Tag Archives: RPI

Rensselaer Polytechnic Institute’s NanoSpace online science ‘theme park’ and science literacy project wins web award

Rensselaer Polytechnic Institute’s NonoSpace, which opened in Oct. 2012, was designed to improve science literacy according to the Oct. 18, 2012 news release,

Rensselaer Polytechnic Institute today unveiled NanoSpace, an online “molecular theme park” populated with more than 25 games, activities, and animations to educate and excite young students about the world of atoms and molecules.

From playing “Who wants to be a Quindecillionaire?” in H2OPark, to solving the Polypeptide Puzzler in DNA Land, to button-jamming on Electronz and other retro-style games in the arcade, NanoSpace visitors are having too much fun to notice they’re also learning complex scientific topics.

NanoSpace is the latest platform from the Molecularium Project, which is the flagship outreach and education effort of the Rensselaer Nanotechnology Center. Many NanoSpace games and activities feature the characters Oxy, Hydra, and Mel from the Molecularium animated movies Molecules to the MAX! and Riding Snowflakes.

The mission of the Molecularium Project is to expand science literacy and awareness, and to excite audiences of all ages to explore and understand the molecular nature of the world around them. Funded by the National Science Foundation (NSF) and others, the project is a direct response to the challenge of inspiring more young people to pursue careers in science, technology, engineering, and mathematics (STEM). This is a significant workforce development issue, as the NSF estimates 80 percent of jobs created in the next decade will require some mastery of STEM.

“Science literacy—in every capacity—has never before been so important to our nation,” said Professor Richard W. Siegel, the Robert W. Hunt Professor of Materials Science and Engineering at Rensselaer and director of the Rensselaer Nanotechnology Center.  “We realize that not every kid wants to be a scientist, but learning the basics of science—involving molecules and atoms—is critical to the careers that will be available in the next decade, especially as the U.S. continues to fall behind. When learning is fun, it increases a child’s capacity to absorb and retain knowledge. That’s why we are excited to unveil NanoSpace. Kids are interacting, exploring, and having a great time while learning about atoms and molecules, and they are not even realizing they’re learning.”

This concept of “stealth education” runs through every aspect of the Molecularium Project. …

Almost one year later, it seems the project has been successful with its ‘stealth education’ concept, from a Sept. 25, 2013 news item on Azonano,

Faculty researchers from Rensselaer Polytechnic Institute were honored for their efforts in developing and creating the NanoSpace website, an online science “theme park” that aims to excite elementary and middle-school students about the world of atoms and molecules.

Rensselaer and NanoSpace received a “2013 Best of the Web” award from the Center for Digital Education, in the category of Higher Education Website.

The Sept. 24, 2013 Rensselaer news release, which originated the news item, describes the agency bestowing the designation,

The Center for Digital Education’s “Best of the Web” awards recognize and honor outstanding education websites. The awards are open to all education institution websites in the United States, including K-12 districts, schools, colleges, universities, teachers, multi-class, parent, and student websites. The Center for Digital Education is a national research and advisory institute specializing in K-12 and higher education technology trends, policy, and funding.

“Educational institutions are constantly tasked with creating quality websites and applications to deliver services and enhance learning,” said Kim Frame, executive director of the Center for Digital Education. “This year’s winners are cognizant of this challenge and have developed innovative models to increase learning and promote achievement via the use of technology. The center congratulates them for creativity and dedication toward excellence!”

I decided to take a look at the Center for Digital Education and found this on their About the Center webpage,

The Center for Digital Education (CDE) is a national research and advisory institute specializing in K-12 and higher education technology trends, policy and funding. CDE advises the industry, conducts relevant research, issues white papers, and produces premier annual surveys and awards programs. CDE also hosts events for the education community. CDE’s media platform includes the quarterly Center for Digital Education’s Special Reports, centerdigitaled.com, email newsletters and custom publications.

The rest of the page includes links to their sales, research, corporate, etc. divisions. This looks like a ‘for profit’ endeavour and awards like “2013 Best of the Web” are classic public relations ploys. One of  the most spectacular examples of this ploy are the Nobel prizes.

You can go directly to the NanoSpace website here (be prepared to sign up) or you can go diectly to the Molecularium project website to find out more about both.

Graphene paper batteries

Michael Mullaney’s Aug. 20, 2012 news release for Rensselaer Polytechnic Institute (RPI) highlights work on a battery made from the worlds thinnest material. From the news release,

Engineering researchers at Rensselaer Polytechnic Institute made a sheet of paper from the world’s thinnest material, graphene, and then zapped the paper with a laser or camera flash to blemish it with countless cracks, pores, and other imperfections. The result is a graphene anode material that can be charged or discharged 10 times faster than conventional graphite anodes used in today’s lithium (Li)-ion batteries.

“Li-ion battery technology is magnificent, but truly hampered by its limited power density and its inability to quickly accept or discharge large amounts of energy. By using our defect-engineered graphene paper in the battery architecture, I think we can help overcome this limitation,” said Koratkar, the John A. Clark and Edward T. Crossan Professor of Engineering at Rensselaer. “We believe this discovery is ripe for commercialization, and can make a significant impact on the development of new batteries and electrical systems for electric automobiles and portable electronics applications.”

Here are some more details about the graphene paper the researchers hope will replace the less efficient elements of today’s lithium-ion batteries  (from the news release),

Koratkar’s solution [to the problem of slow charging and discharge] was to use a known technique to create a large sheet of graphene oxide paper. This paper is about the thickness of a piece of everyday printer paper, and can be made nearly any size or shape. The research team then exposed some of the graphene oxide paper to a laser, and other samples of the paper were exposed to a simple flash from a digital camera. In both instances, the heat from the laser or photoflash literally caused mini-explosions throughout the paper, as the oxygen atoms in graphene oxide were violently expelled from the structure. The aftermath of this oxygen exodus was sheets of graphene pockmarked with countless cracks, pores, voids, and other blemishes. The pressure created by the escaping oxygen also prompted the graphene paper to expand five-fold in thickness, creating large voids between the individual graphene sheets.

The researchers quickly learned this damaged graphene paper performed remarkably well as an anode for a Li-ion battery. Whereas before the lithium ions slowly traversed the full length of graphene sheets to charge or discharge, the ions now used the cracks and pores as shortcuts to move quickly into or out of the graphene—greatly increasing the battery’s overall power density. Koratkar’s team demonstrated how their experimental anode material could charge or discharge 10 times faster than conventional anodes in Li-ion batteries without incurring a significant loss in its energy density. Despite the countless microscale pores, cracks, and voids that are ubiquitous throughout the structure, the graphene paper anode is remarkably robust, and continued to perform successfully even after more than 1,000 charge/discharge cycles. The high electrical conductivity of the graphene sheets also enabled efficient electron transport in the anode, which is another necessary property for high-power applications.

Here’s a citation and link for the paper (which is behind a paywall),

Photothermally Reduced Graphene as High-Power Anodes for Lithium-Ion Batteries by Rahul Mukherjee, Abhay Varghese Thomas, Ajay Krishnamurthy, and Nikhil Koratkar in ACS Nano, Article ASAP DOI: 10.1021/nn303145j Publication Date (Web): August 11, 2012

If the researchers are successful, electric cars could become 100% battery-run.

Nano, the arts, and the future

In New York state, Rensselaer Polytechnic Institute is  opening, on October 3, 2008, a new performance/high tech/research space called the Experimental Media and Performing Arts Center or EMPAC. The whole thing is being powered by Rensselaer’s Computational Center for Nanotechnology Innovations and despite its name the center is supposed to bring together artists and scientists. In other words, the general public may go there for a performance, artists can collaborate virtually, or scientists can “immerse themselves in data and fly through a breaking wave or inspect the kinks in a DNA molecule.” There’s more in the NY Times article titled ‘Art and Science, Virtual and Real, Under one Big Roof’ here.

Dr. Andy Miah (University of the West of Scotland) is launching (on October 30, 2008 in Liverpool, UK) a new book with a symposium both of which are called, Human Futures: Art in an Age of Uncertainty. The book looks exciting. I notice that Richard Jones has a chapter in it and I loved Jones’s nanotechnology book, ‘Soft Machines’.  It’s not obvious from the title but the book does discuss science, technology, and ethics in relation to art and our futures.  Wish I could attend. More  information about the book and symposium here.

A few weeks ago, the Project on Emerging Nanotechnologies announced an event for Tuesday, Sept. 30, 2008. It’s called: Nanotechnology? Synthetic Biology? Hey, What’s That? The details aren’t up on their website yet but according to the press release the talk will focus on the results of an opinion poll that was run in August 2008, asking people if they’d heard of nanotechnology or synthetic biology (“An emerging area of research that uses advanced science and engineering to make or redesign living organisms, such as bacteria, so that they can carry out specific functions”). Two representatives from the polling company and David Rejeski, Director, Project on Emerging Nanotechnologies will be speaking from 12:30 – 1:30 pm ET next week, Tuesday, Sept. 30, 2008. you can attend by webcast (I’ll put up a link when the site has the webcast set up). If you’re attending the live event, please rsvp here.