Tag Archives: Samuel K. Moore

Embedded AI (artificial intelligence) with a variant of a memristor?

I don’t entirely get how ReRAM (resistive random access memory) is a variant of a memristor but I’m assuming Samuel K. Moore knows what he’s writing about since his May 16, 2018 posting is on the Nanoclast blog (hosted by the IEEE [Institute of Electrical and Electronics Engineers]), Note: Links have been removed,

Resistive RAM technology developer Crossbar says it has inked a deal with aerospace chip maker Microsemi allowing the latter to embed Crossbar’s nonvolatile memory on future chips. The move follows selection of Crossbar’s technology by a leading foundry for advanced manufacturing nodes. Crossbar is counting on resistive RAM (ReRAM) to enable artificial intelligence systems whose neural networks are housed within the device rather than in the cloud.

ReRAM is a variant of the memristor, a nonvolatile memory device whose resistance can be set or reset by a pulse of voltage. The variant Crossbar qualified for advanced manufacturing is called a filament device. It’s built within the layers above a chip’s silicon, where the IC’s interconnects go, and it’s made up of three layers: from top to bottom—silver, amorphous silicon, and tungsten. Voltage across the amorphous silicon causes a filament of silver atoms to cross the gap to the tungsten, making the memory cell conductive. Reversing the voltage pushes the silver back into place, cutting off conduction.

“The filament itself is only three to four nanometers wide,” says Sylvain Dubois, vice president of marketing and business development at Crossbar. “So the cell itself will be able to scale below 10-nanometers.” What’s more, the ratio between the current that flows when the device is on to when it is off is 1,000 or higher. …

A May 14, 2018 Crossbar news release describes some of the technical AI challenges,

“The biggest challenge facing engineers for AI today is overcoming the memory speed and power bottleneck in the current architecture to get faster data access while lowering the energy cost,” said Dubois. “By enabling a new, memory-centric non-volatile architecture like ReRAM, the entire trained model or knowledge base can be on-chip, connected directly to the neural network with the potential to achieve massive energy savings and performance improvements, resulting in a greatly improved battery life and a better user experience.”

Crossbar’s May 16, 2018 news release provides more detail about their ‘strategic collaboration’ with Microsemi Products (Note: A link has been removed),

Crossbar Inc., the ReRAM technology leader, announced an agreement with Microsemi Corporation, the largest U.S. commercial supplier of military and aerospace semiconductors, in which Microsemi will license Crossbar’s ReRAM core intellectual property. As part of the agreement, Microsemi and Crossbar will collaborate in the research, development and application of Crossbar’s proprietary ReRAM technology in next generation products from Microsemi that integrate Crossbar’s embedded ReRAM with Microsemi products manufactured at the 1x nm process node.

Military and aerospace, eh?

7nm (nanometre) chip shakeup

From time to time I check out the latest on attempts to shrink computer chips. In my July 11, 2014 posting I noted IBM’s announcement about developing a 7nm computer chip and later in my July 15, 2015 posting I noted IBM’s announcement of a working 7nm chip (from a July 9, 2015 IBM news release , “The breakthrough, accomplished in partnership with GLOBALFOUNDRIES and Samsung at SUNY Polytechnic Institute’s Colleges of Nanoscale Science and Engineering (SUNY Poly CNSE), could result in the ability to place more than 20 billion tiny switches — transistors — on the fingernail-sized chips that power everything from smartphones to spacecraft.”

I’m not sure what happened to the IBM/Global Foundries/Samsung partnership but Global Foundries recently announced that it will no longer be working on 7nm chips. From an August 27, 2018 Global Foundries news release,

GLOBALFOUNDRIES [GF] today announced an important step in its transformation, continuing the trajectory launched with the appointment of Tom Caulfield as CEO earlier this year. In line with the strategic direction Caulfield has articulated, GF is reshaping its technology portfolio to intensify its focus on delivering truly differentiated offerings for clients in high-growth markets.

GF is realigning its leading-edge FinFET roadmap to serve the next wave of clients that will adopt the technology in the coming years. The company will shift development resources to make its 14/12nm FinFET platform more relevant to these clients, delivering a range of innovative IP and features including RF, embedded memory, low power and more. To support this transition, GF is putting its 7nm FinFET program on hold indefinitely [emphasis mine] and restructuring its research and development teams to support its enhanced portfolio initiatives. This will require a workforce reduction, however a significant number of top technologists will be redeployed on 14/12nm FinFET derivatives and other differentiated offerings.

I tried to find a definition for FinFet but the reference to a MOSFET and in-gate transistors was too much incomprehensible information packed into a tight space, see the FinFET Wikipedia entry for more, if you dare.

Getting back to the 7nm chip issue, Samuel K. Moore (I don’t think he’s related to the Moore of Moore’s law) wrote an Aug. 28, 2018 posting on the Nanoclast blog (on the IEEE [Institute of Electronics and Electrical Engineers] website) which provides some insight (Note: Links have been removed),

In a major shift in strategy, GlobalFoundries is halting its development of next-generation chipmaking processes. It had planned to move to the so-called 7-nm node, then begin to use extreme-ultraviolet lithography (EUV) to make that process cheaper. From there, it planned to develop even more advanced lithography that would allow for 5- and 3-nanometer nodes. Despite having installed at least one EUV machine at its Fab 8 facility in Malta, N.Y., all those plans are now on indefinite hold, the company announced Monday.

The move leaves only three companies reaching for the highest rungs of the Moore’s Law ladder: Intel, Samsung, and TSMC.

It’s a huge turnabout for GlobalFoundries. …

GlobalFoundries rationale for the move is that there are not enough customers that need bleeding-edge 7-nm processes to make it profitable. “While the leading edge gets most of the headlines, fewer customers can afford the transition to 7 nm and finer geometries,” said Samuel Wang, research vice president at Gartner, in a GlobalFoundries press release.

“The vast majority of today’s fabless [emphasis mine] customers are looking to get more value out of each technology generation to leverage the substantial investments required to design into each technology node,” explained GlobalFoundries CEO Tom Caulfield in a press release. “Essentially, these nodes are transitioning to design platforms serving multiple waves of applications, giving each node greater longevity. This industry dynamic has resulted in fewer fabless clients designing into the outer limits of Moore’s Law. We are shifting our resources and focus by doubling down on our investments in differentiated technologies across our entire portfolio that are most relevant to our clients in growing market segments.”

(The dynamic Caulfield describes is something the U.S. Defense Advanced Research Agency is working to disrupt with its $1.5-billion Electronics Resurgence Initiative. Darpa’s [DARPA] partners are trying to collapse the cost of design and allow older process nodes to keep improving by using 3D technology.)

Fabless manufacturing is where the fabrication is outsourced and the manufacturing company of record is focused on other matters according to the Fabless manufacturing Wikipedia entry.

Roland Moore-Colyer (I don’t think he’s related to Moore of Moore’s law either) has written August 28, 2018 article for theinquirer.net which also explores this latest news from Global Foundries (Note: Links have been removed),

EVER PREPPED A SPREAD for a party to then have less than half the people you were expecting show up? That’s probably how GlobalFoundries [sic] feels at the moment.

The chip manufacturer, which was once part of AMD, had a fabrication process geared up for 7-nanometre chips which its customers – including AMD and Qualcomm – were expected to adopt.

But AMD has confirmed that it’s decided to move its 7nm GPU production to TSMC, and Intel is still stuck trying to make chips based on 10nm fabrication.

Arguably, this could mark a stymieing of innovation and cutting-edge designs for chips in the near future. But with processors like AMD’s Threadripper 2990WX overclocked to run at 6GHz across all its 32 cores, in the real-world PC fans have no need to worry about consumer chips running out of puff anytime soon. µ

That’s all folks.

Maybe that’s not all

Steve Blank in a Sept. 10, 2018 posting on the Nanoclast blog (on the IEEE [Institute of Electrical and Electronics Engineers] website) provides some provocative commentary on the Global Foundries announcement (Note: A link has been removed),

For most of our lives, the idea that computers and technology would get better, faster, and cheaper every year was as assured as the sun rising every morning. The story “GlobalFoundries Halts 7-nm Chip Development”  doesn’t sound like the end of that era, but for you and anyone who uses an electronic device, it most certainly is.

Technology innovation is going to take a different direction.

This story just goes on and on

There was a new development according to a Sept. 12, 2018 posting on the Nanoclast blog by, again, Samuel K. Moore (Note Links have been removed),

At an event today [sept. 12, 2018], Apple executives said that the new iPhone Xs and Xs Max will contain the first smartphone processor to be made using 7 nm manufacturing technology, the most advanced process node. Huawei made the same claim, to less fanfare, late last month and it’s unclear who really deserves the accolades. If anybody does, it’s TSMC, which manufactures both chips.

TSMC went into volume production with 7-nm tech in April, and rival Samsung is moving toward commercial 7-nm production later this year or in early 2019. GlobalFoundries recently abandoned its attempts to develop a 7 nm process, reasoning that the multibillion-dollar investment would never pay for itself. And Intel announced delays in its move to its next manufacturing technology, which it calls a 10-nm node but which may be equivalent to others’ 7-nm technology.

There’s a certain ‘soap opera’ quality to this with all the twists and turns.

Less is more—a superconducting synapse

It seems the US National Institute of Standards and Technology (NIST) is more deeply invested into developing artificial brains than I had realized (See: April 17, 2018 posting). A January 26, 2018 NIST news release on EurekAlert describes the organization’s latest foray into the field,

Researchers at the National Institute of Standards and Technology (NIST) have built a superconducting switch that “learns” like a biological system and could connect processors and store memories in future computers operating like the human brain.

The NIST switch, described in Science Advances, is called a synapse, like its biological counterpart, and it supplies a missing piece for so-called neuromorphic computers. Envisioned as a new type of artificial intelligence, such computers could boost perception and decision-making for applications such as self-driving cars and cancer diagnosis.

A synapse is a connection or switch between two brain cells. NIST’s artificial synapse–a squat metallic cylinder 10 micrometers in diameter–is like the real thing because it can process incoming electrical spikes to customize spiking output signals. This processing is based on a flexible internal design that can be tuned by experience or its environment. The more firing between cells or processors, the stronger the connection. Both the real and artificial synapses can thus maintain old circuits and create new ones. Even better than the real thing, the NIST synapse can fire much faster than the human brain–1 billion times per second, compared to a brain cell’s 50 times per second–using just a whiff of energy, about one ten-thousandth as much as a human synapse. In technical terms, the spiking energy is less than 1 attojoule, lower than the background energy at room temperature and on a par with the chemical energy bonding two atoms in a molecule.

“The NIST synapse has lower energy needs than the human synapse, and we don’t know of any other artificial synapse that uses less energy,” NIST physicist Mike Schneider said.

The new synapse would be used in neuromorphic computers made of superconducting components, which can transmit electricity without resistance, and therefore, would be more efficient than other designs based on semiconductors or software. Data would be transmitted, processed and stored in units of magnetic flux. Superconducting devices mimicking brain cells and transmission lines have been developed, but until now, efficient synapses–a crucial piece–have been missing.

The brain is especially powerful for tasks like context recognition because it processes data both in sequence and simultaneously and stores memories in synapses all over the system. A conventional computer processes data only in sequence and stores memory in a separate unit.

The NIST synapse is a Josephson junction, long used in NIST voltage standards. These junctions are a sandwich of superconducting materials with an insulator as a filling. When an electrical current through the junction exceeds a level called the critical current, voltage spikes are produced. The synapse uses standard niobium electrodes but has a unique filling made of nanoscale clusters of manganese in a silicon matrix.

The nanoclusters–about 20,000 per square micrometer–act like tiny bar magnets with “spins” that can be oriented either randomly or in a coordinated manner.

“These are customized Josephson junctions,” Schneider said. “We can control the number of nanoclusters pointing in the same direction, which affects the superconducting properties of the junction.”

The synapse rests in a superconducting state, except when it’s activated by incoming current and starts producing voltage spikes. Researchers apply current pulses in a magnetic field to boost the magnetic ordering, that is, the number of nanoclusters pointing in the same direction. This magnetic effect progressively reduces the critical current level, making it easier to create a normal conductor and produce voltage spikes.

The critical current is the lowest when all the nanoclusters are aligned. The process is also reversible: Pulses are applied without a magnetic field to reduce the magnetic ordering and raise the critical current. This design, in which different inputs alter the spin alignment and resulting output signals, is similar to how the brain operates.

Synapse behavior can also be tuned by changing how the device is made and its operating temperature. By making the nanoclusters smaller, researchers can reduce the pulse energy needed to raise or lower the magnetic order of the device. Raising the operating temperature slightly from minus 271.15 degrees C (minus 456.07 degrees F) to minus 269.15 degrees C (minus 452.47 degrees F), for example, results in more and higher voltage spikes.

Crucially, the synapses can be stacked in three dimensions (3-D) to make large systems that could be used for computing. NIST researchers created a circuit model to simulate how such a system would operate.

The NIST synapse’s combination of small size, superfast spiking signals, low energy needs and 3-D stacking capability could provide the means for a far more complex neuromorphic system than has been demonstrated with other technologies, according to the paper.

NIST has prepared an animation illustrating the research,

Caption: This is an animation of how NIST’s artificial synapse works. Credit: Sean Kelley/NIST

Here’s a link to and a citation for the paper,

Ultralow power artificial synapses using nanotextured magnetic Josephson junctions by Michael L. Schneider, Christine A. Donnelly, Stephen E. Russek, Burm Baek, Matthew R. Pufall, Peter F. Hopkins, Paul D. Dresselhaus, Samuel P. Benz, and William H. Rippard. Science Advances 26 Jan 2018: Vol. 4, no. 1, e1701329 DOI: 10.1126/sciadv.1701329

This paper is open access.

Samuel K. Moore in a January 26, 2018 posting on the Nanoclast blog (on the IEEE [Institute for Electrical and Electronics Engineers] website) describes the research and adds a few technical explanations such as this about the Josephson junction,

In a magnetic Josephson junction, that “weak link” is magnetic. The higher the magnetic field, the lower the critical current needed to produce voltage spikes. In the device Schneider and his colleagues designed, the magnetic field is caused by 20,000 or so nanometer-scale clusters of manganese embedded in silicon. …

Moore also provides some additional links including this one to his November 29, 2017 posting where he describes four new approaches to computing including quantum computing and neuromorphic (brain-like) computing.

From the memristor to the atomristor?

I’m going to let Michael Berger explain the memristor (from Berger’s Jan. 2, 2017 Nanowerk Spotlight article),

In trying to bring brain-like (neuromorphic) computing closer to reality, researchers have been working on the development of memory resistors, or memristors, which are resistors in a circuit that ‘remember’ their state even if you lose power.

Today, most computers use random access memory (RAM), which moves very quickly as a user works but does not retain unsaved data if power is lost. Flash drives, on the other hand, store information when they are not powered but work much slower. Memristors could provide a memory that is the best of both worlds: fast and reliable.

He goes on to discuss a team at the University of Texas at Austin’s work on creating an extraordinarily thin memristor: an atomristor,

he team’s work features the thinnest memory devices and it appears to be a universal effect available in all semiconducting 2D monolayers.

The scientists explain that the unexpected discovery of nonvolatile resistance switching (NVRS) in monolayer transitional metal dichalcogenides (MoS2, MoSe2, WS2, WSe2) is likely due to the inherent layered crystalline nature that produces sharp interfaces and clean tunnel barriers. This prevents excessive leakage and affords stable phenomenon so that NVRS can be used for existing memory and computing applications.

“Our work opens up a new field of research in exploiting defects at the atomic scale, and can advance existing applications such as future generation high density storage, and 3D cross-bar networks for neuromorphic memory computing,” notes Akinwande [Deji Akinwande, an Associate Professor at the University of Texas at Austin]. “We also discovered a completely new application, which is non-volatile switching for radio-frequency (RF) communication systems. This is a rapidly emerging field because of the massive growth in wireless technologies and the need for very low-power switches. Our devices consume no static power, an important feature for battery life in mobile communication systems.”

Here’s a link to and a citation for the Akinwande team’s paper,

Atomristor: Nonvolatile Resistance Switching in Atomic Sheets of Transition Metal Dichalcogenides by Ruijing Ge, Xiaohan Wu, Myungsoo Kim, Jianping Shi, Sushant Sonde, Li Tao, Yanfeng Zhang, Jack C. Lee, and Deji Akinwande. Nano Lett., Article ASAP DOI: 10.1021/acs.nanolett.7b04342 Publication Date (Web): December 13, 2017

Copyright © 2017 American Chemical Society

This paper appears to be open access.

ETA January 23, 2018: There’s another account of the atomristor in Samuel K. Moore’s January 23, 2018 posting on the Nanoclast blog (on the IEEE [Institute of Electrical and Electronics Engineers] website).