Tag Archives: Science Channel

Prime Minister Trudeau, the quantum physicist

Prime Minister Justin Trudeau’s apparently extemporaneous response to a joking (non)question about quantum computing by a journalist during an April 15, 2016 press conference at the Perimeter Institute for Theoretical Physics in Waterloo, Ontario, Canada has created a buzz online, made international news, and caused Canadians to sit taller.

For anyone who missed the moment, here’s a video clip from the Canadian Broadcasting Corporation (CBC),

Aaron Hutchins in an April 15, 2016 article for Maclean’s magazine digs deeper to find out more about Trudeau and quantum physics (Note: A link has been removed),

Raymond Laflamme knows the drill when politicians visit the Perimeter Institute. A photo op here, a few handshakes there and a tour with “really basic, basic, basic facts” about the field of quantum mechanics.

But when the self-described “geek” Justin Trudeau showed up for a funding announcement on Friday [April 15, 2016], the co-founder and director of the Institute for Quantum Computing at the University of Waterloo wasn’t met with simple nods of the Prime Minister pretending to understand. Trudeau immediately started talking about things being waves and particles at the same time, like cats being dead and alive at the same time. It wasn’t just nonsense—Trudeau was referencing the famous thought experiment of the late legendary physicist Erwin Schrödinger.

“I don’t know where he learned all that stuff, but we were all surprised,” Laflamme says. Soon afterwards, as Trudeau met with one student talking about superconductivity, the Prime Minister asked her, “Why don’t we have high-temperature superconducting systems?” something Laflamme describes as the institute’s “Holy Grail” quest.

“I was flabbergasted,” Laflamme says. “I don’t know how he does in other subjects, but in quantum physics, he knows the basic pieces and the important questions.”

Strangely, Laflamme was not nearly as excited (tongue in cheek) when I demonstrated my understanding of quantum physics during our interview (see my May 11, 2015 posting; scroll down about 40% of the way to the Ramond Laflamme subhead).

As Jon Butterworth comments in his April 16, 2016 posting on the Guardian science blog, the response says something about our expectations regarding politicians,

This seems to have enhanced Trudeau’s reputation no end, and quite right too. But it is worth thinking a bit about why.

The explanation he gives is clear, brief, and understandable to a non-specialist. It is the kind of thing any sufficiently engaged politician could pick up from a decent briefing, given expert help. …

Butterworth also goes on to mention journalists’ expectations,

The reporter asked the question in a joking fashion, not unkindly as far as I can tell, but not expecting an answer either. If this had been an announcement about almost any other government investment, wouldn’t the reporter have expected a brief explanation of the basic ideas behind it? …

As for the announcement being made by Trudeau, there is this April 15, 2016 Perimeter Institute press release (Note: Links have been removed),

Prime Minister Justin Trudeau says the work being done at Perimeter and in Canada’s “Quantum Valley” [emphasis mine] is vital to the future of the country and the world.

Prime Minister Justin Trudeau became both teacher and student when he visited Perimeter Institute today to officially announce the federal government’s commitment to support fundamental scientific research at Perimeter.

Joined by Minister of Science Kirsty Duncan and Small Business and Tourism Minister Bardish Chagger, the self-described “geek prime minister” listened intensely as he received brief overviews of Perimeter research in areas spanning from quantum science to condensed matter physics and cosmology.

“You don’t have to be a geek like me to appreciate how important this work is,” he then told a packed audience of scientists, students, and community leaders in Perimeter’s atrium.

The Prime Minister was also welcomed by 200 teenagers attending the Institute’s annual Inspiring Future Women in Science conference, and via video greetings from cosmologist Stephen Hawking [he was Laflamme’s PhD supervisor], who is a Perimeter Distinguished Visiting Research Chair. The Prime Minister said he was “incredibly overwhelmed” by Hawking’s message.

“Canada is a wonderful, huge country, full of people with big hearts and forward-looking minds,” Hawking said in his message. “It’s an ideal place for an institute dedicated to the frontiers of physics. In supporting Perimeter, Canada sets an example for the world.”

The visit reiterated the Government of Canada’s pledge of $50 million over five years announced in last month’s [March 2016] budget [emphasis mine] to support Perimeter research, training, and outreach.

It was the Prime Minister’s second trip to the Region of Waterloo this year. In January [2016], he toured the region’s tech sector and universities, and praised the area’s innovation ecosystem.

This time, the focus was on the first link of the innovation chain: fundamental science that could unlock important discoveries, advance human understanding, and underpin the groundbreaking technologies of tomorrow.

As for the “quantum valley’ in Ontario, I think there might be some competition here in British Columbia with D-Wave Systems (first commercially available quantum computing, of a sort; my Dec. 16, 2015 post is the most recent one featuring the company) and the University of British Columbia’s Stewart Blusson Quantum Matter Institute.

Getting back to Trudeau, it’s exciting to have someone who seems so interested in at least some aspects of science that he can talk about it with a degree of understanding. I knew he had an interest in literature but there is also this (from his Wikipedia entry; Note: Links have been removed),

Trudeau has a bachelor of arts degree in literature from McGill University and a bachelor of education degree from the University of British Columbia…. After graduation, he stayed in Vancouver and he found substitute work at several local schools and permanent work as a French and math teacher at the private West Point Grey Academy … . From 2002 to 2004, he studied engineering at the École Polytechnique de Montréal, a part of the Université de Montréal.[67] He also started a master’s degree in environmental geography at McGill University, before suspending his program to seek public office.[68] [emphases mine]

Trudeau is not the only political leader to have a strong interest in science. In our neighbour to the south, there’s President Barack Obama who has done much to promote science since he was elected in 2008. David Bruggeman in an April 15, 2016  post (Obama hosts DNews segments for Science Channel week of April 11-15, 2016) and an April 17, 2016 post (Obama hosts White House Science Fair) describes two of Obama’s most recent efforts.

ETA April 19, 2016: I’ve found confirmation that this Q&A was somewhat staged as I hinted in the opening with “Prime Minister Justin Trudeau’s apparently extemporaneous response … .” Will Oremus’s April 19, 2016 article for Slate.com breaks the whole news cycle down and points out (Note: A link has been removed),

Over the weekend, even as latecomers continued to dine on the story’s rapidly decaying scraps, a somewhat different picture began to emerge. A Canadian blogger pointed out that Trudeau himself had suggested to reporters at the event that they lob him a question about quantum computing so that he could knock it out of the park with the newfound knowledge he had gleaned on his tour.

The Canadian blogger who tracked this down is J. J. McCullough (Jim McCullough) and you can read his Oct. 16, 2016 posting on the affair here. McCullough has a rather harsh view of the media response to Trudeau’s lecture. Oremus is a bit more measured,

… Monday brought the countertake parade—smaller and less pompous, if no less righteous—led by Gawker with the headline, “Justin Trudeau’s Quantum Computing Explanation Was Likely Staged for Publicity.”

But few of us in the media today are immune to the forces that incentivize timeliness and catchiness over subtlety, and even Gawker’s valuable corrective ended up meriting a corrective of its own. Author J.K. Trotter soon updated his post with comments from Trudeau’s press secretary, who maintained (rather convincingly, I think) that nothing in the episode was “staged”—at least, not in the sinister way that the word implies. Rather, Trudeau had joked that he was looking forward to someone asking him about quantum computing; a reporter at the press conference jokingly complied, without really expecting a response (he quickly moved on to his real question before Trudeau could answer); Trudeau responded anyway, because he really did want to show off his knowledge.

Trotter deserves credit, regardless, for following up and getting a fuller picture of what transpired. He did what those who initially jumped on the story did not, which was to contact the principals for context and comment.

But my point here is not to criticize any particular writer or publication. The too-tidy Trudeau narrative was not the deliberate work of any bad actor or fabricator. Rather, it was the inevitable product of today’s inexorable social-media machine, in which shareable content fuels the traffic-referral engines that pay online media’s bills.

I suggest reading both McCullough’s and Oremus’s posts in their entirety should you find debates about the role of media compelling.

Synbio (synthetic biology) hits the big time: Venter, media storm, and synbio collaboration webcast

Craig Venter’s and his team’s achievement is being touted widely right now. From the news item (Researchers create first self-replicating, synthetic bacterial cell) on Nanowerk,

The team synthesized the 1.08 million base pair chromosome of a modified Mycoplasma mycoides genome. The synthetic cell is called Mycoplasma mycoides JCVI-syn1.0 and is the proof of principle that genomes can be designed in the computer, chemically made in the laboratory and transplanted into a recipient cell to produce a new self-replicating cell controlled only by the synthetic genome.

This research will be published by Daniel Gibson et al in the May 20th edition of Science Express and will appear in an upcoming print issue of Science.

This has, of course, roused a discussion which is taking place in the blogosphere, in science journals, and elsewhere. Dave Bruggeman at his Pasco Phronesis blog offers a few thoughts about the achievement,

While many are hailing the replication as a significant breakthrough, others are not as impressed. For one thing, while it is described in some circles as synthetic life, the new life has a synthetic inside housed within a pre-existing bacterium shell. For another, there are related projects involving higher lifeforms that may deserve greater attention from a policy perspective.

His comments provide a bracing contrast to some of the hyperbole as per this news item (Life after the synthetic cell – opinions from eight leading synthetic-biology pundits) on Nanowerk,

In the Opinion section of Nature, eight leading synthetic-biology pundits reflect on what effect Craig Venter’s latest achievement could have on science and society.

All the commentators hail the work as highly significant — Arthur Caplan going so far as to describe it as “one of the most important scientific achievements in the history of mankind”. Beyond that they have mixed feelings about what the Mycoplasma bacterium represents.

Coincidentally (or not), the Hudson Institute is hosting its third meeting about moral issues and synthetic biology. From this news item (Moral issues raised by synthetic biology subject of Hastings Center Project) on Nanowerk,

The Hastings Center has been at the forefront of interdisciplinary research into ethical issues in emerging technology. The synthetic biology project is funded by a grant from the Alfred P. Sloan Foundation . Project participants include synthetic biologists, bioethicists, philosophers, and public policy experts. The Center’s work is part of a comprehensive look at synthetic biology by the Alfred P. Sloan Foundation. Other participants in the initiative are the J. Craig Venter Institute and the Woodrow Wilson International Center for Scholars. [emphasis mine]

Intriguingly, the Woodrow Wilson Center hosts the Synthetic Biology Project (a spinoff from their Project on Emerging Technologies [PEN]).

Last week (May 12, 2010), the SynBio Project webcast (access here) an event titled, Synbio in Society: Toward New Forms of Collaboration? which featured,

One response to society’s concerns about synthetic biology has been to institutionalize the involve­ment of social scientists in the field. There have been a series of initiatives in which ethics and biosafety approaches have been purposely incorporated into synthetic biology research and development. [emphasis mine] The collaborative Human Practices model within the NSF-funded SynBERC project was the first initiative in which social scientists were explicitly integrated into a synthetic biology research program. But these new collaborations have also flourished in the UK where four research councils have funded seven scientific networks in synthetic biology that require consideration of ethical, legal and social issues. Another example is the US-UK Synthetic Aesthetics Project, which brings together synthetic biologists, social scientists, designers and artists to explore collaborations between synthetic biology and the creative professions.

Similarly, the European Commission’s Seventh Framework Program funds a project called Synth-ethics, which “aims at discerning relevant ethical issues in close collaboration with the synthetic biology community.

I watched the webcast as it was being streamed live unaware that a big announcement would be made this week. The science community did not share my ignorance so this work has been discussed for months (Science is a peer-reviewed journal and peer review, even if expedited, is going to take more than a month).

I’m willing to bet that the webcast and the Hudson Institute meeting were timed to coincide with the announcement and that the journal Nature was given lots of time to solicit opinions from eight experts.

I have one more item of note. Science Channel will be presenting a special programme on Venter’s work,”Creating Synthetic Life, premiering Thursday, June 3, 2010, at 8PM e/p.” More from their press announcement,

Over the course of five years, only Science Channel cameras captured the failures, successes and breakthrough moments of Dr. Venter, Nobel Laureate Hamilton Smith, Dr. Clyde Hutchison and JCVI [J. Craig Venter Institute] researchers as they meticulously sought to create a synthetic single-celled organism.

What exactly does today’s news mean for the human race? Where exactly will it take us? Could the technology be used for negative purposes? What are the ethical concerns we must weigh before using it?… This one-hour special is an open forum discussion featuring Dr. Venter, leading bioethicists, top scientists and other members of the scientific community discussing the breakthrough’s ramifications and how it may change our world and the future.

Your Questions Answered allows viewers to ask the experts about how this technology will affect their lives. From now through May 26, submit your questions via Facebook, and they could be asked during the show.

Clearly, Science Channel took a calculated risk (see Venter’s bio page to understand why it was a calculated risk) when they started following Venter’s work.

In looking at all this, it’s fascinating to consider the combination of planning, calculated risk-taking, and luck that have come together to create this ‘synthetic biology moment’.

Of special interest to me, is the way that social scientists and ethicists and others have been integrated into the larger synthetic biology initiative. In my more cynical moments, I view this integration as a means of trying to allay concerns before a ‘stem cell’ or GM (genetically modified) food (aka Frankenfoods) controversy erupts. In less cynical moments, I like to think that lessons were learned and that the concerns will be heard and heeded.

Cool science; where are the women?; biology discovers graphical notations

Popular Science’s Future of .., a programme [developed in response to a question “What’s missing from science programming?” posed by Debbie Myers, {US} Science Channel general manager] , was launched last night (Aug. 11, 2009). From the Fast Company posting by Lynne D. Johnston,

The overall response from the 50-plus room full of mostly New York digerati, was resoundingly, “a show that was both entertaining and smart–not dumbed down.”

Their host, Baratunde Thurston, offers an interesting combination of skills as he is a comedian, political pundit, and author. If you go to the posting, you can find the trailer. (It’s gorgeous and, I suspect, quite expensive due to the effects, and as you’d expect from a teaser, it’s short on science content.)

It does seem as if there’s some sort of campaign to make science ‘cool’ in the US. I say campaign because there was also, a few months ago, the World Science Festival in New York (mentioned in my June 12, 2009 posting). Thanks to Darren Barefoot’s blog I see they have posted some highlights and videos from the festival. Barefoot features one of musician Bobby McFerrin’s presentations here.

Barefoot comments on the oddity of having a musician presenting at a science event. The clip doesn’t clarify why McFerrin would be on the panel but neuroscientists have been expressing a lot of interest in musician’s brains and I noticed that there was at least one neuroscientist on the panel. Still, it would have been nice to have understood the thinking behind the panel composition. If you’re interested in more clips and information about the World Science Festival, go here.

Back to my thoughts on the ‘cool’ science campaign, there have been other initiatives including the ‘Dancing with scientists’ video contest put on by the American Association for the Advancement of Science and the nanotechnology video contests put on by the American Chemical Society. All of these initiatives have taken place this year. By contrast, nothing of a similar nature appears to be taking place in Canada. (If you know of a ‘cool science’ project in Canada, please do contact me as I’d be happy to feature it here.)

On the subject of putting together panels, there’s an interesting blog posting by Allyson Kapin (Fast Company) on the dearth of women on technology and/or social media panels. She points out that the problem has many aspects and requires more than one tactic for viable solutions.

She starts by talking about the lack of diversity and she very quickly shifts her primary focus to women. (I’ve seen this before in other writing and I think it happens because the diversity topic is huge so writers want to acknowledge the breadth but have time and expertise to discuss only a small piece of it.) On another tack altogether, I’ve been in the position of assembling a panel and trying to get a diverse group of people can be incredibly difficult. That said, I think more work needs to be done to make sure that panels are as diverse as possible.

Following on my interest in multimodal discourse and new ways of communicating science, a new set of standards for graphically representing biology has been announced. From Physorg.com,

Researchers at the European Molecular Biology Laboratory’s European Bioinformatics Institute (EMBL-EBI) and their colleagues in 30 labs worldwide have released a new set of standards for graphically representing biological information – the biology equivalent of the circuit diagram in electronics. This visual language should make it easier to exchange complex information, so that models are accurate, efficient and readily understandable. The new standard, called the Systems Biology Graphical Notation (SBGN), is published today (August 11, 2009) in Nature Biotechnology.

There’s more here and the article in Nature Biotechnology is here (keep scrolling).