Tag Archives: Sang Yup Lee

Korea Advanced Institute of Science and Technology (KAIST) at summer 2016 World Economic Forum in China

From the Ideas Lab at the 2016 World Economic Forum at Davos to offering expertise at the 2016 World Economic Forum in Tanjin, China that is taking place from June 26 – 28, 2016.

Here’s more from a June 24, 2016 KAIST news release on EurekAlert,

Scientific and technological breakthroughs are more important than ever as a key agent to drive social, economic, and political changes and advancements in today’s world. The World Economic Forum (WEF), an international organization that provides one of the broadest engagement platforms to address issues of major concern to the global community, will discuss the effects of these breakthroughs at its 10th Annual Meeting of the New Champions, a.k.a., the Summer Davos Forum, in Tianjin, China, June 26-28, 2016.

Three professors from the Korea Advanced Institute of Science and Technology (KAIST) will join the Annual Meeting and offer their expertise in the fields of biotechnology, artificial intelligence, and robotics to explore the conference theme, “The Fourth Industrial Revolution and Its Transformational Impact.” The Fourth Industrial Revolution, a term coined by WEF founder, Klaus Schwab, is characterized by a range of new technologies that fuse the physical, digital, and biological worlds, such as the Internet of Things, cloud computing, and automation.

Distinguished Professor Sang Yup Lee of the Chemical and Biomolecular Engineering Department will speak at the Experts Reception to be held on June 25, 2016 on the topic of “The Summer Davos Forum and Science and Technology in Asia.” On June 27, 2016, he will participate in two separate discussion sessions.

In the first session entitled “What If Drugs Are Printed from the Internet?” Professor Lee will discuss the future of medicine being impacted by advancements in biotechnology and 3D printing technology with Nita A. Farahany, a Duke University professor, under the moderation of Clare Matterson, the Director of Strategy at Wellcome Trust in the United Kingdom. The discussants will note recent developments made in the way patients receive their medicine, for example, downloading drugs directly from the internet and the production of yeast strains to make opioids for pain treatment through systems metabolic engineering, and predicting how these emerging technologies will transform the landscape of the pharmaceutical industry in the years to come.

In the second session, “Lessons for Life,” Professor Lee will talk about how to nurture life-long learning and creativity to support personal and professional growth necessary in an era of the new industrial revolution.

During the Annual Meeting, Professors Jong-Hwan Kim of the Electrical Engineering School and David Hyunchul Shim of the Aerospace Department will host, together with researchers from Carnegie Mellon University and AnthroTronix, an engineering research and development company, a technological exhibition on robotics. Professor Kim, the founder of the internally renowned Robot World Cup, will showcase his humanoid micro-robots that play soccer, displaying their various cutting-edge technologies such as imaging processing, artificial intelligence, walking, and balancing. Professor Shim will present a human-like robotic piloting system, PIBOT, which autonomously operates a simulated flight program, grabbing control sticks and guiding an airplane from take offs to landings.

In addition, the two professors will join Professor Lee, who is also a moderator, to host a KAIST-led session on June 26, 2016, entitled “Science in Depth: From Deep Learning to Autonomous Machines.” Professors Kim and Shim will explore new opportunities and challenges in their fields from machine learning to autonomous robotics including unmanned vehicles and drones.

Since 2011, KAIST has been participating in the World Economic Forum’s two flagship conferences, the January and June Davos Forums, to introduce outstanding talents, share their latest research achievements, and interact with global leaders.

KAIST President Steve Kang said, “It is important for KAIST to be involved in global talks that identify issues critical to humanity and seek answers to solve them, where our skills and knowledge in science and technology could play a meaningful role. The Annual Meeting in China will become another venue to accomplish this.”

I mentioned KAIST and the Ideas Lab at the 2016 Davos meeting in this Nov. 20, 2015 posting and was able to clear up my (and possible other people’s) confusion as to what the Fourth Industrial revolution might be in my Dec. 3, 2015 posting.

KAIST (Korea Advanced Institute of Science and Technology) will lead an Ideas Lab at 2016 World Economic Forum

The theme for the 2016 World Economic Forum (WEF) is ‘Mastering the Fourth Industrial Revolution’. I’m losing track of how many industrial revolutions we’ve had and this seems like a vague theme. However, there is enlightenment to be had in this Nov. 17, 2015 Korea Advanced Institute of Science and Technology (KAIST) news release on EurekAlert,

KAIST researchers will lead an IdeasLab on biotechnology for an aging society while HUBO, the winner of the 2015 DARPA Robotics Challenge, will interact with the forum participants, offering an experience of state-of-the-art robotics technology

Moving on from the news release’s subtitle, there’s more enlightenment,

Representatives from the Korea Advanced Institute of Science and Technology (KAIST) will attend the 2016 Annual Meeting of the World Economic Forum to run an IdeasLab and showcase its humanoid robot.

With over 2,500 leaders from business, government, international organizations, civil society, academia, media, and the arts expected to participate, the 2016 Annual Meeting will take place on Jan. 20-23, 2016 in Davos-Klosters, Switzerland. Under the theme of ‘Mastering the Fourth Industrial Revolution,’ [emphasis mine] global leaders will discuss the period of digital transformation [emphasis mine] that will have profound effects on economies, societies, and human behavior.

President Sung-Mo Steve Kang of KAIST will join the Global University Leaders Forum (GULF), a high-level academic meeting to foster collaboration among experts on issues of global concern for the future of higher education and the role of science in society. He will discuss how the emerging revolution in technology will affect the way universities operate and serve society. KAIST is the only Korean university participating in GULF, which is composed of prestigious universities invited from around the world.

Four KAIST professors, including Distinguished Professor Sang Yup Lee of the Chemical and Biomolecular Engineering Department, will lead an IdeasLab on ‘Biotechnology for an Aging Society.’

Professor Lee said, “In recent decades, much attention has been paid to the potential effect of the growth of an aging population and problems posed by it. At our IdeasLab, we will introduce some of our research breakthroughs in biotechnology to address the challenges of an aging society.”

In particular, he will present his latest research in systems biotechnology and metabolic engineering. His research has explained the mechanisms of how traditional Oriental medicine works in our bodies by identifying structural similarities between effective compounds in traditional medicine and human metabolites, and has proposed more effective treatments by employing such compounds.

KAIST will also display its networked mobile medical service system, ‘Dr. M.’ Built upon a ubiquitous and mobile Internet, such as the Internet of Things, wearable electronics, and smart homes and vehicles, Dr. M will provide patients with a more affordable and accessible healthcare service.

In addition, Professor Jun-Ho Oh of the Mechanical Engineering Department will showcase his humanoid robot, ‘HUBO,’ during the Annual Meeting. His research team won the International Humanoid Robotics Challenge hosted by the United States Defense Advanced Research Projects Agency (DARPA), which was held in Pomona, California, on June 5-6, 2015. With 24 international teams participating in the finals, HUBO completed all eight tasks in 44 minutes and 28 seconds, 6 minutes earlier than the runner-up, and almost 11 minutes earlier than the third-place team. Team KAIST walked away with the grand prize of USD 2 million.

Professor Oh said, “Robotics technology will grow exponentially in this century, becoming a real driving force to expedite the Fourth Industrial Revolution. I hope HUBO will offer an opportunity to learn about the current advances in robotics technology.”

President Kang pointed out, “KAIST has participated in the Annual Meeting of the World Economic Forum since 2011 and has engaged with a broad spectrum of global leaders through numerous presentations and demonstrations of our excellence in education and research. Next year, we will choreograph our first robotics exhibition on HUBO and present high-tech research results in biotechnology, which, I believe, epitomizes how science and technology breakthroughs in the Fourth Industrial Revolution will shape our future in an unprecedented way.”

Based on what I’m reading in the KAIST news release, I think the conversation about the ‘Fourth revolution’ may veer toward robotics and artificial intelligence (referred to in code as “digital transformation”) as developments in these fields are likely to affect various economies.  Before proceeding with that thought, take a look at this video showcasing HUBO at the DARPA challenge,


I’m quite impressed with how the robot can recalibrate its grasp so it can pick things up and plug an electrical cord into an outlet and knowing whether wheels or legs will be needed to complete a task all due to algorithms which give the robot a type of artificial intelligence. While it may seem more like a machine than anything else, there’s also this version of a HUBO,

Description English: Photo by David Hanson Date 26 October 2006 (original upload date) Source Transferred from en.wikipedia to Commons by Mac. Author Dayofid at English Wikipedia

Description
English: Photo by David Hanson
Date 26 October 2006 (original upload date)
Source Transferred from en.wikipedia to Commons by Mac.
Author Dayofid at English Wikipedia

It’ll be interesting to note if the researchers make the HUBO seem more humanoid by giving it a face for its interactions with WEF attendees. It would be more engaging but also more threatening since there is increasing concern over robots taking work away from humans with implications for various economies. There’s more about HUBO in its Wikipedia entry.

As for the IdeasLab, that’s been in place at the WEF since 2009 according to this WEF July 19, 2011 news release announcing an ideasLab hub (Note: A link has been removed),

The World Economic Forum is publicly launching its biannual interactive IdeasLab hub on 19 July [2011] at 10.00 CEST. The unique IdeasLab hub features short documentary-style, high-definition (HD) videos of preeminent 21st century ideas and critical insights. The hub also provides dynamic Pecha Kucha presentations and visual IdeaScribes that trace and package complex strategic thinking into engaging and powerful images. All videos are HD broadcast quality.

To share the knowledge captured by the IdeasLab sessions, which have been running since 2009, the Forum is publishing 23 of the latest sessions, seen as the global benchmark of collaborative learning and development.

So while you might not be able to visit an IdeasLab presentation at the WEF meetings, you could get a it to see them later.

Getting back to the robotics and artificial intelligence aspect of the 2016 WEF’s ‘digital’ theme, I noticed some reluctance to discuss how the field of robotics is affecting work and jobs in a broadcast of Canadian television show, ‘Conversations with Conrad’.

For those unfamiliar with the interviewer, Conrad Black is somewhat infamous in Canada for a number of reasons (from the Conrad Black Wikipedia entry), Note: Links have been removed,

Conrad Moffat Black, Baron Black of Crossharbour, KSG (born 25 August 1944) is a Canadian-born British former newspaper publisher and author. He is a non-affiliated life peer, and a convicted felon in the United States for fraud.[n 1] Black controlled Hollinger International, once the world’s third-largest English-language newspaper empire,[3] which published The Daily Telegraph (UK), Chicago Sun Times (U.S.), The Jerusalem Post (Israel), National Post (Canada), and hundreds of community newspapers in North America, before he was fired by the board of Hollinger in 2004.[4]

In 2004, a shareholder-initiated prosecution of Black began in the United States. Over $80 million in assets claimed to have been improperly taken or inappropriately spent by Black.[5] He was convicted of three counts of fraud and one count of obstruction of justice in a U.S. court in 2007 and sentenced to six and a half years’ imprisonment. In 2011 two of the charges were overturned on appeal and he was re-sentenced to 42 months in prison on one count of mail fraud and one count of obstruction of justice.[6] Black was released on 4 May 2012.[7]

Despite or perhaps because of his chequered past, he is often a good interviewer and he definitely attracts interesting guests. n an Oct. 26, 2015 programme, he interviewed both former Canadian astronaut, Chris Hadfield, and Canadian-American David Frum who’s currently editor of Atlantic Monthly and a former speechwriter for George W. Bush.

It was Black’s conversation with Frum which surprised me. They discuss robotics without ever once using the word. In a section where Frum notes that manufacturing is returning to the US, he also notes that it doesn’t mean more jobs and cites a newly commissioned plant in the eastern US employing about 40 people where before it would have employed hundreds or thousands. Unfortunately, the video has not been made available as I write this (Nov. 20, 2015) but that situation may change. You can check here.

Final thought, my guess is that economic conditions are fragile and I don’t think anyone wants to set off panic by mentioning robotics and disappearing jobs.

List of 10 emerging technologies with life- and globe-changing impacts

The World Economic Forum (WEF) holds a number of meetings around the world and has many working committees/councils. The Global Agenda Council on Emerging Technologies is tasked to examine trends and possible impacts that various emerging technologies and to discuss strategies for dealing with the impacts on our collective future.

The Global Agenda Council has just released a list of the trends expected to have major impacts in the near future (the rest of 2012).

From the Feb. 16, 2012 news item on Nanowerk,

Below, the Global Agenda Council on Emerging Technologies presents the technological trends expected to have major social, economic and environmental impacts worldwide in 2012. They are listed in order of greatest potential to provide solutions to global challenges:

1. Informatics for adding value to information The quantity of information now available to individuals and organizations is unprecedented in human history, and the rate of information generation continues to grow exponentially. Yet, the sheer volume of information is in danger of creating more noise than value, and as a result limiting its effective use. Innovations in how information is organized, mined and processed hold the key to filtering out the noise and using the growing wealth of global information to address emerging challenges.

2. Synthetic biology and metabolic engineering The natural world is a testament to the vast potential inherent in the genetic code at the core of all living organisms. Rapid advances in synthetic biology and metabolic engineering are allowing biologists and engineers to tap into this potential in unprecedented ways, enabling the development of new biological processes and organisms that are designed to serve specific purposes – whether converting biomass to chemicals, fuels and materials, producing new therapeutic drugs or protecting the body against harm.

3. Green Revolution 2.0 – technologies for increased food and biomass Artificial fertilizers are one of the main achievements of modern chemistry, enabling unprecedented increases in crop production yield. Yet, the growing global demand for healthy and nutritious food is threatening to outstrip energy, water and land resources. By integrating advances across the biological and physical sciences, the new green revolution holds the promise of further increasing crop production yields, minimizing environmental impact, reducing energy and water dependence, and decreasing the carbon footprint.

4. Nanoscale design of materials The increasing demand on natural resources requires unprecedented gains in efficiency. Nanostructured materials with tailored properties, designed and engineered at the molecular scale, are already showing novel and unique features that will usher in the next clean energy revolution, reduce our dependence on depleting natural resources, and increase atom-efficiency manufacturing and processing.

5. Systems biology and computational modelling/simulation of chemical and biological systems For improved healthcare and bio-based manufacturing, it is essential to understand how biology and chemistry work together. Systems biology and computational modelling and simulation are playing increasingly important roles in designing therapeutics, materials and processes that are highly efficient in achieving their design goals, while minimally impacting on human health and the environment.

6. Utilization of carbon dioxide as a resource Carbon is at the heart of all life on earth. Yet, managing carbon dioxide releases is one of the greatest social, political and economic challenges of our time. An emerging innovative approach to carbon dioxide management involves transforming it from a liability to a resource. Novel catalysts, based on nanostructured materials, can potentially transform carbon dioxide to high value hydrocarbons and other carbon-containing molecules, which could be used as new building blocks for the chemical industry as cleaner and more sustainable alternatives to petrochemicals.

7. Wireless power Society is deeply reliant on electrically powered devices. Yet, a significant limitation in their continued development and utility is the need to be attached to the electricity grid by wire – either permanently or through frequent battery recharging. Emerging approaches to wireless power transmission will free electrical devices from having to be physically plugged in, and are poised to have as significant an impact on personal electronics as Wi-Fi had on Internet use.

8. High energy density power systems Better batteries are essential if the next generation of clean energy technologies are to be realized. A number of emerging technologies are coming together to lay the foundation for advanced electrical energy storage and use, including the development of nanostructured electrodes, solid electrolysis and rapid-power delivery from novel supercapacitors based on carbon-based nanomaterials. These technologies will provide the energy density and power needed to supercharge the next generation of clean energy technologies.

9. Personalized medicine, nutrition and disease prevention As the global population exceeds 7 billion people – all hoping for a long and healthy life – conventional approaches to ensuring good health are becoming less and less tenable, spurred on by growing demands, dwindling resources and increasing costs. Advances in areas such as genomics, proteomics and metabolomics are now opening up the possibility of tailoring medicine, nutrition and disease prevention to the individual. Together with emerging technologies like synthetic biology and nanotechnology, they are laying the foundation for a revolution in healthcare and well-being that will be less resource intensive and more targeted to individual needs.

10. Enhanced education technology New approaches are needed to meet the challenge of educating a growing young population and providing the skills that are essential to the knowledge economy. This is especially the case in today’s rapidly evolving and hyperconnected globalized society. Personalized IT-based approaches to education are emerging that allow learner-centred education, critical thinking development and creativity. Rapid developments in social media, open courseware and ubiquitous access to the Internet are facilitating outside classroom and continuous education.

Members of the Global Agenda Council had this to say about the list (from the Feb. 15, 2012 news release from Cientifica),

Many of the technology trends are currently below the radar of most policy makers. Council member Tim Harper [CEO, Cientifica] emphasized that “Technology is a very powerful tool for change. If the Arab Spring demonstrated that many governments are still unsure how to respond to mature and simple to grasp technologies such as Facebook and Twitter, then they run the risk of being absolutely powerless in the face of science-based technological change.”

Innovation in nanotechnology, biotechnology and information technology is already helping solve pressing challenges as diverse as efficient “renewable” energy sources, malnutrition and hunger, access to clean water, disease diagnosis and treatment, “green” technologies, and global climate change and sustainability.

Council Chair Professor Sang Yup Lee at the Korea Advanced Institute of Science and Technology (KAIST) explained that “Accelerating progress in science and technology has stimulated a new age of discovery, and many of the technologies identified by the council are critical to building a sustainable and resilient future.” Regarding job creation through emerging technologies, Council Vice-Chair Javier Garcia Martinez said, “There are no generally applicable shortcuts in the path that goes from emerging technologies to new industries and job creation. This path includes sufficient and sustained funding leaving enough incentive to the founders and real focus on scale, reliability, and safety.” The report also cautions that without new understanding, tools and capabilities, ranging from public policy to investment models, their safe and successful development is far from guaranteed. Among the trends are advances in informatics, biotechnology, medicine, materials, education, and resource usage.

Informatics for adding value to information and handling “big data” for “data to decision” is highlighted, and has been the focus of idea generation during this year’s Davos forum. In particular, the intelligent technologies for creating valuable information out of noisy data need to be developed.

In the biological domain, synthetic biology and metabolic engineering are expected to become increasingly important in manufacturing new drugs and producing chemicals and materials from renewable resources. Systems biology and computational modelling and simulation of chemical and biological systems are playing increasingly important roles in helping design therapeutics, materials and processes that are highly efficient in achieving their design goals, while minimally impacting on human health, resources, and the environment. Innovative technologies for a second green revolution that provide security in food supply for growing population and biomass for biorefineries are also selected.

Nanomaterials designed and engineered at the molecular scale are expected to continue to provide novel solutions to energy, water, and other resource-based challenges. Also listed are breakthrough technologies that potentially turn carbon dioxide from a global liability to a valuable resource.

The list also includes wireless power, high energy-density power systems, personalized medicine and nutrition, and enhanced education technologies.

Director of World Economic Forum Andrew Hagan said, “We believe that these emerging technologies to be announced annually by the council will provide a chance for all stakeholders to link technology trends to the global megatrends and solutions to the mega-challenges. The challenge will not just be the new ideas but leaving the old ones behind.”

You can find out more about the Global Agenda Council on Emerging Technologies here.

Using bacteria for bottom-up production of metal nanoparticles

After admiring the descriptions for top-down and bottom-up nanoengineering in the report, Engineered Nanoparticles; Current Knowledge about OHS [Occupational Health and Safety] Risks and Prevention Measures, (my posting of Sept. 27, 2010), I came across Michael Berger’s very interesting article about bacteria and nanoparticle factories. From Bacteria as environmentally friendly nanoparticle factories on the Nanowerk site,

“The strategy of employing recombinant E. coli expressing metal binding proteins as a nanoparticle factory is generally applicable to the combinatorial synthesis of diverse nanoparticles having a wide range of characteristics, such as optical, electronic, chemical, and magnetic properties” Sang Yup Lee, head of the Metabolic & Biomolecular Engineering National Research Laboratory at KAIST, explains to Nanowerk. “Several physico-chemical processes that have been employed for the synthesis of metal nanoparticles involve processes at high temperatures in organic solvents, which are costly and environmentally unfriendly. Nanoparticles synthesized in recombinant E. coli cells are size-tunable at ambient temperature and possess chemical and optical characteristics comparable, if not identical, to those of chemically-synthesized nanoparticles.”

If you’d asked me a few years back about using bacteria to produce metallic nanoparticles, I would have been quite wary of the idea. However, these last few years of research and thinking have led me to a more relaxed if not altogether comfortable attitude toward this kind of nanobiotechnology. In fact, I find this particular project quite interesting and hopeful.