursera adds 17 new global universities to its roster.

Since its debut earlier this year, 1.3 million people have signed up for a free six- to ten-week Coursera class, which includes videos, exercises, embedded assessment and a social component delivered through message boards.

Although still exploring business models, the venture-funded company plans to eventually make money through certifications (a path competitor Udacity is already pursuing). The addition of these new partners will give Coursera an advantage in what’s become an increasingly crowded online education market.

Kamenetz’s article provides more detail about Coursera’s competitors and course offerings. I’m going to concentrate on one of the new universities to team up with the company, the University of British Columbia (from my home province). From the University of British Columbia (UBC) Sept. 19, 2012 media release,

The University of British Columbia is joining forces with the U.S.-based company Coursera to provide high quality, non-credit courses free of charge to a worldwide audience – bringing the university’s expertise within reach of anyone with Internet access.

Starting spring 2013, UBC will pilot three non-credit courses taught by renowned UBC faculty and researchers through Coursera’s online learning platform.

“Our partnership with Coursera will enable us to reach people around the world, and to evaluate an exciting new teaching and learning technology,” says Simon Peacock, Dean of the Faculty of Science, where two of the three UBC Coursera courses will be housed. “Ultimately, I believe all UBC students will benefit from our exploration of this rapidly evolving online space.”

UBC’s Coursera offerings are “Useful Genetics” with Prof. Rosie Redfield [emphasis mine], “Computer Science Problem Design” with Prof. Gregor Kiczales and “Climate Literacy: Navigating Climate Conversations” with Sarah Burch and Tom-Pierre Frappé-Sénéclauze, instructors for the UBC Continuing Studies Centre for Sustainability.

Coursera courses typically consist of videos or voice-over PowerPoint presentations, with student-led discussion forums, interactive activities, quizzes and assignments set at regular intervals.

(Rosie Redfield has been mentioned here before in the context of the ‘arsenic life’ controversy in a Dec. 8, 2010 posting where I apologized for having gotten caught up in the excitement and discuss the controversy at some length.)

Coursera‘s offerings are heavily weighted towards the sciences and mathematics but those are more easily quantifiable than the humanities and I imagine that makes them easier to mark. I understand from Kamenetz’s article, Coursera is testing a peer grading scheme. The website is easy to navigate as is signing up for a course. I do have a couple of  provisos. (1)  I was not able to find out the minimum technical requirement for a potential student’s computer. (2) At this point, they are offering certificates of completion, nothing else. You’re not going to be getting a degree or other professional certification from Stanford or Brown or UBC or any of the others.

On another note, I have a mild quibble with the UBC media release,

• UBC is building upon its leadership in continuing and distance education to enhance the student learning experience. The Coursera partnership will provide evidence-based findings for UBC to design and support quality learning interactions for online, face-to-face and other classroom delivery modes.

I’m not sure I’d call ‘jumping on the train’ with a bunch of other institutions leadership. As for the plan to extract data and mine the Coursera relationship so UBC can design and offer competitive (?) programmes in future, I think that must have been an interesting negotiation. As well, I appreciate the importance of building on someone else’s work as UBC is planning but I’m not sure I’d call that leadership either.

Rosie Redfield talks #arseniclife at Vancouver’s Café Scientifique tonight (April 24, 2012)

Rose Redfield seems to be everywhere in Vancouver these days. Last week (April 19, 2012) she spoke at the first ScienceOnline Vancouver Event and tonight she’s at Café Scientifique at the Railway Club, 579 Dunsmuir St. (second floor) at 7:30 pm.

Here’s the event description straight from the news release,

Our speaker for the evening will be Dr. Rosie Redfield, the biologist from UBC who was recently named one of the “10 People Who Mattered” in 2011 by Nature magazine. (http://www.nature.com/news/365-days-nature-s-10-1.9678 ).

The title and abstract for her café is:

#arseniclife and Open Science
The #arseniclife story started with a bang in late 2010, when NASA proudly announced the discovery that some bacteria could synthesize their DNA with arsenic in the backbone in place of phosphorus. But within a few days it all fell apart, as scientists used blogs and Twitter to conduct impromptu ‘post-publication peer review’. (‘#arseniclife’ is the Twitter hashtag used to identify relevant tweets.) Working with collaborators at Princeton, my lab has now shown that the key results cannot be replicated. This debacle has implications for many aspects of science, from how personal biases and funding sources affect scientific judgment to the increasing roles of social media in both the practice and public communication of science.

I hope she’s addressed that problem with overmodulation that I described in my comments about last week’s ScienceOnline Vancouver event (my April 20, 2012 posting) because she’s very interesting.

For anyone not familiar with the #arseniclife story, here’s my Dec. 8, 2012 apology  posting about it (with links to other more informed writing) and my blooper Dec. 6, 2010 posting.

Comments on ScienceOnline Vancouver’s first event

Bravo to the organizers, Catherine Anderson, Sarah Chow, and Peter Newberry of Vancouver’s (Canada) first ScienceOnline event last night (Thursday, April 19, 2012 first mentioned my April 4, 2012 posting). They attracted, by my count,  a crowd of about 75-80 people. A free event held at Science World, there were three speakers Rosie Redfield, Lisa Johnson, and Anthony Floyd. Here’s a bit more about them from the event description page,

  • Rosie Redfield – Named Nature’s most influential person of 2011, this associate professor of microbiology at UBC [University of British Columbia] hit science fame through her blog RRResearch disputing NASA’s claim life exists in arsenic.
  • Lisa Johnson – Multiplatform journalist with a keen interest in environment and science stories. She enjoys digging, storytelling, and finding context in breaking news.
  • Anthony Floyd – aerospace research engineer with a PhD in Civil Engineering from UBC. Although strictly a digital immigrant, Anthony grew up with technology as technology grew up. He is quite active in social media. Anthony’s a proud dad to two boys, year-round bike commuter, opinionated political observer, and Maritimer-in-exile.

The event was titled, Where do you get your science? It was the third event I attended yesterday so maybe I was a little less tolerant than I can be. I was expecting a lively discussion about finding science what I got was Redfield and Johnson talking about the arsenic life story and their roles in that story locally and, in Redfield’s case, internationally. The only one who really talked about finding science online was Floyd.

I’m not sure if the organizers were hoping that the ‘arsenic life’ stories would somehow tie into the topic or if the two speakers just went off on their own tangents.

Redfield gave an ‘ignite’ talk, which is five minutes long with 20 slides in a timed slideshow where the speaker has to keep time with the slides. I’m sorry to say she overmodulated (used the storytime voice usually aimed at an audience of five-year olds)  for much of the talk. Johnson made the point several times that it wasn’t her fault that the story was wrong. She did admit at one point that she could have dug more deeply and, in fact, someone suggested that she talk to Rosie Redfield for advice about this story at very early stage, something she failed to do. Most valuable to me was the reminder of the constraints that journalists are under.

Note: I, too,  got caught up with my Dec. 6, 2010 posting and I subsequently apologized, Dec. 8, 2010 posting.

Floyd, as I noted earlier, did address the question, Where do you get your science?, although he did ask his audience to make a bit of a leap when he used a story about searching for information about bicycle helmets and bylaws to illustrate one of his points.

I wasn’t able to stay for the more informal discussion after the speakers finished but the organizers  did manage a good icebreaker exercise at the beginning. The audience seemed mostly to be mostly in their 20s and 30s.

It was a very technology-heavy event in that there was livestreaming, multiple computers and screens, references to tweeting and Storify, etc.

Aside: All three of the events I attended yesterday had technology issues of one kind or another. I’m not especially happy when almost all of the attention is on the technology while the live audience is left waiting or is interrupted during question period to accommodate a tweet or has to endure feedback.

I did mention Storify, the ScienceOnline Vancouver Storify ‘story’ is here and you can check #sovan on Twitter for other responses to last night’s event.

All in all, it was a very promising start, despite my nitpicks.

2011 roundup and thoughts on the Canadian science blogging scene

Last year I found about a dozen of us, Canadians blogging about science, and this year (2011) I count approximately 20 of us. Sadly, one blog has disappeared; Elizabeth Howell has removed her PARS3C blog from her website. Others appear to be in pause mode, Rob Annan at the Researcher Forum: Don’t leave Canada behind (no posts since May 4, 2011), The Bubble Chamber at the University of Toronto (no posts since Aug. 12, 2011), Gregor Wolbring’s  Nano and Nano- Bio, Info, Cogno, Neuro, Synbio, Geo, Chem…  (no new posts since Oct. 2010; I’m about ready to give up on this one) and Je vote pour la science (no posts since May 2011).

I’ve been fairly catholic in my approach to including blogs on this list although I do have a preference for blogs with an individual voice that focuses primarily on science (for example, explaining the science you’re writing about rather than complaining about a professor’s marking of your science paper).

Piece of Mind is Nassif Ghoussoub’s (professor of mathematics at the University of British Columbia) blog which is largely about academe, science, and grants. Nassif does go much further afield in some of his posts, as do we all from time to time. He’s quite outspoken and always interesting.

Cool Science is John McKay’s blog which he describes this way ” This site is about raising a creative rationalist in an age of nonsense. It is about parents getting excited about science, learning and critical thinking. It is about smart parents raising smart kids who can think for themselves, make good decisions and discern the credible from the incredible. ” His posts cover a wide range of topics from the paleontology museum in Alberta to a space shuttle launch to the science of good decisions and more.

Dave Ng makes me dizzy. A professor with the Michael Smith Laboratories at the University of British Columbia, he’s a very active science communicator who has started blogging again on the Popperfont blog. This looks like a compilation of bits from Twitter, some very brief postings, and bits from other sources. I’m seeing this style of blogging more frequently these days.

The queen of Canadian science blogging, Rosie Redfield, was just acknowledged as a ‘newsmaker of the year’ by Nature magazine. The Dec. 22, 20111 Vancouver Sun article by Margaret Munro had this to say,

A critical thinker in Vancouver has been named one of the top science newsmakers of the year.

“She appeared like a shot out of the blogosphere: a wild-haired Canadian microbiologist with a propensity to say what was on her mind,” the leading research journal Nature says of Rosie Redfield, a professor at the University of B.C.

The journal editors say Redfield is one of 10 individuals who “had an impact, good or bad, on the world of science” in 2011. She was chosen for her “critical” inquiry and “remarkable experiment in open science” that challenged a now-infamous “arsenic life” study funded by NASA.

Rosie has two blogs, RRResearch and RRTeaching. She used to say she wasn’t a blogger but I rather think she’s changed her tune.

Jeff Sharom’s Science Canada blog isn’t, strictly speaking, a blog so much as it is an aggregator of Canadian science policy news and a good one at that. There are also some very useful resources on the site. (I shamelessly plundered Jeff’s list to add more blogs to this posting).

The Black Hole is owned by Beth Swan and David Kent (although they often have guest posters too). Here’s a description from the About page,

I have entered the Post Doctoral Fellow Black Hole… I’ve witnessed a lot and heard about much more and, while this is the time in academic life when you’re meant to be the busiest, I have begun this blog. Just as a black hole is difficult to define, the label Post Doc is bandied about with recklessness by university administrators, professors, and even PDFs themselves. One thing is certain though… once you get sucked in, it appears to be near impossible to get back out.

David, Beth, and their contributors offer extensive discussions about the opportunities and the failings of the post graduate science experience.

Nicole Arbour, a Science and Innovation Officer at the British High Commission Office in Ottawa, Canada, blogs regularly about Canadian science policy and more on the Foreign and Commonwealth Office blogs.

Colin Schultz, a freelance science journalist, blogs at his website CMBR. He focuses largely on climate change, environmental research, space, and science communication.

exposure/effect is a blog about toxicology, chemical exposures, health and more, which is written by a scientist who chooses to use a pseudonym, ashartus.

Mario’s Entangled Bank is written by theoretical biologist, Mario Pineda-Krch at the University of Alberta. One of Pineda-Krch’s most recent postings was about a special section of a recent Science Magazine issue on Reproducible Research.

Boundary Vision is written by Marie-Claire Shanahan, a professor of science education at the University of Alberta. She not only writes a science blog, she also researches the language and the social spaces of science blogs.

Eric Michael Johnson writes The Primate Diaries blog which is now part of the Scientific American blog network. With a master’s degree in evolutionary anthropology, Johnson examines the interplay between evolutionary biology and politics both on his blog and as part of his PhD work (he’s a student at the University of British Columbia).

The Atoms and Numbers blog is written by Marc Leger. From the About Marc page,

I am a scientist who has always been curious and fascinated by how our universe works.  I love discovering the mysteries and surprises of our World.  I want to share this passion with others, and make science accessible to anyone willing to open their minds.

Many people have appreciated my ability to explain complex scientific ideas in simple terms, and this is one motivation behind my website, Atoms and Numbers.  I taught chemistry in universities for several years, and I participated in the Scientists in the Schools program as a graduate student at Dalhousie University, presenting chemistry magic shows to children and teenagers from kindergarten to grade 12.  I’ve also given presentations on chemistry and forensics to high school students.  I’m even acknowledged in a cookbook for providing a few morsels of information about food chemistry.

Massimo Boninsegni writes about science-related topics (some are about the academic side of science; some physics; some personal items) on his Exponential Book blog.

The Last Word on Nothing is a group blog that features Heather Pringle, a well-known Canadian science writer, on some posts. Pringle’s latest posting is, Absinthe and the Corpse Reviver, all about a legendary cure for hangovers. While this isn’t strictly speaking a Canadian science blog, there is a Canadian science blogger in the group and the topics are quite engaging.

Daniel Lemire’s blog is known simply as Daniel Lemire. He’s a computer scientist in Montréal who writes one of the more technical blogs I’ve come across and his focus seems to be databases. He does cover other topics too, notably in this post titled, Where do debt, credit and currencies come from?

Confessions of a Science Librarian by John Dupuis (head of the Steacie Science & Engineering Library at York University) is a blog I missed mentioning last year and I’m very glad I remembered it this year. As you might expect from a librarian, the last few postings have consisted of lists of the best science books of 2011.

Sci/Why is a science blog being written by Canadian children’s writers who discuss science, words, and the eternal question – why?

I have mixed feelings about including this blog, the Dark Matter science blog by Tom Spears, as it is a ‘newspaper blog’ from the Ottawa Citizen.

Similarly, the MaRS blog is a corporate initiative from the Toronto area science and technology business incubator, MaRS Discovery District.

The last three blogs I’m mentioning are from medical and health science writers.

Susan Baxter’s blog Curmudgeon’s Corner features her insights into various medical matters, for example there’s her Dec. 5, 2011 posting on mammograms, along with her opinions on spandex, travel, and politics.

Peter Janiszewski and Travis Saunders co-own two different blogs, Obesity Panacea, which is part of the PLoS (Public Library of Science) blogs network, and Science of Blogging (nothing posted since July 2011 but it’s well worth a look).

I don’t have anything particularly profound to say about the state of Canadian science blogging this year. It does look to be getting more populous online and I hope that trend continues. I do have a wish for the New Year; I think it should be easier to find Canadian science blogs and would like  to see some sort of network or aggregated list.

Sick and tired of the ‘social media is changing how science is practiced’ narrative

The whole ‘social media is changing ______’ puzzles me. You can fill in the blank with science/government/social relationships/etc. It’s always the same notion. Somehow social media is engendering changes the like of which we’ve never seen before.

  • The February 2011 overthrow of Mubarak in Egypt was all due to social media, as is the current social unrest in many Middle Eastern Countries.
  • Social relationships are being negatively impacted (nobody talks to anybody else anymore or it’s opening new avenues for relationships)
  • The practice of science is being changed by the use of social media.
  • etc.

Mostly I’m concerned with the one about science since I recently ended up on a panel where the discussion turned on this topic. I think there are a lot of things having an impact on how science is practiced and trying to establish the role social media is playing, if any, is a little premature.

We had Rosie Redfield on the panel. Rosie is a professor at the University of British Columbia who was part of the ‘arsenic life’ story that took the internet by a storm in late November/early December 2010. (Confession: I got caught up in the excitement in my Dec. 6, 2010 posting and recanted in my Dec. 8, 2010 posting.) Recently, there’s been a story about ‘arsenic life’ by Carl Zimmer for Slate magazine titled, How #arseniclife changed science. Here’s Zimmer’s set up (from the Slate article),

On November 29, NASA announced that it would soon hold a press conference to “discuss an astrobiology finding that will impact the search for evidence of extraterrestrial life.” Wild speculation ran amok—perhaps scientists had found living things on one of Saturn’s moons. At the press conference, the scientists did not unveil an actual extraterrestrial, but they did have big news. A new paper had just been published in the journal Science, they said, which described bacteria that seemed able to build their own DNA from arsenic. If that were true, it would be an historic discovery, because no such ability has ever been found among Earth’s life-forms.

The paper was published online in late November and attracted a great deal of discussion and criticism almost immediately on blogs (Rosie Redfield’s RRResearch amongst them) and on twitter via the hash tag topic, #arseniclife. The print version of the paper, along with critical letters, will appear in the June 3, 2011 issue of Science.

Here’s Zimmer’s take on what makes this particular scientific dust-up different,

For those of us who have been tracking #arseniclife since last Thanksgiving, however, today comes as an anticlimax. There’s not much in the letters to Science that we haven’t read before. In the past, scientists might have kept their thoughts to themselves, waiting for journals to decide when and how they could debate the merits of a study. But this time, they started talking right away, airing their criticisms on the Internet. In fact, the true significance of the aliens-that-weren’t will be how it helped change the way scientists do science.

Zimmer goes on to describe this new practice,

Redfield and her colleagues are starting to carry out a new way of doing science, known as post-publication peer review. Rather than leaving the evaluation of new studies to a few anonymous scientists, researchers now debate the merit of papers after they have been published. The collective decision they come to stays open to revision.

Post-publication peer review—and open science in general—is attracting a growing number of followers in the scientific community. But some critics have argued that it’s been more successful in theory than in practice. The #arseniclife affair is one of the first cases in which the scientific community openly vetted a high-profile paper, and influenced how the public at large thought about it.

Post-publication peer review existed before social media as per ‘cold fusion’ (Wikipedia essay). I remember it because I wasn’t particularly interested in science at the time but this was everywhere and it went on for months. There was the initial excitement and enthusiasm (the ‘cold fusion’ scientists were featured on the cover of Times or Newsweek or maybe both in the days when those magazines were powerhouse publications). Then, as the initial enthusiasm died down, the storm of scientific criticism started (those other scientists may not have had social media but they made themselves felt). The story took place over eight to 10 months and achieved public awareness in a way that scientists can only fantasize about these days.  By comparison, the arsenic story blew up and disappeared from public consciousness within roughly two weeks, if that.

Social media may yet change how science is practiced but I wouldn’t use Zimmer’s story about #arsencilife to support that belief, in fact, I think it could support another idea altogether.

The ‘arsenic’ story was, by comparison, with ‘cold fusion’ greatly truncated and most members of the public never really heard about it and, as a consequence, were not exposed to the furious debate and discussion as they were with  ‘cold fusion’.  They did not get exposed to how science ‘really works and therein lies a problem because they did not see the uncertainties, the mistakes, and revised ideas.

As for what factors may be having an impact on scientific practice, I’d suggest reading Identifying good scientists and keeping them honest on The Black Hole blog by David Kent. Here’s an excerpt,

In a February 2011 interview with Lab Times, Cambridge scientist Peter Lawrence1 reflects on his own career and complains that “the heart of research is sick” as he charts the changes in the way in which science is pursued.  Briefly, he cites impact factors and the increased need to assign metrics to scientists (# of publications, H-index, etc) as main drivers of producing low quality research and unfairly squeezing out some good scientists who do not publish simply for the sake of publishing.  Impact factor fever runs deep throughout laboratories but, most damagingly, exists at the funding agency and university administrative level as well.

ETA June 17, 2011: For anyone who’d like to read some updated and contrasting discussion about the #arseniclife aftermath for scientific practice and science education there are two June 16, 2011 guest posts for Scientific American, one from Rosie Redfield and the other from Marie-Claire Shanahan. Plus, if you are interested in more details about the cold fusion story and the role electronic communication played, check out Marie-Claire Shanahan’s post,  Arsenic, cold fusion and the legitimacy of online critique, on the Boundary Vision blog.