Tag Archives: Saudi Arabia

Yes! Art, genetic modifications, gene editing, and xenotransplantation at the Vancouver Biennale (Canada)

Patricia Piccinini’s Curious Imaginings Courtesy: Vancouver Biennale [downloaded from http://dailyhive.com/vancouver/vancouver-biennale-unsual-public-art-2018/]

Up to this point, I’ve been a little jealous of the Art/Sci Salon’s (Toronto, Canada) January 2018 workshops for artists and discussions about CRISPR ((clustered regularly interspaced short palindromic repeats))/Cas9 and its social implications. (See my January 10, 2018 posting for more about the events.) Now, it seems Vancouver may be in line for its ‘own’ discussion about CRISPR and the implications of gene editing. The image you saw (above) represents one of the installations being hosted by the 2018 – 2020 edition of the Vancouver Biennale.

While this posting is mostly about the Biennale and Piccinini’s work, there is a ‘science’ subsection featuring the science of CRISPR and xenotransplantation. Getting back to the Biennale and Piccinini: A major public art event since 1988, the Vancouver Biennale has hosted over 91 outdoor sculptures and new media works by more than 78 participating artists from over 25 countries and from 4 continents.

Quickie description of the 2018 – 2020 Vancouver Biennale

The latest edition of the Vancouver Biennale was featured in a June 6, 2018 news item on the Daily Hive (Vancouver),

The Vancouver Biennale will be bringing new —and unusual— works of public art to the city beginning this June.

The theme for this season’s Vancouver Biennale exhibition is “re-IMAGE-n” and it kicks off on June 20 [2018] in Vanier Park with Saudi artist Ajlan Gharem’s Paradise Has Many Gates.

Gharem’s architectural chain-link sculpture resembles a traditional mosque, the piece is meant to challenge the notions of religious orthodoxy and encourages individuals to image a space free of Islamophobia.

Melbourne artist Patricia Piccinini’s Curious Imaginings is expected to be one of the most talked about installations of the exhibit. Her style of “oddly captivating, somewhat grotesque, human-animal hybrid creature” is meant to be shocking and thought-provoking.

Piccinini’s interactive [emphasis mine] experience will “challenge us to explore the social impacts of emerging biotechnology and our ethical limits in an age where genetic engineering and digital technologies are already pushing the boundaries of humanity.”

Piccinini’s work will be displayed in the 105-year-old Patricia Hotel in Vancouver’s Strathcona neighbourhood. The 90-day ticketed exhibition [emphasis mine] is scheduled to open this September [2018].

Given that this blog is focused on nanotechnology and other emerging technologies such as CRISPR, I’m focusing on Piccinini’s work and its art/science or sci-art status. This image from the GOMA Gallery where Piccinini’s ‘Curious Affection‘ installation is being shown from March 24 – Aug. 5, 2018 in Brisbane, Queensland, Australia may give you some sense of what one of her installations is like,

Courtesy: Queensland Art Gallery | Gallery of Modern Art (QAGOMA)

I spoke with Serena at the Vancouver Biennale office and asked about the ‘interactive’ aspect of Piccinini’s installation. She suggested the term ‘immersive’ as an alternative. In other words, you won’t be playing with the sculptures or pressing buttons and interacting with computer screens or robots. She also noted that the ticket prices have not been set yet and they are currently developing events focused on the issues raised by the installation. She knew that 2018 is the 200th anniversary of the publication of Mary Shelley’s Frankenstein but I’m not sure how the Biennale folks plan (or don’t plan)  to integrate any recognition of the novle’s impact on the discussions about ‘new’ technologies .They expect Piccinini will visit Vancouver. (Note 1: Piccinini’s work can  also be seen in a group exhibition titled: Frankenstein’s Birthday Party at the Hosfselt Gallery in San Francisco (California, US) from June 23 – August 11, 2018.  Note 2: I featured a number of international events commemorating the 200th anniversary of the publication of Mary Shelley’s novel, Frankenstein, in my Feb. 26, 2018 posting. Note 3: The term ‘Frankenfoods’ helped to shape the discussion of genetically modified organisms and food supply on this planet. It was a wildly successful campaign for activists affecting legislation in some areas of research. Scientists have not been as enthusiastic about the effects. My January 15, 2009 posting briefly traces a history of the term.)

The 2018 – 2020 Vancouver Biennale and science

A June 7, 2018 Vancouver Biennale news release provides more detail about the current series of exhibitions,

The Biennale is also committed to presenting artwork at the cutting edge of discussion and in keeping with the STEAM (science, technology, engineering, arts, math[ematics]) approach to integrating the arts and sciences. In August [2018], Colombian/American visual artist Jessica Angel will present her monumental installation Dogethereum Bridge at Hinge Park in Olympic Village. Inspired by blockchain technology, the artwork’s design was created through the integration of scientific algorithms, new developments in technology, and the arts. This installation, which will serve as an immersive space and collaborative hub for artists and technologists, will host a series of activations with blockchain as the inspirational jumping-off point.

In what is expected to become one of North America’s most talked-about exhibitions of the year, Melbourne artist Patricia Piccinini’s Curious Imaginings will see the intersection of art, science, and ethics. For the first time in the Biennale’s fifteen years of creating transformative experiences, and in keeping with the 2018-2020 theme of “re-IMAGE-n,” the Biennale will explore art in unexpected places by exhibiting in unconventional interior spaces.  The hyperrealist “world of oddly captivating, somewhat grotesque, human-animal hybrid creatures” will be the artist’s first exhibit in a non-museum setting, transforming a wing of the 105-year-old Patricia Hotel. Situated in Vancouver’s oldest neighbourbood of Strathcona, Piccinini’s interactive experience will “challenge us to explore the social impacts of emerging bio-technology and our ethical limits in an age where genetic engineering and digital technologies are already pushing the boundaries of humanity.” In this intimate hotel setting located in a neighborhood continually undergoing its own change, Curious Imaginings will empower visitors to personally consider questions posed by the exhibition, including the promises and consequences of genetic research and human interference. …

There are other pieces being presented at the Biennale but my special interest is in the art/sci pieces and, at this point, CRISPR.

Piccinini in more depth

You can find out more about Patricia Piccinini in her biography on the Vancouver Biennale website but I found this Char Larsson April 7, 2018 article for the Independent (UK) more informative (Note: A link has been removed),

Patricia Piccinini’s sculptures are deeply disquieting. Walking through Curious Affection, her new solo exhibition at Brisbane’s Gallery of Modern Art, is akin to entering a science laboratory full of DNA experiments. Made from silicone, fibreglass and even human hair, her sculptures are breathtakingly lifelike, however, we can’t be sure what life they are like. The artist creates an exuberant parallel universe where transgenic experiments flourish and human evolution has given way to genetic engineering and DNA splicing.

Curious Affection is a timely and welcome recognition of Piccinini’s enormous contribution to reaching back to the mid-1990s. Working across a variety of mediums including photography, video and drawing, she is perhaps best known for her hyperreal creations.

As a genre, hyperrealism depends on the skill of the artist to create the illusion of reality. To be truly successful, it must convince the spectator of its realness. Piccinini acknowledges this demand, but with a delightful twist. The excruciating attention to detail deliberately solicits our desire to look, only to generate unease, as her sculptures are imbued with a fascinating otherness. Part human, part animal, the works are uncannily familiar, but also alarmingly “other”.

Inspired by advances in genetically modified pigs to generate replacement organs for humans [also known as xenotransplantation], we are reminded that Piccinini has always been at the forefront of debates concerning the possibilities of science, technology and DNA cloning. She does so, however, with a warm affection and sense of humour, eschewing the hysterical anxiety frequently accompanying these scientific developments.

Beyond the astonishing level of detail achieved by working with silicon and fibreglass, there is an ethics at work here. Piccinini is asking us not to avert our gaze from the other, and in doing so, to develop empathy and understanding through the encounter.

I encourage anyone who’s interested to read Larsson’s entire piece (April 7, 2018 article).

According to her Wikipedia entry, Piccinini works in a variety of media including video, sound, sculpture, and more. She also has her own website.

Gene editing and xenotransplantation

Sarah Zhang’s June 8, 2018 article for The Atlantic provides a peek at the extraordinary degree of interest and competition in the field of gene editing and CRISPR ((clustered regularly interspaced short palindromic repeats))/Cas9 research (Note: A link has been removed),

China Is Genetically Engineering Monkeys With Brain Disorders

Guoping Feng applied to college the first year that Chinese universities reopened after the Cultural Revolution. It was 1977, and more than a decade’s worth of students—5.7 million—sat for the entrance exams. Feng was the only one in his high school to get in. He was assigned—by chance, essentially—to medical school. Like most of his contemporaries with scientific ambitions, he soon set his sights on graduate studies in the United States. “China was really like 30 to 50 years behind,” he says. “There was no way to do cutting-edge research.” So in 1989, he left for Buffalo, New York, where for the first time he saw snow piled several feet high. He completed his Ph.D. in genetics at the State University of New York at Buffalo.

Feng is short and slim, with a monk-like placidity and a quick smile, and he now holds an endowed chair in neuroscience at MIT, where he focuses on the genetics of brain disorders. His 45-person lab is part of the McGovern Institute for Brain Research, which was established in 2000 with the promise of a $350 million donation, the largest ever received by the university. In short, his lab does not lack for much.

Yet Feng now travels to China several times a year, because there, he can pursue research he has not yet been able to carry out in the United States. [emphasis mine] …

Feng had organized a symposium at SIAT [Shenzhen Institutes of Advanced Technology], and he was not the only scientist who traveled all the way from the United States to attend: He invited several colleagues as symposium speakers, including a fellow MIT neuroscientist interested in tree shrews, a tiny mammal related to primates and native to southern China, and Chinese-born neuroscientists who study addiction at the University of Pittsburgh and SUNY Upstate Medical University. Like Feng, they had left China in the ’80s and ’90s, part of a wave of young scientists in search of better opportunities abroad. Also like Feng, they were back in China to pursue a type of cutting-edge research too expensive and too impractical—and maybe too ethically sensitive—in the United States.

Here’s what precipitated Feng’s work in China, (from Zhang’s article; Note: Links have been removed)

At MIT, Feng’s lab worked on genetically engineering a monkey species called marmosets, which are very small and genuinely bizarre-looking. They are cheaper to keep due to their size, but they are a relatively new lab animal, and they can be difficult to train on lab tasks. For this reason, Feng also wanted to study Shank3 on macaques in China. Scientists have been cataloging the social behavior of macaques for decades, making it an obvious model for studies of disorders like autism that have a strong social component. Macaques are also more closely related to humans than marmosets, making their brains a better stand-in for those of humans.

The process of genetically engineering a macaque is not trivial, even with the advanced tools of CRISPR. Researchers begin by dosing female monkeys with the same hormones used in human in vitro fertilization. They then collect and fertilize the eggs, and inject the resulting embryos with CRISPR proteins using a long, thin glass needle. Monkey embryos are far more sensitive than mice embryos, and can be affected by small changes in the pH of the injection or the concentration of CRISPR proteins. Only some of the embryos will have the desired mutation, and only some will survive once implanted in surrogate mothers. It takes dozens of eggs to get to just one live monkey, so making even a few knockout monkeys required the support of a large breeding colony.

The first Shank3 macaque was born in 2015. Four more soon followed, bringing the total to five.

To visit his research animals, Feng now has to fly 8,000 miles across 12 time zones. It would be a lot more convenient to carry out his macaque research in the United States, of course, but so far, he has not been able to.

He originally inquired about making Shank3 macaques at the New England Primate Research Center, one of eight national primate research centers then funded by the National Institutes of Health in partnership with a local institution (Harvard Medical School, in this case). The center was conveniently located in Southborough, Massachusetts, just 20 miles west of the MIT campus. But in 2013, Harvard decided to shutter the center.

The decision came as a shock to the research community, and it was widely interpreted as a sign of waning interest in primate research in the United States. While the national primate centers have been important hubs of research on HIV, Zika, Ebola, and other diseases, they have also come under intense public scrutiny. Animal-rights groups like the Humane Society of the United States have sent investigators to work undercover in the labs, and the media has reported on monkey deaths in grisly detail. Harvard officially made its decision to close for “financial” reasons. But the announcement also came after the high-profile deaths of four monkeys from improper handling between 2010 and 2012. The deaths sparked a backlash; demonstrators showed up at the gates. The university gave itself two years to wind down their primate work, officially closing the center in 2015.

“They screwed themselves,” Michael Halassa, the MIT neuroscientist who spoke at Feng’s symposium, told me in Shenzhen. Wei-Dong Yao, another one of the speakers, chimed in, noting that just two years later CRISPR has created a new wave of interest in primate research. Yao was one of the researchers at Harvard’s primate center before it closed; he now runs a lab at SUNY Upstate Medical University that uses genetically engineered mouse and human stem cells, and he had come to Shenzhen to talk about restarting his addiction research on primates.

Here’s comes the competition (from Zhang’s article; Note: Links have been removed),

While the U.S. government’s biomedical research budget has been largely flat, both national and local governments in China are eager to raise their international scientific profiles, and they are shoveling money into research. A long-rumored, government-sponsored China Brain Project is supposed to give neuroscience research, and primate models in particular, a big funding boost. Chinese scientists may command larger salaries, too: Thanks to funding from the Shenzhen local government, a new principal investigator returning from overseas can get 3 million yuan—almost half a million U.S. dollars—over his or her first five years. China is even finding success in attracting foreign researchers from top U.S. institutions like Yale.

In the past few years, China has seen a miniature explosion of genetic engineering in monkeys. In Kunming, Shanghai, and Guangzhou, scientists have created monkeys engineered to show signs of Parkinson’s, Duchenne muscular dystrophy, autism, and more. And Feng’s group is not even the only one in China to have created Shank3 monkeys. Another group—a collaboration primarily between researchers at Emory University and scientists in China—has done the same.

Chinese scientists’ enthusiasm for CRISPR also extends to studies of humans, which are moving much more quickly, and in some cases under less oversight, than in the West. The first studies to edit human embryos and first clinical trials for cancer therapies using CRISPR have all happened in China. [emphases mine]

Some ethical issues are also covered (from Zhang’s article),

Parents with severely epileptic children had asked him if it would be possible to study the condition in a monkey. Feng told them what he thought would be technically possible. “But I also said, ‘I’m not sure I want to generate a model like this,’” he recalled. Maybe if there were a drug to control the monkeys’ seizures, he said: “I cannot see them seizure all the time.”

But is it ethical, he continued, to let these babies die without doing anything? Is it ethical to generate thousands or millions of mutant mice for studies of brain disorders, even when you know they will not elucidate much about human conditions?

Primates should only be used if other models do not work, says Feng, and only if a clear path forward is identified. The first step in his work, he says, is to use the Shank3 monkeys to identify the changes the mutations cause in the brain. Then, researchers might use that information to find targets for drugs, which could be tested in the same monkeys. He’s talking with the Oregon National Primate Research Center about carrying out similar work in the United States. ….[Note: I have a three-part series about CRISPR and germline editing* in the US, precipitated by research coming out of Oregon, Part 1, which links to the other parts, is here.]

Zhang’s June 8, 2018 article is excellent and I highly recommend reading it.

I touched on the topic of xenotransplanttaion in a commentary on a book about the science  of the television series, Orphan Black in a January 31,2018 posting (Note: A chimera is what you use to incubate a ‘human’ organ for transplantation or, more accurately, xenotransplantation),

On the subject of chimeras, the Canadian Broadcasting Corporation (CBC) featured a January 26, 2017 article about the pig-human chimeras on its website along with a video,

The end

I am very excited to see Piccinini’s work come to Vancouver. There have been a number of wonderful art and art/science installations and discussions here but this is the first one (I believe) to tackle the emerging gene editing technologies and the issues they raise. (It also fits in rather nicely with the 200th anniversary of the publication of Mary Shelley’s Frankenstein which continues to raise issues and stimulate discussion.)

In addition to the ethical issues raised in Zhang’s article, there are some other philosophical questions:

  • what does it mean to be human
  • if we are going to edit genes to create hybrid human/animals, what are they and how do they fit into our current animal/human schema
  • are you still human if you’ve had an organ transplant where the organ was incubated in a pig

There are also going to be legal issues. In addition to any questions about legal status, there are also fights about intellectual property such as the one involving Harvard & MIT’s [Massachusetts Institute of Technology] Broad Institute vs the University of California at Berkeley (March 15, 2017 posting)..

While I’m thrilled about the Piccinini installation, it should be noted the issues raised by other artworks hosted in this version of the Biennale are important. Happily, they have been broached here in Vancouver before and I suspect this will result in more nuanced  ‘conversations’ than are possible when a ‘new’ issue is introduced.

Bravo 2018 – 2020 Vancouver Biennale!

* Germline editing is when your gene editing will affect subsequent generations as opposed to editing out a mutated gene for the lifetime of a single individual.

Art/sci and CRISPR links

This art/science posting may prove of some interest:

The connectedness of living things: an art/sci project in Saskatchewan: evolutionary biology (February 16, 2018)

A selection of my CRISPR posts:

CRISPR and editing the germline in the US (part 1 of 3): In the beginning (August 15, 2017)

NOTE: An introductory CRISPR video describing how CRISPR/Cas9 works was embedded in part1.

Why don’t you CRISPR yourself? (January 25, 2018)

Editing the genome with CRISPR ((clustered regularly interspaced short palindromic repeats)-carrying nanoparticles (January 26, 2018)

Immune to CRISPR? (April 10, 2018)

Nanoparticle-based delivery platform for CRISPR-Cas9 (gene-editing technology)

A February 18, 2018 King Abdullah University of Science and Technology (KAUST; Saudi Arabia) news release (also on EurekAlert but published on Feb. 20, 2018) describes a new technology for delivering CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 into cells,

A new delivery system for introducing gene-editing technology into cells could help safely and efficiently correct disease-causing mutations in patients.

The system, developed by KAUST scientists, is the first to use sponge-like ensembles of metal ions and organic molecules to coat the molecular components of the precision DNA-editing technology known as CRISPR/Cas9, allowing efficient release of the genome-editing machinery inside the cell.

“This method presents an easy and economically feasible route to improve on the delivery problems that accompany RNA-based therapeutic approaches,” says Niveen Khashab, the associate professor of chemical sciences at KAUST who led the study. “This may permit such formulations to be eventually used for treating genetic diseases effectively in the future.”

CRISPR/Cas9 has a double delivery problem: For the gene-editing technology to work like a molecular Swiss Army knife, both a large protein (the Cas9 cutting enzyme) and a highly charged RNA component (the guide RNA used for DNA targeting) must each get from the outside of the cell into the cytoplasm and finally into the nucleus, all without getting trapped in the tiny intracellular bubbles that are known as endosomes.

To solve this problem, Khashab and her lab turned to a nano-sized type of porous material known as a zeolitic imidazolate framework, which forms a cage-like structure into which other molecules can be placed. The researchers encapsulated the Cas9 protein and guide RNA in this material and then introduced the resulting nanoparticles into hamster cells.

The encapsulated CRISPR-Cas9 constructs were not toxic to the cells. And because particles in the coating material become positively charged when absorbed into endosomes, they caused these membrane-bound bubbles to burst, freeing the CRISPR-Cas9 machinery to travel to the nucleus, home to the cell’s genome. There the gene-editing technology could get to work.

Using a guide RNA designed to target a gene that caused the cells to glow green under fluorescent light, Khashab and her team showed that they could reduce the expression of this gene by 37 percent over four days with their technology. “These cage-like structures are biocompatible and can be triggered on demand, making them smart options to overcome delivery problems of genetic materials and proteins,” says the study’s first author Shahad Alsaiari, a Ph.D. student in Khashab’s lab.

The researchers’ plan to test their system in human cells and in mice, and eventually, they hope, in clinical trials.

The zeolitic imidazolate framework forms a cage-like scaffold over the CRISPR/Cas9 machinery.. Reprinted (adapted) with permission from Alsaiari, S.K., Patil, S., Alyami, M., Alamoudi, K.O., Aleisa, F.A., Merzaban, J., Li M. & Khashab, N.M. Endosomal escape and delivery of CRISPR/Cas9 genome editing machinery enabled by nanoscale zeolitic imidazolate framework. Journal of the American Chemical Society 140, 143–146 (2018). © 2018 American Chemical Society; KAUST Xavier Pita and Heno Huang ][downloaded from https://discovery.kaust.edu.sa/en/article/475/a%250adelivery-platform-for-gene-editing-technology]

Here’s a link to and a citation for the paper,

Endosomal Escape and Delivery of CRISPR/Cas9 Genome Editing Machinery Enabled by Nanoscale Zeolitic Imidazolate Framework by Shahad K. Alsaiari, Sachin Patil, Mram Alyami, Kholod O. Alamoudi, Fajr A. Aleisa, Jasmeen S. Merzaban, Mo Li, and Niveen M. Khashab. J. Am. Chem. Soc., 2018, 140 (1), pp 143–146 DOI: 10.1021/jacs.7b11754 Publication Date (Web): December 22, 2017

Copyright © 2017 American Chemical Society

This paper is behind a paywall.

Putting a gold atom in a silver nanocluster changes things

Considering that the King Abdullah University of Science and Technology (KAUST) opened on Sept. 23, 2009 (mentioned in my Sept. 24, 2009 post; scroll down about 50% of the way), the university has done a remarkable job of establishing itself within the research community. Here’s some of the latest news from KAUST in a July 15, 2016 news item on Nanowerk,

The appearance of metals, such as their shiny surface or their electrical conductivity, is determined by the ensemble of atoms that comprise the metal. The situation differs on the molecular scale, and KAUST researchers have shown that replacing a single atom in a cluster of 25 silver atoms with one gold atom fundamentally changes its properties …

Composing a silver nanocrystal: the center silver atom (a) surrounded by a cage of 12 other silver atoms (b) embedded by further atoms (c) and stabilized by further ligands (d). Reproduced with permission from ref 1.© 2016 John Wiley and Sons.

Composing a silver nanocrystal: the center silver atom (a) surrounded by a cage of 12 other silver atoms (b) embedded by further atoms (c) and stabilized by further ligands (d). Reproduced with permission from ref 1.© 2016 John Wiley and Sons.

A July (??), 2016 KAUST news release, which originated the news item, provides more detail,

Metal atom nanoclusters are made from a core of a few metal atoms surrounded by a protective shell of stabilizing ligands. Nanoclusters come in different sizes, but each stable variation of nanoclusters has exactly the same number of metal atoms. This leads to very controllable properties, noted Osman Bakr, KAUST associate professor of material science and engineering and leader of the research team.

“Nanoclusters have unique arrangements of atoms and size-dependent absorption, fluorescence, electronic and catalytic properties,” he said.

A popular metal nanocluster is [Ag25(SR)18], which consists of of 25 silver atoms. This nanocluster is unique as it corresponds to a gold nanocluster that has exactly the same number of atoms. Both clusters have different properties due to the different metal used. To understand how exactly the atomic composition affects these properties, the researchers replaced a single silver atom with gold.

Replacing a single atom in a nanocluster is a difficult task. Direct chemical methods can be used, but these give little control over how many atoms are replaced, making it difficult to ascribe particular properties to the nanocluster structure.

Instead, the researchers used a galvanic replacement process that relies on difference in the electrochemical potential between the incoming and outgoing atoms to induce atomic replacements. To their surprise, the process produced a reliable and precise atomic exchange in which only the center silver atom is replaced by gold.

The replacement yielded dramatic changes in the nanocluster. A solution of the silver nanoclusters appears orange, whereas after the replacement of the central atom the color turns dark green.

This indicates more fundamental changes in properties, Bakr said. “The ambient stability and fluorescence of the nanocluster were enhanced by a factor of 25 as a result of this single atom replacement. Furthermore, we are now able to demonstrate the importance of a single atom impurity on nanoparticles and modulate the properties at the single atom level,” he noted.

The reliable replacement of only a single gold atom opens the door to a more systematic investigation of metal nanoclusters, which can help to uncover the mechanisms of the chemical and physical changes arising from the replacement.

Here’s a link to and a citation for the paper,

Templated Atom-Precise Galvanic Synthesis and Structure Elucidation of a [Ag24Au(SR)18] Nanocluster by Dr. Megalamane S. Bootharaju, Chakra P. Joshi, Dr. Manas R. Parida, Prof. Omar F. Mohammed and Prof. Osman M. Bakr. Angewandte Chemie International Edition DOI: 10.1002/anie.201509381 Version of Record online: 27 NOV 2015

© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

They’ve certainly waited a while to tout this research. Ah well. This paper is behind a paywall.

Biohackers (also known as bodyhackers or grinders) become more common?

Stephen Melendez’s June 11, 2016 story about biohackers/bodyhackers/grinders for Fast Company sports a striking image in the banner, an x-ray of a pair hands featuring some mysterious additions to the webbing between thumbs and forefingers (Note: Links have been removed),

Tim Shank can guarantee he’ll never leave home without his keys. Why? His house keys are located inside his body.

Shank, the president of the Minneapolis futurist group TwinCities+, has a chip installed in his hand that can communicate electronically with his front door and tell it to unlock itself. His wife has one, too.

In fact, Shank has several chips in his hand, including a near field communication (NFC) chip like the ones used in Apple Pay and similar systems, which stores a virtual business card with contact information for TwinCities+. “[For] people with Android phones, I can just tap their phone with my hand, right over the chip, and it will send that information to their phone,” he says. In the past, he’s also used a chip to store a bitcoin wallet.

Shank is one of a growing number of “biohackers” who implant hardware ranging from microchips to magnets inside their bodies.

Certainly the practice seems considerably more developed since the first time it was mentioned here in a May 27, 2010 posting about a researcher who’d implanted a chip into his body which he then contaminated with a computer virus. In the comments, you’ll find Amal Grafstraa who’s mentioned in the Melendez article at some length, from the Melendez article (Note: Links have been removed),

Some biohackers use their implants in experimental art projects. Others who have disabilities or medical conditions use them to improve their quality of life, while still others use the chips to extend the limits of human perception. …

Experts sometimes caution that the long-term health risks of the practice are still unknown. But many biohackers claim that, if done right, implants can be no more dangerous than getting a piercing or tattoo. In fact, professional body piercers are frequently the ones tasked with installing these implants, given that they possess the training and sterilization equipment necessary to break people’s skin safely.

“When you talk about things like risk, things like putting it in your body, the reality is the risk of having one of these installed is extremely low—it’s even lower than an ear piercing,” claims Amal Graafstra, the founder of Dangerous Things, a biohacking supply company.

Graafstra, who is also the author of the book RFID Toys, says he first had an RFID chip installed in his hand in 2005, which allowed him to unlock doors without a key. When the maker movement took off a few years later, and as more hackers began to explore what they could put inside their bodies, he founded Dangerous Things with the aim of ensuring these procedures were done safely.

“I decided maybe it’s time to wrap a business model around this and make sure that the things people are trying to put in their bodies are safe,” he says. The company works with a network of trained body piercers and offers online manuals and videos for piercers looking to get up to speed on the biohacking movement.

At present, these chips are capable of verifying users’ identities and opening doors. And according to Graafstra, a next-generation chip will have enough on-board cryptographic power to potentially work with credit card terminals securely.

“The technology is there—we can definitely talk to payment terminals with it—but we don’t have the agreements in place with banks [and companies like] MasterCard to make that happen,” he says.

Paying for goods with an implantable chip might sound unusual for consumers and risky for banks, but Graafstra thinks the practice will one day become commonplace. He points to a survey released by Visa last year that found that 25% of Australians are “at least slightly interested” in paying for purchases through a chip implanted in their bodies.

Melendez’s article is fascinating and well worth reading in its entirety. It’s not all keys and commerce as this next and last excerpt shows,

Other implantable technology has more of an aesthetic focus: Pittsburgh biohacking company Grindhouse Wetware offers a below-the-skin, star-shaped array of LED lights called Northstar. While the product was inspired by the on-board lamps of a device called Circadia that Grindhouse founder Tim Cannon implanted to send his body temperature to a smartphone, the commercially available Northstar features only the lights and is designed to resemble natural bioluminescence.

“This particular device is mainly aesthetic,” says Grindhouse spokesman Ryan O’Shea. “It can backlight tattoos or be used in any kind of interpretive dance, or artists can use it in various ways.”

The lights activate in the presence of a magnetic field—one that is often provided by magnets already implanted in the same user’s fingertips. Which brings up another increasingly common piece of bio-hardware: magnetic finger implants. ….

There are other objects that can be implanted in bodies. In one case, an artist, Wafaa Bilal had a camera implanted into the back of his head for a 3rd eye. I mentioned the Iraqi artist in my April 13, 2011 posting titled: Blood, memristors, cyborgs plus brain-controlled computers, prosthetics, and art (scroll down about 75% of the way). Bilal was unable to find a doctor who would perform the procedure so he went to a body-piercing studio. Unfortunately, the posting chronicles his infection and subsequent removal of the camera (h/t Feb. 11, 2011 BBC [British Broadcasting Corporation] news online article).

Observations

It’s been a while since I’ve written about bodyhacking and I’d almost forgotten about the practice relegating it to the category of “one of those trendy ideas that get left behind as interest shifts.” My own interest had shifted more firmly to neuroprosthetics (the integration of prostheses into the nervous system).

I had coined a tag for bodyhacking and neuroprostheses: machine/flesh which covers both those topics and more (e.g. cyborgs) as we continue to integrate machines into our bodies.

Final note

I was reminded of Wafaa Bilal recently when checking out a local arts magazine, Preview: the gallery guide, June/July/August 2016 issue. His work (the 168:01show) is being shown in Calgary, Alberta, Canada at the Esker Foundation from May 27 to August 28, 2016,

168:01 is a major solo exhibition of new and recent work by Iraqi-born, New York-based artist Wafaa Bilal, renowned for his online performances and technologically driven encounters that speak to the impact of international politics on individual lives.

In 168:01, Bilal takes the Bayt al-Hikma, or House of Wisdom, as a starting point for a sculptural installation of a library. The Bayt al-Hikma was a major academic center during the Islamic Golden Age where Muslim, Jewish, and Christian scholars studied the humanities and science. By the middle of the Ninth Century, the House of Wisdom had accumulated the largest library in the world. Four centuries later, a Mongol siege laid waste to all the libraries of Baghdad along with the House of Wisdom. According to some accounts, the library was thrown into the Tigris River to create a bridge of books for the Mongol army to cross. The pages bled ink into the river for seven days – or 168 hours, after which the books were drained of knowledge. Today, the Bayt al-Hikma represents one of the most well-known examples of historic cultural loss as a casualty of wartime.

For this exhibition, Bilal has constructed a makeshift library filled with empty white books. The white books symbolize the priceless cultural heritage destroyed at Bayt al-Hikma as well as the libraries, archives, and museums whose systematic decimation by occupying forces continues to ravage his homeland. Throughout the duration of the exhibition, the white books will slowly be replaced with visitor donations from a wishlist compiled by The College of Fine Arts at the University of Baghdad, whose library was looted and destroyed in 2003. At the end of each week a volunteer unpacks the accumulated shipments, catalogues each new book by hand, and places the books on the shelves. At the end of the exhibition, all the donated books will be sent to the University of Baghdad to help rebuild their library. This exchange symbolizes the power of individuals to rectify violence inflicted on cultural spaces that are meant to preserve and store knowledge for future generations.

In conjunction with the library, Bilal presents a powerful suite of photographs titled The Ashes Series that brings the viewer closer to images of violence and war in the Middle East. In an effort to foster empathy and humanize the onslaught of violent images that inundate Western media during wartime, Bilal has reconstructed journalistic images of the destruction caused by the Iraq War. He writes, “Reconstructing the destructed spaces is a way to exist in them, to share them with an audience, and to provide a layer of distance, as the original photographs are too violent and run the risk of alienating the viewer. It represents an attempt to make sense of the destruction and to preserve the moment of serenity after the dust has settled, to give the ephemeral moment extended life in a mix of beauty and violence.” In the photograph Al-Mutanabbi Street from The Ashes Series, the viewer encounters dilapidated historic and modern buildings on a street covered with layers upon layers of rubble and fragments of torn books. Bilal’s images emanate a slowness that deepens engagement between the viewer and the image, thereby inviting them to share the burden of obliterated societies and reimagine a world built on the values of peace and hope.

The House of Wisdom has been mentioned here a few times perhaps most comprehensively and in the context of the then recent opening of the King Abdullah University for Science and Technology (KAUST; located in Saudi Arabia) in this Sept. 24, 2009 posting (scroll down about 45% of the way).

Anyone interested in hacking their own body?

 

I expect you can find out more Amal Grafstraa’s website.

NanoMech get $10M investment from Saudi company

This news comes from the US state of Arkansas (not often featured here). The company, NanoMech, seems to be focused on lubricants and coatings according to an April 13, 2013 news release on Business Wire,

NanoMech announced today that it has secured $10 million in capital for leading its Series C Financing round from Saudi Aramco Energy Ventures (SAEV), the corporate venturing subsidiary of Saudi Arabia’s national oil company. This capital infusion and relationship will significantly accelerate NanoMech’s manufacturing, sales and product development. NanoMech uses nanotechnology to develop advanced products for industrial and mechanical applications – such as lubricants, coatings and specialty chemicals. These products have enabled a step change in performance, efficiency and reliability in multiple industries such as energy, transportation, aerospace, manufacturing, automotive, agricultural equipment and military.

An April 11, 2013 NanoMech news release, which originated the item on Business Wire, provides a few more details and some quotes,

“NanoMech is honored to achieve this recognition and investment by the world’s largest energy company,” said NanoMech Chairman and CEO Jim Phillips. “Building on current momentum, NanoMech will use this financing and relationship to expand our global reach, invest in additional sales and marketing resources. We will also increase investment in our market-leading nanotechnology platforms, nGlide, GuardX, TuffTek, and nGuard.”

This capital infusion and relationship will significantly improve NanoMech’s manufacturing, sales and product development. Today’s announcement represents NanoMech’s most significant milestone in the continued validation and authentication of its unique technology.

“Response to NanoMech’s technology at Saudi Aramco and several of our major suppliers has been very positive,” said Cory Steffek, Managing Director, North America for SAEV. “A platform technology like NanoMech’s has significant potential to bring innovation, not only to the energy sector, but also to many other critical industries.”

NanoMech has validated and commercialized its innovations to iconic world-leading businesses and has completed an upgrade of its smart factory and labs. Several Fortune 100 and emerging companies have incorporated NanoMech’s nano-engineered solutions to create high-performance products.

“After more than a decade of extensive research and development, and recent large-scale commercialization successes,” said Dr. Ajay P. Malshe, CTO and Founder of NanoMech. “Our industry is leading disruptive nanoscience and is light years ahead of the competition. We are transforming entire industries.

The big talk is rooted not just in hype but also in a major US government push to commercialize nanotechnology research, which has received billions of dollars in government funding (from the NanoMech news release),

“Aramco’s strategic investment in NanoMech will transform the productivity paradigm for sustainable global energy production,” said Deborah Wince-Smith, CEO of the U.S. Council on Competitiveness and NanoMech board member. “It will accelerate NanoMech’s position as the global leader in advanced nanotechnology.”

Weaving at the nanoscale

A Jan. 21, 2016 news item on ScienceDaily announces a brand new technique,

For the first time, scientists have been able to weave a material at molecular level. The research is led by University of California Berkeley, in cooperation with Stockholm University. …

A Jan. 21, 2016 Stockholm University press release, which originated the news item, provides more information,

Weaving is a well-known way of making fabric, but has until now never been used at the molecular level. Scientists have now been able to weave organic threads into a three-dimensional material, using copper as a template. The new material is a COF, covalent organic framework, and is named COF-505. The copper ions can be removed and added without changing the underlying structure, and at the same time the elasticity can be reversibly changed.

– It almost looks like a molecular version of the Vikings chain-armour. The material is very flexible, says Peter Oleynikov, researcher at the Department of Materials and Environmental Chemistry at Stockholm University.

COF’s are like MOF’s porous three-dimensional crystals with a very large internal surface that can adsorb and store enormous quantities of molecules. A potential application is capture and storage of carbon dioxide, or using COF’s as a catalyst to make useful molecules from carbon dioxide.

Complex structure determined in Stockholm

The research is led by Professor Omar Yaghi at University of California Berkeley. At Stockholm University Professor Osamu Terasaki, PhD Student Yanhang Ma and Researcher Peter Oleynikov have contributed to determine the structure of COF-505 at atomic level from a nano-crystal, using electron crystallography methods.

– It is a difficult, complicated structure and it was very demanding to resolve. We’ve spent lot of time and efforts on the structure solution. Now we know exactly where the copper is and we can also replace the metal. This opens up many possibilities to make other materials, says Yanhang Ma, PhD Student at the Department of Materials and Environmental Chemistry at Stockholm University.

Another of the collaborating institutions, US Department of Energy Lawrence Berkeley National Laboratory issued a Jan. 21, 2016 news release on EurekAlert, providing a different perspective and some additional details,

There are many different ways to make nanomaterials but weaving, the oldest and most enduring method of making fabrics, has not been one of them – until now. An international collaboration led by scientists at the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California (UC) Berkeley, has woven the first three-dimensional covalent organic frameworks (COFs) from helical organic threads. The woven COFs display significant advantages in structural flexibility, resiliency and reversibility over previous COFs – materials that are highly prized for their potential to capture and store carbon dioxide then convert it into valuable chemical products.

“Weaving in chemistry has been long sought after and is unknown in biology,” Yaghi says [Omar Yaghi, chemist who holds joint appointments with Berkeley Lab’s Materials Sciences Division and UC Berkeley’s Chemistry Department and is the co-director of the Kavli Energy NanoScience Institute {Kavli-ENSI}]. “However, we have found a way of weaving organic threads that enables us to design and make complex two- and three-dimensional organic extended structures.”

COFs and their cousin materials, metal organic frameworks (MOFs), are porous three-dimensional crystals with extraordinarily large internal surface areas that can absorb and store enormous quantities of targeted molecules. Invented by Yaghi, COFs and MOFs consist of molecules (organics for COFs and metal-organics for MOFs) that are stitched into large and extended netlike frameworks whose structures are held together by strong chemical bonds. Such frameworks show great promise for, among other applications, carbon sequestration.

Through another technique developed by Yaghi, called “reticular chemistry,” these frameworks can also be embedded with catalysts to carry out desired functions: for example, reducing carbon dioxide into carbon monoxide, which serves as a primary building block for a wide range of chemical products including fuels, pharmaceuticals and plastics.

In this latest study, Yaghi and his collaborators used a copper(I) complex as a template for bringing threads of the organic compound “phenanthroline” into a woven pattern to produce an immine-based framework they dubbed COF-505. Through X-ray and electron diffraction characterizations, the researchers discovered that the copper(I) ions can be reversibly removed or restored to COF-505 without changing its woven structure. Demetalation of the COF resulted in a tenfold increase in its elasticity and remetalation restored the COF to its original stiffness.

“That our system can switch between two states of elasticity reversibly by a simple operation, the first such demonstration in an extended chemical structure, means that cycling between these states can be done repeatedly without degrading or altering the structure,” Yaghi says. “Based on these results, it is easy to imagine the creation of molecular cloths that combine unusual resiliency, strength, flexibility and chemical variability in one material.”

Yaghi says that MOFs can also be woven as can all structures based on netlike frameworks. In addition, these woven structures can also be made as nanoparticles or polymers, which means they can be fabricated into thin films and electronic devices.

“Our weaving technique allows long threads of covalently linked molecules to cross at regular intervals,” Yaghi says. “These crossings serve as points of registry, so that the threads have many degrees of freedom to move away from and back to such points without collapsing the overall structure, a boon to making materials with exceptional mechanical properties and dynamics.”

###

This research was primarily supported by BASF (Germany) and King Abdulaziz City for Science and Technology (KACST).

It’s unusual that neither Stockholm University not the Lawrence Berkeley National Laboratory list all of the institutions involved. To get a sense of this international collaboration’s size, I’m going to list them,

  • 1Department of Chemistry, University of California, Berkeley, Materials Sciences Division, Lawrence Berkeley National Laboratory, and Kavli Energy NanoSciences Institute, Berkeley, CA 94720, USA.
  • 2Department of Materials and Environmental Chemistry, Stockholm University, SE-10691 Stockholm, Sweden.
  • 3Department of New Architectures in Materials Chemistry, Materials Science Institute of Madrid, Consejo Superior de Investigaciones Científicas, Madrid 28049, Spain.
  • 4Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan.
  • 5NSF Nanoscale Science and Engineering Center (NSEC), University of California at Berkeley, 3112 Etcheverry Hall, Berkeley, CA 94720, USA.
  • 6Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
  • 7King Abdulaziz City of Science and Technology, Post Office Box 6086, Riyadh 11442, Saudi Arabia.
  • 8Material Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA.
  • 9School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.

Given that some of the money came from a German company, I’m surprised not one German institution was involved.

Here’s a link to and citation for the paper,

Weaving of organic threads into a crystalline covalent organic framework by Yuzhong Liu, Yanhang Ma, Yingbo Zhao, Xixi Sun, Felipe Gándara, Hiroyasu Furukawa, Zheng Liu, Hanyu Zhu, Chenhui Zhu, Kazutomo Suenaga, Peter Oleynikov, Ahmad S. Alshammari, Xiang Zhang, Osamu Terasaki, Omar M. Yaghi. Science  22 Jan 2016: Vol. 351, Issue 6271, pp. 365-369 DOI: 10.1126/science.aad4011

This paper is behind a paywall.

Nano-alchemy: silver nanoparticles that look like and act like gold

This work on ‘nano-alchemy’ comes out of the King Abduhllah University of Science and Technology (KAUST) according to a Sept. 22, 2015 article by Lisa Zynga for phys.org (Note: A link has been removed),

In an act of “nano-alchemy,” scientists have synthesized a silver (Ag) nanocluster that is virtually identical to a gold (Au) nanocluster. On the outside, the silver nanocluster has a golden yellow color, and on the inside, its chemical structure and properties also closely mimic those of its gold counterpart. The work shows that it may be possible to create silver nanoparticles that look and behave like gold despite underlying differences between the two elements, and could lead to creating similar analogues between other pairs of elements.

“In some aspects, this is very similar to alchemy, but we call it ‘nano-alchemy,'” Bakr [Osman Bakr, Associate Professor of Materials Science and Engineering at King Abdullah University of Science and Technology (KAUST) in Saudi Arabia] told Phys.org. “When we first encountered the optical spectrum of the silver nanocluster, we thought that we may have inadvertently switched the chemical reagents for silver with gold, and ended up with gold nanoparticles instead. But repeated synthesis and measurements proved that the clusters were indeed silver and yet show properties akin to gold. It was really surprising to us as scientists to find not only similarities in the color and optical properties, but also the X-ray structure.”

In their study, the researchers performed tests demonstrating that the silver and gold nanoclusters have very similar optical properties. Typically, silver nanoclusters are brown or red in color, but this one looks just like gold because it emits light at almost the same wavelength (around 675 nm) as gold. The golden color can be explained by the fact that both nanoclusters have virtually identical crystal structures.

The question naturally arises: why are these silver and gold nanoclusters so similar, when individual atoms of silver and gold are very different, in terms of their optical and structural properties? As Bakr explained, the answer may have to do with the fact that, although larger in size, the nanoclusters behave like “superatoms” in the sense that their electrons orbit the entire nanocluster as if it were a single giant atom. These superatomic orbitals in the silver and gold nanoclusters are very similar, and, in general, an atom’s electron configuration contributes significantly to its properties.

Here’s one of the images used to illustrate Zynga’s article and the paper published by the American Chemical Society,

(Left) Optical properties of the silver and gold nanoclusters, with the inset showing photographs of the actual color of the synthesized nanoclusters. The graph shows the absorption (solid lines) and normalized emission (dotted lines) spectra. (Right) Various representations of the X-ray structure of the silver nanocluster. Credit: Joshi, et al. ©2015 American Chemical Society

(Left) Optical properties of the silver and gold nanoclusters, with the inset showing photographs of the actual color of the synthesized nanoclusters. The graph shows the absorption (solid lines) and normalized emission (dotted lines) spectra. (Right) Various representations of the X-ray structure of the silver nanocluster. Credit: Joshi, et al. ©2015 American Chemical Society

I encourage you to read Zynga’s article in its entirety. For the more technically inclined, here’s a link to and a citation for the researchers’ paper,

[Ag25(SR)18]: The “Golden” Silver Nanoparticle by Chakra P. Joshi, Megalamane S. Bootharaju, Mohammad J. Alhilaly, and Osman M. Bakr.J. Am. Chem. Soc., 2015, 137 (36), pp 11578–11581 DOI: 10.1021/jacs.5b07088 Publication Date (Web): August 31, 2015

Copyright © 2015 American Chemical Society

This paper is behind a paywall.

Tobacco Indemnification and Community Revitalization Commission supports nanomaterial development with a $2M grant

Tobacco growing is not as lucrative as it once was. Worldwide anti-smoking legislation and health campaigns against smoking have had an effect on the industry and the farmers who grow tobacco. With that in mind, the June 10, 2015 news item on Azonano suggests that the industry and the farmers might be trying to find other uses for tobacco,

The Tobacco Commission [aka Tobacco Indemnification and Community Revitalization Commission] voted unanimously to award the Center for Advanced Engineering & Research a $2 million research and development grant, 100% of which will directly support NanoTouch Materials’ continued development of their NanoSeptic surfaces. This funding will be used to research new materials and advanced manufacturing processes, and build a dedicated fabrication facility in Bedford County [state of Virginia].

A June 9, 2015 NanoTouch news release on prnewswire.com, which originated the news item, describes the deal in more detail but offers no indication as to how tobacco might factor into the research (Note: A link has been removed),

“What makes research and development of NanoSeptic products complex and expensive is the multiple areas of scientific expertise required,” says NanoTouch co-founder Mark Sisson. “This funding will allow us to continue working with some of the best scientific minds in material science, nanotechnology, polymers and biotechnology.”

The research component of this grant will be focused on the development of the 5th generation of the NanoSeptic surface. Initial lab testing on early prototypes of the technology resulted in a surface that was 1,000 times more effective than the previous generation, achieving almost a six-log reduction.

Effectiveness of the current NanoSeptic surface has been extensively studied both by an independent FDA compliant lab and university research centers worldwide, including Saudi Arabia and South Korea. These studies utilize internationally recognized standard testing protocols against a variety of pathogens including E. coli, MRSA, Staph, Norovirus and the human Coronavirus, a strain of which is causing MERS outbreaks in the Middle East and Korea.

“NanoSeptic products present a great growth opportunity for this region,” says Bob Bailey, executive director of CAER. “The Center for Advanced Engineering and Research [this appears to be a wholly NanoTouch-owned research group] is excited to be part of this project and we believe that our strong research partnerships with multiple Virginia universities will prove to be a significant asset.”

As part of this three-year initiative, NanoTouch Materials is expected to grow their workforce in Bedford County, VA to a total of 14 employees, and an estimated 37 employees in five years. NanoTouch is also expected to invest $1 million in facilities and advanced manufacturing equipment.

“Virtually every firm or project with which the Tobacco Commission partners has a common characteristic: a tremendous potential to grow.  NanoSeptic is an ideal example of this.  It’s easy to see how big the potential is in healthcare, public and commercial transportation, and the hospitality industry,” says Delegate Kathy Byron, Chair of the Research & Development Committee. “That potential is emblematic of our entire region, and the reestablishment of our manufacturing community.  Once again, companies in Central and Southside Virginia are making products that are being used worldwide.”

While an entire line of NanoSeptic products have been developed and are being distributed to 29 countries, the company also plans to spend significant funding to conduct market research in the healthcare, education, facility management, commercial janitorial and food service industries. This market research will guide future product development and uncover specific ways that self-cleaning surfaces can be used to improve healthcare outcomes, reduce employee and student absenteeism, and broadly improve community health.

“While the vetting process for the grant was exhaustive, we’re grateful for the support of the Tobacco Commission and the Economic Development Authority of Bedford County in our mission of providing cleaner, healthier places in which to live, work and play,” says NanoTouch co-founder Dennis Hackemeyer. “And our investors couldn’t be happier with the company receiving funding that will accelerate growth without diluting their investment.”

The news release goes on to describe the funding agency,

The Tobacco Indemnification and Community Revitalization Commission is a 31-member body whose mission is to promote economic growth and development in tobacco-dependent communities using proceeds of the national tobacco settlement.  The Commission has awarded 1,831 grants totaling more than $1,072,922,288 across the tobacco region of the Commonwealth. http://www.tic.virginia.gov

I have mentioned NanoTouch before in an April 24, 2013 posting where I also expressed some interest in getting more technical information about the company’s products. In 2013, the company was introducing its product, NanoSeptic, into schools in the Bellmore-Merrick School District of New York.

Sealing graphene’s defects to make a better filtration device

Making a graphene filter that allows water to pass through while screening out salt and/or noxious materials has been more challenging than one might think. According to a May 7, 2015 news item on Nanowerk, graphene filters can be ‘leaky’,

For faster, longer-lasting water filters, some scientists are looking to graphene –thin, strong sheets of carbon — to serve as ultrathin membranes, filtering out contaminants to quickly purify high volumes of water.

Graphene’s unique properties make it a potentially ideal membrane for water filtration or desalination. But there’s been one main drawback to its wider use: Making membranes in one-atom-thick layers of graphene is a meticulous process that can tear the thin material — creating defects through which contaminants can leak.

Now engineers at MIT [Massachusetts Institute of Technology], Oak Ridge National Laboratory, and King Fahd University of Petroleum and Minerals (KFUPM) have devised a process to repair these leaks, filling cracks and plugging holes using a combination of chemical deposition and polymerization techniques. The team then used a process it developed previously to create tiny, uniform pores in the material, small enough to allow only water to pass through.

A May 8, 2015 MIT news release (also on EurkeAlert), which originated the news item, expands on the theme,

Combining these two techniques, the researchers were able to engineer a relatively large defect-free graphene membrane — about the size of a penny. The membrane’s size is significant: To be exploited as a filtration membrane, graphene would have to be manufactured at a scale of centimeters, or larger.

In experiments, the researchers pumped water through a graphene membrane treated with both defect-sealing and pore-producing processes, and found that water flowed through at rates comparable to current desalination membranes. The graphene was able to filter out most large-molecule contaminants, such as magnesium sulfate and dextran.

Rohit Karnik, an associate professor of mechanical engineering at MIT, says the group’s results, published in the journal Nano Letters, represent the first success in plugging graphene’s leaks.

“We’ve been able to seal defects, at least on the lab scale, to realize molecular filtration across a macroscopic area of graphene, which has not been possible before,” Karnik says. “If we have better process control, maybe in the future we don’t even need defect sealing. But I think it’s very unlikely that we’ll ever have perfect graphene — there will always be some need to control leakages. These two [techniques] are examples which enable filtration.”

Sean O’Hern, a former graduate research assistant at MIT, is the paper’s first author. Other contributors include MIT graduate student Doojoon Jang, former graduate student Suman Bose, and Professor Jing Kong.

A delicate transfer

“The current types of membranes that can produce freshwater from saltwater are fairly thick, on the order of 200 nanometers,” O’Hern says. “The benefit of a graphene membrane is, instead of being hundreds of nanometers thick, we’re on the order of three angstroms — 600 times thinner than existing membranes. This enables you to have a higher flow rate over the same area.”

O’Hern and Karnik have been investigating graphene’s potential as a filtration membrane for the past several years. In 2009, the group began fabricating membranes from graphene grown on copper — a metal that supports the growth of graphene across relatively large areas. However, copper is impermeable, requiring the group to transfer the graphene to a porous substrate following fabrication.

However, O’Hern noticed that this transfer process would create tears in graphene. What’s more, he observed intrinsic defects created during the growth process, resulting perhaps from impurities in the original material.

Plugging graphene’s leaks

To plug graphene’s leaks, the team came up with a technique to first tackle the smaller intrinsic defects, then the larger transfer-induced defects. For the intrinsic defects, the researchers used a process called “atomic layer deposition,” placing the graphene membrane in a vacuum chamber, then pulsing in a hafnium-containing chemical that does not normally interact with graphene. However, if the chemical comes in contact with a small opening in graphene, it will tend to stick to that opening, attracted by the area’s higher surface energy.

The team applied several rounds of atomic layer deposition, finding that the deposited hafnium oxide successfully filled in graphene’s nanometer-scale intrinsic defects. However, O’Hern realized that using the same process to fill in much larger holes and tears — on the order of hundreds of nanometers — would require too much time.

Instead, he and his colleagues came up with a second technique to fill in larger defects, using a process called “interfacial polymerization” that is often employed in membrane synthesis. After they filled in graphene’s intrinsic defects, the researchers submerged the membrane at the interface of two solutions: a water bath and an organic solvent that, like oil, does not mix with water.

In the two solutions, the researchers dissolved two different molecules that can react to form nylon. Once O’Hern placed the graphene membrane at the interface of the two solutions, he observed that nylon plugs formed only in tears and holes — regions where the two molecules could come in contact because of tears in the otherwise impermeable graphene — effectively sealing the remaining defects.

Using a technique they developed last year, the researchers then etched tiny, uniform holes in graphene — small enough to let water molecules through, but not larger contaminants. In experiments, the group tested the membrane with water containing several different molecules, including salt, and found that the membrane rejected up to 90 percent of larger molecules. However, it let salt through at a faster rate than water.

The preliminary tests suggest that graphene may be a viable alternative to existing filtration membranes, although Karnik says techniques to seal its defects and control its permeability will need further improvements.

“Water desalination and nanofiltration are big applications where, if things work out and this technology withstands the different demands of real-world tests, it would have a large impact,” Karnik says. “But one could also imagine applications for fine chemical- or biological-sample processing, where these membranes could be useful. And this is the first report of a centimeter-scale graphene membrane that does any kind of molecular filtration. That’s exciting.”

De-en Jiang, an assistant professor of chemistry at the University of California at Riverside, sees the defect-sealing technique as “a great advance toward making graphene filtration a reality.”

“The two-step technique is very smart: sealing the defects while preserving the desired pores for filtration,” says Jiang, who did not contribute to the research. “This would make the scale-up much easier. One can produce a large graphene membrane first, not worrying about the defects, which can be sealed later.”

I have featured graphene and water desalination work before  from these researchers at MIT in a Feb. 27, 2014 posting. Interestingly, there was no mention of problems with defects in the news release highlighting this previous work.

Here’s a link to and a citation for the latest paper,

Nanofiltration across Defect-Sealed Nanoporous Monolayer Graphene by Sean C. O’Hern, Doojoon Jang, Suman Bose, Juan-Carlos Idrobo, Yi Song §, Tahar Laoui, Jing Kong, and Rohit Karnik. Nano Lett., Article ASAP DOI: 10.1021/acs.nanolett.5b00456 Publication Date (Web): April 27, 2015

Copyright © 2015 American Chemical Society

This paper is behind a paywall.

Spray-on solar cells from the University of Toronto (Canada)

It’s been a while since there’s been a solar cell story from the University of Toronto (U of T) and I was starting to wonder if Ted (Edward) Sargent had moved to another educational institution. The drought has ended with the announcement of three research papers being published by researchers from Sargent’s U of T laboratory. From a Dec. 5, 2014 ScienceDaily news item,

Pretty soon, powering your tablet could be as simple as wrapping it in cling wrap.

That’s Illan Kramer’s … hope. Kramer and colleagues have just invented a new way to spray solar cells onto flexible surfaces using miniscule light-sensitive materials known as colloidal quantum dots (CQDs) — a major step toward making spray-on solar cells easy and cheap to manufacture.

A Dec. 4, 2014 University of Toronto news release (also on EurekAlert) by Marit Mitchell, which originated the news item, gives a bit more detail about the technology (Note: Links have been removed),

 Solar-sensitive CQDs printed onto a flexible film could be used to coat all kinds of weirdly-shaped surfaces, from patio furniture to an airplane’s wing. A surface the size of a car roof wrapped with CQD-coated film would produce enough energy to power three 100-watt light bulbs – or 24 compact fluorescents.

He calls his system sprayLD, a play on the manufacturing process called ALD, short for atomic layer deposition, in which materials are laid down on a surface one atom-thickness at a time.

Until now, it was only possible to incorporate light-sensitive CQDs onto surfaces through batch processing – an inefficient, slow and expensive assembly-line approach to chemical coating. SprayLD blasts a liquid containing CQDs directly onto flexible surfaces, such as film or plastic, like printing a newspaper by applying ink onto a roll of paper. This roll-to-roll coating method makes incorporating solar cells into existing manufacturing processes much simpler. In two recent papers in the journals Advanced Materials and Applied Physics Letters, Kramer showed that the sprayLD method can be used on flexible materials without any major loss in solar-cell efficiency.

Kramer built his sprayLD device using parts that are readily available and rather affordable – he sourced a spray nozzle used in steel mills to cool steel with a fine mist of water, and a few regular air brushes from an art store.

“This is something you can build in a Junkyard Wars fashion, which is basically how we did it,” says Kramer. “We think of this as a no-compromise solution for shifting from batch processing to roll-to-roll.”

“As quantum dot solar technology advances rapidly in performance, it’s important to determine how to scale them and make this new class of solar technologies manufacturable,” said Professor Ted Sargent, vice-dean, research in the Faculty of Applied Science & Engineering at University of Toronto and Kramer’s supervisor. “We were thrilled when this attractively-manufacturable spray-coating process also led to superior performance devices showing improved control and purity.”

In a third paper in the journal ACS Nano, Kramer and his colleagues used IBM’s BlueGeneQ supercomputer to model how and why the sprayed CQDs perform just as well as – and in some cases better than – their batch-processed counterparts. This work was supported by the IBM Canada Research and Development Centre, and by King Abdullah University of Science and Technology.

For those who would like to see the sprayLD device,

Here are links and citation for all three papers,

Efficient Spray-Coated Colloidal Quantum Dot Solar Cells by Illan J. Kramer, James C. Minor, Gabriel Moreno-Bautista, Lisa Rollny, Pongsakorn Kanjanaboos, Damir Kopilovic, Susanna M. Thon, Graham H. Carey, Kang Wei Chou, David Zhitomirsky, Aram Amassian, and Edward H. Sargent. Advanced Materials DOI: 10.1002/adma.201403281 Article first published online: 10 NOV 2014

© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Colloidal quantum dot solar cells on curved and flexible substrates by Illan J. Kramer, Gabriel Moreno-Bautista, James C. Minor, Damir Kopilovic, and Edward H. Sargent. Appl. Phys. Lett. 105, 163902 (2014); http://dx.doi.org/10.1063/1.4898635 Published online 21 October 2014

© 2014 AIP Publishing LLC

Electronically Active Impurities in Colloidal Quantum Dot Solids by Graham H. Carey, Illan J. Kramer, Pongsakorn Kanjanaboos, Gabriel Moreno-Bautista, Oleksandr Voznyy, Lisa Rollny, Joel A. Tang, Sjoerd Hoogland, and Edward H. Sargent. ACS Nano, 2014, 8 (11), pp 11763–11769 DOI: 10.1021/nn505343e Publication Date (Web): November 6, 2014

Copyright © 2014 American Chemical Society

All three papers are behind paywalls.

Given the publication dates for the papers, this looks like an attempt to get some previously announced research noticed by sending out a summary news release using a new ‘hook’ to get attention. I hope it works for them as it must be disheartening to have your research sink into obscurity because the announcements were issued during one or more busy news cycles.

One final note, if I understand the news release correctly, this work is still largely theoretical as there don’t seem to have been any field tests.