Tag Archives: Samsung Advanced Institute of Technology

Self-healing lithium-ion batteries for textiles

It’s easy to forget how hard we are on our textiles. We rip them, step on them, agitate them in water, splatter them with mud, and more. So, what happens when we integrate batteries and electronics into them? An Oct. 20, 2016 news item on phys.org describes one of the latest ‘textile batter technologies’,

Electronics that can be embedded in clothing are a growing trend. However, power sources remain a problem. In the journal Angewandte Chemie, scientists have now introduced thin, flexible, lithium ion batteries with self-healing properties that can be safely worn on the body. Even after completely breaking apart, the battery can grow back together without significant impact on its electrochemical properties.

wiley_selfhealinglithiumionbattery

© Wiley-VCH

An Oct. 20, 2016 Wiley Angewandte Chemie International Edition press release (also on EurekAlert), which originated the news item, describes some of the problems associated with lithium-ion batteries and this new technology designed to address them,

Existing lithium ion batteries for wearable electronics can be bent and rolled up without any problems, but can break when they are twisted too far or accidentally stepped on—which can happen often when being worn. This damage not only causes the battery to fail, it can also cause a safety problem: Flammable, toxic, or corrosive gases or liquids may leak out.

A team led by Yonggang Wang and Huisheng Peng has now developed a new family of lithium ion batteries that can overcome such accidents thanks to their amazing self-healing powers. In order for a complicated object like a battery to be made self-healing, all of its individual components must also be self-healing. The scientists from Fudan University (Shanghai, China), the Samsung Advanced Institute of Technology (South Korea), and the Samsung R&D Institute China, have now been able to accomplish this.

The electrodes in these batteries consist of layers of parallel carbon nanotubes. Between the layers, the scientists embedded the necessary lithium compounds in nanoparticle form (LiMn2O4 for one electrode, LiTi2(PO4)3 for the other). In contrast to conventional lithium ion batteries, the lithium compounds cannot leak out of the electrodes, either while in use or after a break. The thin layer electrodes are each fixed on a substrate of self-healing polymer. Between the electrodes is a novel, solvent-free electrolyte made from a cellulose-based gel with an aqueous lithium sulfate solution embedded in it. This gel electrolyte also serves as a separation layer between the electrodes.

After a break, it is only necessary to press the broken ends together for a few seconds for them to grow back together. Both the self-healing polymer and the carbon nanotubes “stick” back together perfectly. The parallel arrangement of the nanotubes allows them to come together much better than layers of disordered carbon nanotubes. The electrolyte also poses no problems. Whereas conventional electrolytes decompose immediately upon exposure to air, the new gel is stable. Free of organic solvents, it is neither flammable nor toxic, making it safe for this application.

The capacity and charging/discharging properties of a battery “armband” placed around a doll’s elbow were maintained, even after repeated break/self-healing cycles.

Here’s a link to and a citation for the paper,

A Self-Healing Aqueous Lithium-Ion Battery by Yang Zhao, Ye Zhang, Hao Sun, Xiaoli Dong, Jingyu Cao, Lie Wang, Yifan Xu, Jing Ren, Yunil Hwang, Dr. In Hyuk Son, Dr. Xianliang Huang, Prof. Yonggang Wang, and Prof. Huisheng Peng. Angewandte Chemie International Edition DOI: 10.1002/anie.201607951 Version of Record online: 12 OCT 2016

© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

This paper is behind a paywall.

Samsung ‘GROs’ graphene-based micro-antennas and a brief bit about the business of nanotechnology

A Feb. 22, 2013 news item on Nanowerk highlights a Samsung university grant (GRO) programme which announced funding for graphene-based micro-antennas,

The Graphene-Enabled Wireless Communication project, one of the award-winning proposals under the Samsung Global Research Outreach (GRO) programme, aims to use graphene antennas to implement wireless communication over very short distances (no more than a centimetre) with high-capacity information transmission (tens or hundreds of gigabits per second). Antennas made ??of [sic] graphene could radiate electromagnetic waves in the terahertz band and would allow for high-speed information transmission. Thanks to the unique properties of this nanomaterial, the new graphene-based antenna technology would also make it possible to manufacture antennas a thousand times smaller than those currently used.

The GRO programme—an annual call for research proposals by the Samsung Advanced Institute of Technology (Seoul, South Korea)—has provided the UPC-led project with US$120,000 in financial support.

The Graphene-Enabled Wireless Communication project is a joint project (from the news item; Note: A link has been removed),

“Graphene-Enabled Wireless Communications” – a proposal submitted by an interdepartmental team based at the Universitat Politècnica de Catalunya, BarcelonaTech (UPC) and the Georgia Institute of Technology (Georgia Tech)—will receive US$120,000 to develop micrometre-scale graphene antennas capable of transmitting information at a high speed over very short distances. The project will be carried out in the coming months.

The Graphene-Enabled Wireless Communication project, one of the award-winning proposals under the Samsung Global Research Outreach (GRO) programme, aims to use graphene antennas to implement wireless communication over very short distances (no more than a centimetre) with high-capacity information transmission (tens or hundreds of gigabits per second). Antennas made ??of graphene could radiate electromagnetic waves in the terahertz band and would allow for high-speed information transmission. Thanks to the unique properties of this nanomaterial, the new graphene-based antenna technology would also make it possible to manufacture antennas a thousand times smaller than those currently used.

There’s more about the Graphene-Enabled Wireless Communication project here,

 A remarkably promising application of graphene is that of Graphene-enabled Wireless Communications (GWC). GWC advocate for the use of graphene-based plasmonic antennas –graphennas, see Fig. 1- whose plasmonic effects allow them to radiate EM waves in the terahertz band (0.1 – 10 THz). Moreover, preliminary results sustain that this frequency band is up to two orders of magnitude below the optical frequencies at which metallic antennas of the same size resonate, thereby enhancing the transmission range of graphene-based antennas and lowering the requirements on the corresponding transceivers. In short, graphene enables the implementation of nano-antennas just a few micrometers in size that are not doable with traditional metallic materials.

Thanks to both the reduced size and unique radiation capabilities of ZZ, GWC may represent a breakthrough in the ultra-short range communications research area. In this project we will study the application of GWC within the scenario of off-chip communication, which includes communication between different chips of a given device, e.g. a cell phone.

A new term, graphenna, appears to be have been coined. The news item goes on to offer more detail about the project and about the number of collaborating institutions,

The first stage of the project, launched in October 2012, focuses on the theoretical foundations of wireless communications over short distances using graphene antennas. In particular, the group is analysing the behaviour of electromagnetic waves in the terahertz band for very short distances, and investigating how coding and modulation schemes can be adapted to achieve high transmission rates while maintaining low power consumption.

The group believes the main benefits of the project in the medium term will derive from its application for internal communication in multicore processors. Processors of this type have a number of sub-processors that share and execute tasks in parallel. The application of wireless communication in this area will make it possible to integrate thousands of sub-processors within a single processor, which is not feasible with current communication systems.

The results of the project will lead to an increase in the computational performance of these devices. This improvement would allow large amounts of data to be processed at very high speed, which would be very useful for streamlining data management at processing centres (“big data”) used, for example, in systems like Facebook and Google. The project, which builds on previous results obtained with the collaboration of the University of Wuppertal in Germany, the Royal Institute of Technology (KTH) in Sweden, and Georgia Tech in the United States, is expected to yield its first results in April 2013.

The project is being carried out by the NaNoNetworking Centre in Catalonia (N3Cat), a network formed at the initiative of researchers with the UPC’s departments of Electronic Engineering and Computer Architecture, together with colleagues at Georgia Tech.

Anyone interested in  Samsung’s GRO programme can find more here,

The SAMSUNG Global Research Outreach (GRO) program, open to leading universities around the world, is Samsung Electronics, Co., Ltd. & related Samsung companies (SAMSUNG)’s annual call for research proposals.

As this Samsung-funded research project is being announced, Dexter Johnson details the business failure of NanoInk in a Feb. 22, 2013 posting on his Nanoclast blog (on the IEEE [International Institute of Electrical and Electronics Engineers] website), Note: Links have been removed,

One of the United State’s first nanotechnology companies, NanoInk, has gone belly up, joining a host of high-profile nanotechnology-based companies that have shuttered their doors in the last 12 months: Konarka, A123 Systems and Ener1.

These other three companies were all tied to the energy markets (solar in the case of Konarka and batteries for both A123 and Ener1), which are typically volatile, with a fair number of shuttered businesses dotting their landscapes. But NanoInk is a venerable old company in comparison to these other three and is more in what could be characterized as the “picks-and-shovels” side of the nanotechnology business, microscopy tools.

Dexter goes on to provide an  analysis of the NanoInk situation which makes for some very interesting reading along with the comments—some feisty, some not—his posting has provoked.

I am juxtaposing the Samsung funding announcement with this mention of Dexter’s piece regarding a  ‘nanotechnology’ business failure in an effort to provide some balance between enthusiasm for the research and the realities of developing businesses and products based on that research.