Tag Archives: Royal Society of Canada

Council of Canadian Academies tries to answer question: What is the state of Canada’s science culture?

The Council of Canadian Academies is an organization designed to answer questions about science in Canada. From the Council’s About Us webpage on their website,

The Council is an independent, not-for-profit corporation that supports science-based, expert assessments (studies) to inform public policy development in Canada. The Council began operation in 2005 and consists of a Board of Governers, a Scientific Advisory Committee and Secretariat. The Council draws upon the intellectual capital that lies within its three Member Academies the Royal Society of Canada (RSC); the Canadian Academy of Engineering;  and the Canadian Academy of Health Sciences.

Our mission is to contribute to the shaping of evidence-based public policy that is in the public interest. This is achieved by appointing independent, multidisciplinary panels of expert volunteers. The Council’s work encompasses a broad definition of science, incorporating the natural, social and health sciences as well as engineering and the humanities.

Expert Panels directly address the question and sub-questions referred to them. Panel assessments may also identify: emerging issues, gaps in knowledge, Canadian strengths, and international trends and practices. Upon completion, assessments provide government decision-makers, academia and stakeholders with high-quality information required to develop informed and innovative public policy.

Several months ago, Gary Goodyear, Canada’s Minister of State (Science and Technology), requested on behalf of the Canada Science and Technology Museums Corporation (CSTMC), Natural Resources Canada, and Industry Canada an assessment of science culture in Canada. From the State of Canada’s Science Culture webpage on the Council of Canadian Academies website,

Over the past 30 years, public interest and debate has been steadily growing in Canada and abroad over the need to foster a science culture as part of the national science and technology agenda. In this period, significant government and private investments have contributed to the development of hundreds of individual science culture programs and institutions.

Now more than ever the volume of programs and data support the need for a national examination of issues, such as the performance indicators that best reflect the vitality of Canada’s science culture, and a need to understand where Canada ranks internationally. The expert panel will be asked to consider these and other questions such as what factors influence an interest in science among youth; what are the key components of the informal system that supports science culture; and what strengths and weaknesses exist in the Canadian system.

Assessments of science culture can focus either on science in the general culture, or the culture among scientists. This assessment will focus principally on the former, with additional interest in understanding the underlying connections among entrepreneurship, innovation and science. …

The full assessment process includes a rigorous peer review exercise to ensure the report is objective, balanced and evidence-based. Following the review and approval by the Council’s Board of Governors, the complete report will be made available on the Council’s website in both official languages. …

Question

What is the state of Canada’s science culture?

Sub-questions:

  1. What is the state of knowledge regarding the impacts of having a strong science culture?
  2. What are the indicators of a strong science culture? How does Canada compare with other countries against these indicators? What is the relationship between output measures and major outcome measures?
  3. What factors (e.g., cultural, economic, age, gender) influence interest in science, particularly among youth?
  4. What are the critical components of the informal system that supports science culture (roles of players, activities, tools and programs run by science museums, science centres, academic and not-for-profit organizations and the private sector)? What strengths and weaknesses exist in Canada’s system?
  5. What are the effective practices that support science culture in Canada and in key competitor countries?

Hopefully, the expert panel will have a definition of some kind for “science culture.”

After waiting what seems to be an unusually long period, the Council announced the chair for the  “science culture” expert panel (from the CCA Dec. 19, 2012 news release),

Arthur Carty to Serve as Expert Panel Chair on the State of Canada’s Science Culture

The Council is pleased to announce the appointment of Dr. Arthur Carty, O.C., as Chair of the Expert Panel on the State of Canada’s Science Culture. In 2011, the Minister of State (Science and Technology) on behalf of the Canada Science and Technology Museums Corporation (CSTMC), Natural Resources Canada, and Industry Canada requested the Council conduct an in-depth, evidence-based assessment on the state of Canada’s science culture.

As Chair of the Council’s Expert Panel, Dr. Carty will work with a multidisciplinary group of experts, to be appointed by the Council, to address the following question: What is the state of Canada’s science culture?

Dr. Carty is currently the Executive Director of the Waterloo Institute for Nanotechnology at the University of Waterloo. Dr. Carty also serves as Special Advisor to the President on international science and technology collaboration, and as Research Professor in the Department of Chemistry. Prior to this, Dr. Carty served as Canada’s first National Science Advisor to the Prime Minister and to the Government of Canada from 2004-2007 and as President of the National Research Council Canada from 1994-2004.

You can find out more on Carty’s biography webpage, on the CCA website,

Arthur Carty is the Executive Director of the Waterloo Institute for Nanotechnology at the University of Waterloo, Special Advisor to the President on international science and technology collaboration, and Research Professor in the Department of Chemistry

From 2004-2008, Dr. Carty served as Canada’s first National Science Advisor to the Prime Minister and to the Government of Canada. Prior to this appointment, he was President of the National Research Council Canada for 10 years. Before this, he spent 2 years at Memorial University and then 27 years at the University of Waterloo, where he was successively Professor of Chemistry, Director of the Guelph-Waterloo Centre for Graduate Work in Chemistry and Biochemistry, Chair of the Department of Chemistry, and Dean of Research.

….

Carty’s profile page on the Waterloo Institute of Nanotechnology (WIN) website offers the same information but in more detail.

It’s difficult to divine much from the biographical information about Carty as it is very purpose-oriented to impress the reader with Carty’s international and national involvements in the field of science advice and collaboration. Carty may have extensive experience with multi-disciplinary teams and an avid interest in a science culture that includes informal science education and the arts and humanities, unfortunately, it’s not visible on either the CCA or WIN website biographies.

Hopefully,  Carty and the CCA will assemble a diverse expert panel. (Warning: blatant self-promotion ahead) If they are looking for a person of diverse personal and professional interests

  • who has an MA in Creative Writing (nonfiction and fiction) and New Media from De Montfort University in Leicester, UK and
  • a BA (Communication – Honors) from Simon Fraser University in Burnaby, Canada and
  • who has built up one of the largest and longest-running independent science blogs in the country thereby contributing to science culture in Canada,
  • neatly combining the social sciences, the humanities, and an informed perspective on science and science culture in Canada in one person,

they may want to contact me at [email protected] I have more details in the CV and can supply references.

Canada, emerging technologies, and chemical assessments (pesticides)

The Council of Canadian Academies released a report titled, Integrating Emerging Technologies into Chemical Safety Assessment, on Jan. 12, 2012. It wasn’t what I thought it might be.

Before launching into the report, it might be helpful to know something more about the Council of Canadian Academies. (Shockingly, I can’t find a description of the group in the postings where I’ve mentioned them previously.) From the Council’s About Us page (Mar.23.12 Note: I have removed links to the Council’s Board of Governors, etc.),

The Council is an independent, not-for-profit corporation that supports science-based, expert assessments (studies) to inform public policy development in Canada. The Council began operation in 2005 and consists of a Board of Governors,  a Scientific Advisory Committee and Secretariat. The Council draws upon the intellectual capital that lies within its three Member Academies the Royal Society of Canada (RSC); the Canadian Academy of Engineering; and the Canadian Academy of Health Sciences.

Our mission is to contribute to the shaping of evidence-based public policy that is in the public interest. This is achieved by appointing independent, multidisciplinary panels of expert volunteers. The Council’s work encompasses a broad definition of science, incorporating the natural, social and health sciences as well as engineering and the humanities.

This latest report on emerging technologies and chemical assessments is in fact a report on emerging technologies for  health and safety assessment procedures of toxic chemicals using pesticides as a test case. Here’s the reasoning (from the abridged version of the report, Report in Focus; Integrating Emerging Technologies into Chemical Safety Assessment),

Protecting human health and the environment is of paramount importance to Canadians. As such, there has been an increasing demand for improved regulation of chemicals in Canada. Nevertheless, recent estimates suggest that toxicity data are lacking for over three quarters of the chemicals on the market. In fact, this paucity of data can extend to the other components within a chemical product. For example, the active ingredients in pesticides are among the most stringently regulated compounds on the market; however, the final pesticide product may also contain data-poor formulants. Added to enhance the use or increase the stability of the pesticide product, formulants are not typically subjected to the full battery of toxicity tests that the active ingredients must undergo.

The data-rich and data-poor nature of pesticide formulation is a metaphor for the dichotomy that exists for most industrial chemicals. While there are some substances for which we have an enormous amount of data, such as pesticide active ingredients, the vast majority of industrial chemicals are extremely data-poor. (p. 1)

This specific report was commissioned by the Minister of Health. From the Report in Focus; Integrating Emerging Technologies into Chemical Safety Assessment,

All levels of government in Canada play a role in regulating the sale and use of pesticides; however, the federal government is responsible for the registration of pest control products in Canada. In May 2009, the Minister of Health, on behalf of the Pest Management Regulatory Agency (PMRA), approached the Council of Canadian Academies to appoint an expert panel to answer the question:

“What is the scientific status of the use of integrated testing strategies in the human and environmental regulatory risk assessment of pesticides.”

In response to this question, the Council assembled a multidisciplinary panel of 15 eminent experts from Canada and the United States. (p. 3)

Here’s a list of the members of the Expert Panel (from the Executive Summary; Integrating Emerging Technologies into Chemical Safety Assessment),

The Expert Panel on the Integrated Testing of Pesticides

Leonard Ritter (Chair) Executive Director, Canadian Network of Toxicology Centres; and Professor of Toxicology, University of Guelph (Guelph, ON)

Christopher P. Austin Director, Chemical Genomics Center, National Institutes of Health (Bethesda, MD)

John R. (Jack) Bend Distinguished University Professor, Departments of Pathology; Physiology and Pharmacology; and Paediatrics in the Schulich School of Medicine and Dentistry, University of Western Ontario (London, ON)

Conrad G. Brunk Professor of Philosophy, University of Victoria (Victoria, BC)

Timothy Caulfield, FRSC, FCAHS Professor, Faculty of Law and School of Public Health; Research Director, Health Law Institute; and Canada Research Chair in Health Law and Policy, University of Alberta (Edmonton, AB)

Vicki L. Dellarco Science Advisor, Office of Pesticide Programs, United States Environmental Protection Agency (Washington, DC)

Paul A. Demers Director, School of Environmental Health, College for Interdisciplinary Studies; and Professor, School of Population & Public Health, Faculty of Medicine, University of British Columbia (Vancouver, BC)

Warren Foster Professor, Department of Obstetrics and Gynaecology; and Director, Centre for Reproductive Care, McMaster University Health Sciences Centre (Hamilton, ON)

Claire Infante-Rivard Professor, Department of Epidemiology, Biostatistics and Occupational Health, Faculty of Medicine, McGill University (Montréal, QC)

Catherine Jumarie Professor, Department of Biological Sciences, Université du Québec à Montréal (Montréal, QC)

Sam Kacew Associate Director of Toxicology, R. Samuel McLaughlin Centre for Population Health Risk Assessment, Institute of Population Health, University of Ottawa (Ottawa, ON)

Robert J. Kavlock Director, National Center for Computational Toxicology, United States Environmental Protection Agency (Durham, NC)

Daniel Krewski Director, R. Samuel McLaughlin Centre for Population Health Risk Assessment, Institute of Population Health, University of Ottawa (Ottawa, ON)

Paul G. Mezey Canada Research Chair in Scientific Modelling and Simulation, Memorial University of Newfoundland (St. John’s, NL)

Terry W. Schultz Emeritus Professor, Department of Comparative Medicine, College of Veterinary Medicine, University of Tennessee (Knoxville, TN) (p. 7)

Getting to the point (from the Executive Summary),

“The issues inherent in the current approach to chemical testing are two-fold: to address the lack of toxicity data for the vast majority of industrial chemicals and to recognize that regulatory decisions must be based on the best available science. The Panel believes that these challenges can be best met by adopting an Integrated Approach to Testing and Assessment (IATA).” – Leonard Ritter, Chair of the Expert Panel (p. 4)

As for what that means,

Integrated Approaches to Testing and Assessment (IATA) represent a pragmatic approach that will move toxicology away from describing what happens towards an explanation of how it happens. Toxicity testing will no longer depend on the one-size-fits-all hazard-based checklist of tests currently used but rather be based on a refined and focused testing strategy tailored to the toxicity profile and intended use of the chemical in question. An IATA strategy uses a tiered approach to help categorize and prioritize higher risk chemicals; all of the existing data on a substance are compiled at the start of the testing process in order to evaluate what data gaps exist and what testing approaches would be most appropriate to understand the precise toxicological profile of that substance.

Given my interest in the toxicological impacts of nanomaterials and concerns about responding to uncertainty and risk in a timely and appropriate fashion, this approach seems promising. Of course, the recommendations may or may not be accepted and, even then, there’s no telling what implementation would look like. Still, I am encouraged.

You can find a full list of all the documents (Report, Report in Focus, Executive Summary, etc.) here.