Tag Archives: Scattering

Colour: an art/science open call for submissions

The submission deadline for this open ‘art/sci’ call is January 17, 2018 (from a November 29, 2017 Art/Science Salon announcement; received via email),


An exhibition exploring colour as a phenomenon that crosses the
boundaries of the arts and sciences.

Artists and designers revel in, and seek to understand, the visceral,
physical and ephemeral qualities of colour. Sir Isaac Newton began his
scientific experiments with light and prisms as ‘a very pleasing
divertisement, to view the vivid and intense colours produced
thereby’. His investigations ultimately changed our understanding of
the fundamental nature of light and colour. Johann Wolfgang von Goethe
challenged Newton’s understanding as limited, and introduced colour as
an emotionally charged phenomenon. He proposed an alternative
methodological approach based on ’empathic observation’.

COLOUR: WHAT DO YOU MEAN BY THAT? calls for art inspired by, or
questioning, scientific concepts about colour: art that encapsulates
colour knowledge from multiple perspectives.

We are not looking for the merely colourful – rather we look for work
engaging ideas, theories and aspects of colour – both conceptual and
physical – that highlight colour knowledge as richly meaningful across
diverse ways of knowing.

To this end, we invite proposals that present, consider, or respond to
research about colour and colour phenomena. Work may relate to:

* physical colour phenomena, e.g. light sources, interference,
iridescence, scattering, reflection
* chemistry of dyes & pigments
* colour vision / colour perception
* colour renderings of energies outside of the visible spectrum
(ultraviolet, infra-red, etc.)
* colour meanings (cultural, scientific, philosophical)
* cross-sensory colour sensations and understandings
* colour theories
* colour histories

SHOW DATES: MARCH 7-25, 2018.

COLOUR: WHAT DO YOU MEAN BY THAT? is jointly sponsored by Propeller
Gallery and the Colour Research Society of Canada [1]

SHOW LOCATION: Propeller Gallery, 30 Abell St, Toronto, ON, Canada

SUBMISSION DEADLINE: Wed Jan 17, 2018, 11:59pm [which timezone?]



You may submit more than one submission, provided the concept is
substantially different for each piece, with a maximum of three
submissions. With each submission, please provide at least one image
(maximum 4 images) relevant to your proposal.

Details about yourself and your work including:

* Name, address, email, phone number, with a brief bio.
* Title of Work, Year, Medium, Size and Value in $CAD.
* A brief written statement about the work, including how the work
deals with, or draws its inspiration from, diverse ways of knowing about
colour (max. 150 words).

CURATORIAL TEAM MEMBERS: Doreen Balabanoff, Robin Kingsburgh, Janet
Read, Judith Tinkl


* 25% commission collected on any work sold as a result of this
* For more information visit our website: www.propellerctr.com [3]
* If selected, you agree to allow us to use your submission material,
without compensation, in any potential catalogue/publication for this
* Selected artists will be contacted by email not later than January
31. Delivery instructions will be given at that time.
* An event at the exhibition, related to International Colour Day,
March 21st, will be announced in early 2018.

Please direct inquiries to:

Nathan Heuvingh
Gallery Director

Facebook: https://www.facebook.com/PropellerTO/ [4]
Twitter: @PropellerTO
Instagram: @propellerygallery_to

The co-sponsor for this upcoming exhibition, the Colour Research Society of Canada has a website that proved to be a delightful surprise.

Getting back to COLOUR: WHAT DO YOU MEAN BY THAT?, good luck with your submission, and should it be accepted, good luck with sales!

Wearable microscopes

It never occurred to me that someone might want a wearable microscope but, apparently, there is a need. A Sept. 27, 2016 news item on phys.org,

UCLA [University of California at Los Angeles] researchers working with a team at Verily Life Sciences have designed a mobile microscope that can detect and monitor fluorescent biomarkers inside the skin with a high level of sensitivity, an important tool in tracking various biochemical reactions for medical diagnostics and therapy.

A Sept. 26, 2016 UCLA news release by Meghan Steele Horan, which originated the news item, describes the work in more detail,

This new system weighs less than a one-tenth of a pound, making it small and light enough for a person to wear around their bicep, among other parts of their body. In the future, technology like this could be used for continuous patient monitoring at home or at point-of-care settings.

The research, which was published in the journal ACS Nano, was led by Aydogan Ozcan, UCLA’s Chancellor’s Professor of Electrical Engineering and Bioengineering and associate director of the California NanoSystems Institute and Vasiliki Demas of Verily Life Sciences (formerly Google Life Sciences).

Fluorescent biomarkers are routinely used for cancer detection and drug delivery and release among other medical therapies. Recently, biocompatible fluorescent dyes have emerged, creating new opportunities for noninvasive sensing and measuring of biomarkers through the skin.

However, detecting artificially added fluorescent objects under the skin is challenging. Collagen, melanin and other biological structures emit natural light in a process called autofluorescence. Various methods have been tried to investigate this problem using different sensing systems. Most are quite expensive and difficult to make small and cost-effective enough to be used in a wearable imaging system.

To test the mobile microscope, researchers first designed a tissue phantom — an artificially created material that mimics human skin optical properties, such as autofluorescence, absorption and scattering. The target fluorescent dye solution was injected into a micro-well with a volume of about one-hundredth of a microliter, thinner than a human hair, and subsequently implanted into the tissue phantom half a millimeter to 2 millimeters from the surface — which would be deep enough to reach blood and other tissue fluids in practice.

To measure the fluorescent dye, the wearable microscope created by Ozcan and his team used a laser to hit the skin at an angle. The fluorescent image at the surface of the skin was captured via the wearable microscope. The image was then uploaded to a computer where it was processed using a custom-designed algorithm, digitally separating the target fluorescent signal from the autofluorescence of the skin, at a very sensitive parts-per-billion level of detection.

“We can place various tiny bio-sensors inside the skin next to each other, and through our imaging system, we can tell them apart,” Ozcan said. “We can monitor all these embedded sensors inside the skin in parallel, even understand potential misalignments of the wearable imager and correct it to continuously quantify a panel of biomarkers.”

This computational imaging framework might also be used in the future to continuously monitor various chronic diseases through the skin using an implantable or injectable fluorescent dye.

Here’s a link to and a citation for the paper,

Quantitative Fluorescence Sensing Through Highly Autofluorescent, Scattering, and Absorbing Media Using Mobile Microscopy by Zoltán Göröcs, Yair Rivenson, Hatice Ceylan Koydemir, Derek Tseng, Tamara L. Troy, Vasiliki Demas, and Aydogan Ozcan. ACS Nano, 2016, 10 (9), pp 8989–8999 DOI: 10.1021/acsnano.6b05129 Publication Date (Web): September 13, 2016

Copyright © 2016 American Chemical Society

This paper is behind a paywall.