Tag Archives: Scotland

What helps you may hurt you (titanium dioxide nanoparticles and orthopedic implants)

From a Sept. 16, 2017 news item on Nanotechnology Now,

Researchers from the Mayo Clinic have proposed that negative cellular responses to titanium-based nanoparticles released from metal implants interfere in bone formation and resorption at the site of repair, resulting in implant loosening and joint pain. [emphasis mine]Their review of recent scientific evidence and call for further research to characterize the biological, physical, and chemical interactions between titanium dioxide nanoparticles and bone-forming cells is published in BioResearch Open Access, a peer-reviewed open access journal from Mary Ann Liebert, Inc., publishers. The article is available free on theBioResearch Open Access website.

A Sept. 14, 2017 Mary Anne Liebert (Publishing) news release, which originated the news item,  mentions the authors,

Jie Yao, Eric Lewallen, PhD, David Lewallen, MD, Andre van Wijnen, PhD, and colleagues from the Mayo Clinic, Rochester, MN and Second Affiliated Hospital of Soochow University, China, coauthored the article entitled “Local Cellular Responses to Titanium Dioxide from Orthopedic Implants The authors examined the results of recently published studies of titanium-based implants, focusing on the direct and indirect effects of titanium dioxide nanoparticles on the viability and behavior of multiple bone-related cell types. They discuss the impact of particle size, aggregation, structure, and the specific extracellular and intracellular (if taken up by the cells) effects of titanium particle exposure.

“The adverse effects of metallic orthopedic particles generated from implants are of significant clinical interest given the large number of procedures carried out each year. This article reviews our current understanding of the clinical issues and highlights areas for future research,” says BioResearch Open Access Editor Jane Taylor, PhD, MRC Centre for Regenerative Medicine, University of Edinburgh, Scotland.

Before getting to the abstract, here’s a link to and a citation for the paper,

Local Cellular Responses to Titanium Dioxide from Orthopedic Implants by Yao, Jie J.; Lewallen, Eric A.; Trousdale, William H.; Xu, Wei; Thaler, Roman; Salib, Christopher G.; Reina, Nicolas; Abdel, Matthew P.; Lewallen, David G.; and van Wijnenm, Andre J.. BioResearch Open Access. July 2017, 6(1): 94-103. https://doi.org/10.1089/biores.2017.0017 Published July 1, 2017

This paper is open access.

Brain stuff: quantum entanglement and a multi-dimensional universe

I have two brain news bits, one about neural networks and quantum entanglement and another about how the brain operates on more than three dimensions.

Quantum entanglement and neural networks

A June 13, 2017 news item on phys.org describes how machine learning can be used to solve problems in physics (Note: Links have been removed),

Machine learning, the field that’s driving a revolution in artificial intelligence, has cemented its role in modern technology. Its tools and techniques have led to rapid improvements in everything from self-driving cars and speech recognition to the digital mastery of an ancient board game.

Now, physicists are beginning to use machine learning tools to tackle a different kind of problem, one at the heart of quantum physics. In a paper published recently in Physical Review X, researchers from JQI [Joint Quantum Institute] and the Condensed Matter Theory Center (CMTC) at the University of Maryland showed that certain neural networks—abstract webs that pass information from node to node like neurons in the brain—can succinctly describe wide swathes of quantum systems.

An artist’s rendering of a neural network with two layers. At the top is a real quantum system, like atoms in an optical lattice. Below is a network of hidden neurons that capture their interactions (Credit: E. Edwards/JQI)

A June 12, 2017 JQI news release by Chris Cesare, which originated the news item, describes how neural networks can represent quantum entanglement,

Dongling Deng, a JQI Postdoctoral Fellow who is a member of CMTC and the paper’s first author, says that researchers who use computers to study quantum systems might benefit from the simple descriptions that neural networks provide. “If we want to numerically tackle some quantum problem,” Deng says, “we first need to find an efficient representation.”

On paper and, more importantly, on computers, physicists have many ways of representing quantum systems. Typically these representations comprise lists of numbers describing the likelihood that a system will be found in different quantum states. But it becomes difficult to extract properties or predictions from a digital description as the number of quantum particles grows, and the prevailing wisdom has been that entanglement—an exotic quantum connection between particles—plays a key role in thwarting simple representations.

The neural networks used by Deng and his collaborators—CMTC Director and JQI Fellow Sankar Das Sarma and Fudan University physicist and former JQI Postdoctoral Fellow Xiaopeng Li—can efficiently represent quantum systems that harbor lots of entanglement, a surprising improvement over prior methods.

What’s more, the new results go beyond mere representation. “This research is unique in that it does not just provide an efficient representation of highly entangled quantum states,” Das Sarma says. “It is a new way of solving intractable, interacting quantum many-body problems that uses machine learning tools to find exact solutions.”

Neural networks and their accompanying learning techniques powered AlphaGo, the computer program that beat some of the world’s best Go players last year (link is external) (and the top player this year (link is external)). The news excited Deng, an avid fan of the board game. Last year, around the same time as AlphaGo’s triumphs, a paper appeared that introduced the idea of using neural networks to represent quantum states (link is external), although it gave no indication of exactly how wide the tool’s reach might be. “We immediately recognized that this should be a very important paper,” Deng says, “so we put all our energy and time into studying the problem more.”

The result was a more complete account of the capabilities of certain neural networks to represent quantum states. In particular, the team studied neural networks that use two distinct groups of neurons. The first group, called the visible neurons, represents real quantum particles, like atoms in an optical lattice or ions in a chain. To account for interactions between particles, the researchers employed a second group of neurons—the hidden neurons—which link up with visible neurons. These links capture the physical interactions between real particles, and as long as the number of connections stays relatively small, the neural network description remains simple.

Specifying a number for each connection and mathematically forgetting the hidden neurons can produce a compact representation of many interesting quantum states, including states with topological characteristics and some with surprising amounts of entanglement.

Beyond its potential as a tool in numerical simulations, the new framework allowed Deng and collaborators to prove some mathematical facts about the families of quantum states represented by neural networks. For instance, neural networks with only short-range interactions—those in which each hidden neuron is only connected to a small cluster of visible neurons—have a strict limit on their total entanglement. This technical result, known as an area law, is a research pursuit of many condensed matter physicists.

These neural networks can’t capture everything, though. “They are a very restricted regime,” Deng says, adding that they don’t offer an efficient universal representation. If they did, they could be used to simulate a quantum computer with an ordinary computer, something physicists and computer scientists think is very unlikely. Still, the collection of states that they do represent efficiently, and the overlap of that collection with other representation methods, is an open problem that Deng says is ripe for further exploration.

Here’s a link to and a citation for the paper,

Quantum Entanglement in Neural Network States by Dong-Ling Deng, Xiaopeng Li, and S. Das Sarma. Phys. Rev. X 7, 021021 – Published 11 May 2017

This paper is open access.

Blue Brain and the multidimensional universe

Blue Brain is a Swiss government brain research initiative which officially came to life in 2006 although the initial agreement between the École Politechnique Fédérale de Lausanne (EPFL) and IBM was signed in 2005 (according to the project’s Timeline page). Moving on, the project’s latest research reveals something astounding (from a June 12, 2017 Frontiers Publishing press release on EurekAlert),

For most people, it is a stretch of the imagination to understand the world in four dimensions but a new study has discovered structures in the brain with up to eleven dimensions – ground-breaking work that is beginning to reveal the brain’s deepest architectural secrets.

Using algebraic topology in a way that it has never been used before in neuroscience, a team from the Blue Brain Project has uncovered a universe of multi-dimensional geometrical structures and spaces within the networks of the brain.

The research, published today in Frontiers in Computational Neuroscience, shows that these structures arise when a group of neurons forms a clique: each neuron connects to every other neuron in the group in a very specific way that generates a precise geometric object. The more neurons there are in a clique, the higher the dimension of the geometric object.

“We found a world that we had never imagined,” says neuroscientist Henry Markram, director of Blue Brain Project and professor at the EPFL in Lausanne, Switzerland, “there are tens of millions of these objects even in a small speck of the brain, up through seven dimensions. In some networks, we even found structures with up to eleven dimensions.”

Markram suggests this may explain why it has been so hard to understand the brain. “The mathematics usually applied to study networks cannot detect the high-dimensional structures and spaces that we now see clearly.”

If 4D worlds stretch our imagination, worlds with 5, 6 or more dimensions are too complex for most of us to comprehend. This is where algebraic topology comes in: a branch of mathematics that can describe systems with any number of dimensions. The mathematicians who brought algebraic topology to the study of brain networks in the Blue Brain Project were Kathryn Hess from EPFL and Ran Levi from Aberdeen University.

“Algebraic topology is like a telescope and microscope at the same time. It can zoom into networks to find hidden structures – the trees in the forest – and see the empty spaces – the clearings – all at the same time,” explains Hess.

In 2015, Blue Brain published the first digital copy of a piece of the neocortex – the most evolved part of the brain and the seat of our sensations, actions, and consciousness. In this latest research, using algebraic topology, multiple tests were performed on the virtual brain tissue to show that the multi-dimensional brain structures discovered could never be produced by chance. Experiments were then performed on real brain tissue in the Blue Brain’s wet lab in Lausanne confirming that the earlier discoveries in the virtual tissue are biologically relevant and also suggesting that the brain constantly rewires during development to build a network with as many high-dimensional structures as possible.

When the researchers presented the virtual brain tissue with a stimulus, cliques of progressively higher dimensions assembled momentarily to enclose high-dimensional holes, that the researchers refer to as cavities. “The appearance of high-dimensional cavities when the brain is processing information means that the neurons in the network react to stimuli in an extremely organized manner,” says Levi. “It is as if the brain reacts to a stimulus by building then razing a tower of multi-dimensional blocks, starting with rods (1D), then planks (2D), then cubes (3D), and then more complex geometries with 4D, 5D, etc. The progression of activity through the brain resembles a multi-dimensional sandcastle that materializes out of the sand and then disintegrates.”

The big question these researchers are asking now is whether the intricacy of tasks we can perform depends on the complexity of the multi-dimensional “sandcastles” the brain can build. Neuroscience has also been struggling to find where the brain stores its memories. “They may be ‘hiding’ in high-dimensional cavities,” Markram speculates.


About Blue Brain

The aim of the Blue Brain Project, a Swiss brain initiative founded and directed by Professor Henry Markram, is to build accurate, biologically detailed digital reconstructions and simulations of the rodent brain, and ultimately, the human brain. The supercomputer-based reconstructions and simulations built by Blue Brain offer a radically new approach for understanding the multilevel structure and function of the brain. http://bluebrain.epfl.ch

About Frontiers

Frontiers is a leading community-driven open-access publisher. By taking publishing entirely online, we drive innovation with new technologies to make peer review more efficient and transparent. We provide impact metrics for articles and researchers, and merge open access publishing with a research network platform – Loop – to catalyse research dissemination, and popularize research to the public, including children. Our goal is to increase the reach and impact of research articles and their authors. Frontiers has received the ALPSP Gold Award for Innovation in Publishing in 2014. http://www.frontiersin.org.

Here’s a link to and a citation for the paper,

Cliques of Neurons Bound into Cavities Provide a Missing Link between Structure and Function by Michael W. Reimann, Max Nolte, Martina Scolamiero, Katharine Turner, Rodrigo Perin, Giuseppe Chindemi, Paweł Dłotko, Ran Levi, Kathryn Hess, and Henry Markram. Front. Comput. Neurosci., 12 June 2017 | https://doi.org/10.3389/fncom.2017.00048

This paper is open access.

Explaining the link between air pollution and heart disease?

An April 26, 2017 news item on Nanowerk announces research that may explain the link between heart disease and air pollution (Note: A link has been removed),

Tiny particles in air pollution have been associated with cardiovascular disease, which can lead to premature death. But how particles inhaled into the lungs can affect blood vessels and the heart has remained a mystery.

Now, scientists have found evidence in human and animal studies that inhaled nanoparticles can travel from the lungs into the bloodstream, potentially explaining the link between air pollution and cardiovascular disease. Their results appear in the journal ACS Nano (“Inhaled Nanoparticles Accumulate at Sites of Vascular Disease”).

An April 26, 2017 American Chemical Society news release on EurekAlert, which originated the news item,  expands on the theme,

The World Health Organization estimates that in 2012, about 72 percent of premature deaths related to outdoor air pollution were due to ischemic heart disease and strokes. Pulmonary disease, respiratory infections and lung cancer were linked to the other 28 percent. Many scientists have suspected that fine particles travel from the lungs into the bloodstream, but evidence supporting this assumption in humans has been challenging to collect. So Mark Miller and colleagues at the University of Edinburgh in the United Kingdom and the National Institute for Public Health and the Environment in the Netherlands used a selection of specialized techniques to track the fate of inhaled gold nanoparticles.

In the new study, 14 healthy volunteers, 12 surgical patients and several mouse models inhaled gold nanoparticles, which have been safely used in medical imaging and drug delivery. Soon after exposure, the nanoparticles were detected in blood and urine. Importantly, the nanoparticles appeared to preferentially accumulate at inflamed vascular sites, including carotid plaques in patients at risk of a stroke. The findings suggest that nanoparticles can travel from the lungs into the bloodstream and reach susceptible areas of the cardiovascular system where they could possibly increase the likelihood of a heart attack or stroke, the researchers say.

Here’s a link to and a citation for the paper,

Inhaled Nanoparticles Accumulate at Sites of Vascular Disease by Mark R. Miller, Jennifer B. Raftis, Jeremy P. Langrish, Steven G. McLean, Pawitrabhorn Samutrtai, Shea P. Connell, Simon Wilson, Alex T. Vesey, Paul H. B. Fokkens, A. John F. Boere, Petra Krystek, Colin J. Campbell, Patrick W. F. Hadoke, Ken Donaldson, Flemming R. Cassee, David E. Newby, Rodger Duffin, and Nicholas L. Mills. ACS Nano, Article ASAP DOI: 10.1021/acsnano.6b08551 Publication Date (Web): April 26, 2017

Copyright © 2017 American Chemical Society

This paper is behind a paywall.

Solar-powered graphene skin for more feeling in your prosthetics

A March 23, 2017 news item on Nanowerk highlights research that could put feeling into a prosthetic limb,

A new way of harnessing the sun’s rays to power ‘synthetic skin’ could help to create advanced prosthetic limbs capable of returning the sense of touch to amputees.

Engineers from the University of Glasgow, who have previously developed an ‘electronic skin’ covering for prosthetic hands made from graphene, have found a way to use some of graphene’s remarkable physical properties to use energy from the sun to power the skin.

Graphene is a highly flexible form of graphite which, despite being just a single atom thick, is stronger than steel, electrically conductive, and transparent. It is graphene’s optical transparency, which allows around 98% of the light which strikes its surface to pass directly through it, which makes it ideal for gathering energy from the sun to generate power.

A March 23, 2017 University of Glasgow press release, which originated the news item, details more about the research,

Ravinder Dahiya

Dr Ravinder Dahiya

A new research paper, published today in the journal Advanced Functional Materials, describes how Dr Dahiya and colleagues from his Bendable Electronics and Sensing Technologies (BEST) group have integrated power-generating photovoltaic cells into their electronic skin for the first time.

Dr Dahiya, from the University of Glasgow’s School of Engineering, said: “Human skin is an incredibly complex system capable of detecting pressure, temperature and texture through an array of neural sensors which carry signals from the skin to the brain.

“My colleagues and I have already made significant steps in creating prosthetic prototypes which integrate synthetic skin and are capable of making very sensitive pressure measurements. Those measurements mean the prosthetic hand is capable of performing challenging tasks like properly gripping soft materials, which other prosthetics can struggle with. We are also using innovative 3D printing strategies to build more affordable sensitive prosthetic limbs, including the formation of a very active student club called ‘Helping Hands’.

“Skin capable of touch sensitivity also opens the possibility of creating robots capable of making better decisions about human safety. A robot working on a construction line, for example, is much less likely to accidentally injure a human if it can feel that a person has unexpectedly entered their area of movement and stop before an injury can occur.”

The new skin requires just 20 nanowatts of power per square centimetre, which is easily met even by the poorest-quality photovoltaic cells currently available on the market. And although currently energy generated by the skin’s photovoltaic cells cannot be stored, the team are already looking into ways to divert unused energy into batteries, allowing the energy to be used as and when it is required.

Dr Dahiya added: “The other next step for us is to further develop the power-generation technology which underpins this research and use it to power the motors which drive the prosthetic hand itself. This could allow the creation of an entirely energy-autonomous prosthetic limb.

“We’ve already made some encouraging progress in this direction and we’re looking forward to presenting those results soon. We are also exploring the possibility of building on these exciting results to develop wearable systems for affordable healthcare. In this direction, recently we also got small funds from Scottish Funding Council.”

For more information about this advance and others in the field of prosthetics you may want to check out Megan Scudellari’s March 30, 2017 article for the IEEE’s (Institute of Electrical and Electronics Engineers) Spectrum (Note: Links have been removed),

Cochlear implants can restore hearing to individuals with some types of hearing loss. Retinal implants are now on the market to restore sight to the blind. But there are no commercially available prosthetics that restore a sense of touch to those who have lost a limb.

Several products are in development, including this haptic system at Case Western Reserve University, which would enable upper-limb prosthetic users to, say, pluck a grape off a stem or pull a potato chip out of a bag. It sounds simple, but such tasks are virtually impossible without a sense of touch and pressure.

Now, a team at the University of Glasgow that previously developed a flexible ‘electronic skin’ capable of making sensitive pressure measurements, has figured out how to power their skin with sunlight. …

Here’s a link to and a citation for the paper,

Energy-Autonomous, Flexible, and Transparent Tactile Skin by Carlos García Núñez, William Taube Navaraj, Emre O. Polat and Ravinder Dahiya. Advanced Functional Materials DOI: 10.1002/adfm.201606287 Version of Record online: 22 MAR 2017

© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This paper is behind a paywall.

Epic Scottish poetry and social network science

It’s been a while since I’ve run a social network story here and this research into a 250-year controversy piqued my interest anew. From an Oct. 20, 2016 Coventry University (UK) press release (also on EurekAlert) Note: A link has been removed,

The social networks behind one of the most famous literary controversies of all time have been uncovered using modern networks science.

Since James Macpherson published what he claimed were translations of ancient Scottish Gaelic poetry by a third-century bard named Ossian, scholars have questioned the authenticity of the works and whether they were misappropriated from Irish mythology or, as heralded at the time, authored by a Scottish equivalent to Homer.

Now, in a joint study by Coventry University, the National University of Ireland, Galway and the University of Oxford, published today in the journal Advances in Complex Systems, researchers have revealed the structures of the social networks underlying the Ossian’s works and their similarities to Irish mythology.

The researchers mapped the characters at the heart of the works and the relationships between them to compare the social networks found in the Scottish epics with classical Greek literature and Irish mythology.

The study revealed that the networks in the Scottish poems bore no resemblance to epics by Homer, but strongly resembled those in mythological stories from Ireland.

The Ossianic poems are considered to be some of the most important literary works ever to have emerged from Britain or Ireland, given their influence over the Romantic period in literature and the arts. Figures from Brahms to Wordsworth reacted enthusiastically; Napoleon took a copy on his military campaigns and US President Thomas Jefferson believed that Ossian was the greatest poet to have ever existed.

The poems launched the romantic portrayal of the Scottish Highlands which persists, in many forms, to the present day and inspired Romantic nationalism all across Europe.

Professor Ralph Kenna, a statistical physicist based at Coventry University, said:

By working together, it shows how science can open up new avenues of research in the humanities. The opposite also applies, as social structures discovered in Ossian inspire new questions in mathematics.”

Dr Justin Tonra, a digital humanities expert from the National University of Ireland, Galway said:

From a humanities point of view, while it cannot fully resolve the debate about Ossian, this scientific analysis does reveal an insightful statistical picture: close similarity to the Irish texts which Macpherson explicitly rejected, and distance from the Greek sources which he sought to emulate.”

A statistical physicist, eh? I find that specialty quite an unexpected addition to the team stretching my ideas about social networks in new directions.

Getting back to the research, the scientists have supplied this image to illustrate their work,

Caption: In the social network underlying the Ossianic epic, the 325 nodes represent characters appearing in the narratives and the 748 links represent interactions between them. Credit: Coventry University

Caption: In the social network underlying the Ossianic epic, the 325 nodes represent characters appearing in the narratives and the 748 links represent interactions between them. Credit: Coventry University

Here’s a link to and a citation for the paper,

A networks-science investigation into the epic poems of Ossian by Joseph Yose, Ralph Kenna, Pádraig MacCarron, Thierry Platini, Justin Tonra.  Complex Syst. DOI: http://dx.doi.org/10.1142/S0219525916500089 Published: 21 October 2016

This paper is behind a paywall.

Breathing nanoparticles into your brain

Thanks to Dexter Johnson and his Sept. 8, 2016 posting (on the Nanoclast blog on the IEEE [Institute for Electrical and Electronics Engineers]) for bringing this news about nanoparticles in the brain to my attention (Note: Links have been removed),

An international team of researchers, led by Barbara Maher, a professor at Lancaster University, in England, has found evidence that suggests that the nanoparticles that were first detected in the human brain over 20 years ago may have an external rather an internal source.

These magnetite nanoparticles are an airborne particulate that are abundant in urban environments and formed by combustion or friction-derived heating. In other words, they have been part of the pollution in the air of our cities since the dawn of the Industrial Revolution.

However, according to Andrew Maynard, a professor at Arizona State University, and a noted expert on the risks associated with nanomaterials,  the research indicates that this finding extends beyond magnetite to any airborne nanoscale particles—including those deliberately manufactured.

“The findings further support the possibility of these particles entering the brain via the olfactory nerve if inhaled.  In this respect, they are certainly relevant to our understanding of the possible risks presented by engineered nanomaterials—especially those that are iron-based and have magnetic properties,” said Maynard in an e-mail interview with IEEE Spectrum. “However, ambient exposures to airborne nanoparticles will typically be much higher than those associated with engineered nanoparticles, simply because engineered nanoparticles will usually be manufactured and handled under conditions designed to avoid release and exposure.”

A Sept. 5, 2016 University of Lancaster press release made the research announcement,

Researchers at Lancaster University found abundant magnetite nanoparticles in the brain tissue from 37 individuals aged three to 92-years-old who lived in Mexico City and Manchester. This strongly magnetic mineral is toxic and has been implicated in the production of reactive oxygen species (free radicals) in the human brain, which are associated with neurodegenerative diseases including Alzheimer’s disease.

Professor Barbara Maher, from Lancaster Environment Centre, and colleagues (from Oxford, Glasgow, Manchester and Mexico City) used spectroscopic analysis to identify the particles as magnetite. Unlike angular magnetite particles that are believed to form naturally within the brain, most of the observed particles were spherical, with diameters up to 150 nm, some with fused surfaces, all characteristic of high-temperature formation – such as from vehicle (particularly diesel) engines or open fires.

The spherical particles are often accompanied by nanoparticles containing other metals, such as platinum, nickel, and cobalt.

Professor Maher said: “The particles we found are strikingly similar to the magnetite nanospheres that are abundant in the airborne pollution found in urban settings, especially next to busy roads, and which are formed by combustion or frictional heating from vehicle engines or brakes.”

Other sources of magnetite nanoparticles include open fires and poorly sealed stoves within homes. Particles smaller than 200 nm are small enough to enter the brain directly through the olfactory nerve after breathing air pollution through the nose.

“Our results indicate that magnetite nanoparticles in the atmosphere can enter the human brain, where they might pose a risk to human health, including conditions such as Alzheimer’s disease,” added Professor Maher.

Leading Alzheimer’s researcher Professor David Allsop, of Lancaster University’s Faculty of Health and Medicine, said: “This finding opens up a whole new avenue for research into a possible environmental risk factor for a range of different brain diseases.”

Damian Carrington’s Sept. 5, 2016 article for the Guardian provides a few more details,

“They [the troubling magnetite particles] are abundant,” she [Maher] said. “For every one of [the crystal shaped particles] we saw about 100 of the pollution particles. The thing about magnetite is it is everywhere.” An analysis of roadside air in Lancaster found 200m magnetite particles per cubic metre.

Other scientists told the Guardian the new work provided strong evidence that most of the magnetite in the brain samples come from air pollution but that the link to Alzheimer’s disease remained speculative.

For anyone who might be concerned about health risks, there’s this from Andrew Maynard’s comments in Dexter Johnson’s Sept. 8, 2016 posting,

“In most workplaces, exposure to intentionally made nanoparticles is likely be small compared to ambient nanoparticles, and so it’s reasonable to assume—at least without further data—that this isn’t a priority concern for engineered nanomaterial production,” said Maynard.

While deliberate nanoscale manufacturing may not carry much risk, Maynard does believe that the research raises serious questions about other manufacturing processes where exposure to high concentrations of airborne nanoscale iron particles is common—such as welding, gouging, or working with molten ore and steel.

It seems everyone is agreed that the findings are concerning but I think it might be good to remember that the percentage of people who develop Alzheimer’s Disease is much smaller than the population of people who have crystals in their brains. In other words, these crystals might (they don’t know) be a factor and likely there would have to be one or more factors to create the condition for developing Alzheimer’s.

Here’s a link to and a citation for the paper,

Magnetite pollution nanoparticles in the human brain by Barbara A. Maher, Imad A. M. Ahmed, Vassil Karloukovski, Donald A. MacLaren, Penelope G. Fouldsd, David Allsop, David M. A. Mann, Ricardo Torres-Jardón, and Lilian Calderon-Garciduenas. PNAS [Proceedings of the National Academy of Sciences] doi: 10.1073/pnas.1605941113

This paper is behind a paywall but Dexter’s posting offers more detail for those who are still curious.

Sniffing for art conservation

The American Chemical Society (ACS) has produced a video titled, “How that ‘old book smell’ could save priceless artifacts” according to their Sept. 6, 2016 news release on EurekAlert,

Odor-detecting devices like Breathalyzers have been used for years to determine blood-alcohol levels in drunk drivers. Now, researchers are using a similar method to sniff out the rate of decay in historic art and artifacts. By tracking the chemicals in “old book smell” and similar odors, conservators can react quickly to preserve priceless art and artifacts at the first signs of decay. In this Speaking of Chemistry, Sarah Everts explains how cultural-heritage science uses the chemistry of odors to save books, vintage jewelry and even early Legos. …

Here’s the video,

Heritage Smells, the UK project mentioned in the video, is now completed but it was hosted by the University of Strathclyde and more project information can be found here.

What is the effect of nanoscale plastic on marine life?

A Nov.27, 2015 news item on Nanowerk announces a new UK (United Kingdom) research project designed to answer the question: what impact could nanoscale plastic particles  have on the marine environment?,

As England brings in pricing on plastic carrier bags, and Scotland reveals that similar changes a little over a year ago have reduced the use of such bags by 80%, new research led by Heriot-Watt University in conjunction with Plymouth University will look at the effect which even the most microscopic plastic particles can have on the marine environment.

While images of large ‘islands’ of plastic rubbish or of large marine animals killed or injured by the effects of such discards have brought home some of the obvious negative effects of plastics in the marine environment, it is known that there is more discarded plastic out there than we can account for, and much of it will have degraded into small or even microscopic particles.

It is the effect of these latter, known as nano-plastics, which will be studied under a £1.1m research project, largely funded by NERC [UK Natural Environment Research Council] and run by Heriot-Watt and Plymouth Universities.

A Nov. 25, 2015 Herriot-Watt University press release, which originated the news item, provides more details,

The project, RealRiskNano, will look at the risks these tiny plastic particles pose to the food web including filter-feeding organisms like mussels, clams and sediment dwelling organisms. It will focus on providing information to improve environmental risk assessment for nanoplastics, based on real-world exposure scenarios replicated in the laboratory.

Team leader Dr Theodore Henry, Associate Professor of Toxicology at Heriot-Watt’s School of Life Sciences, said that the study will build on previous research on nano-material toxicology, but will provide information which the earlier studies did not include.

“Pieces of plastic of all sizes have been found in even the most remote marine environments. It’s relatively easy to see some of the results: turtles killed by easting plastic bags which they take for jelly fish, or large marine mammals drowned when caught in discarded ropes and netting.

“But when plastics fragment into microscopic particles, what then? It’s easy to imagine that they simply disappear, but we know that nano-particles pose their own distinct threats purely because of their size. They’re small enough to be transported throughout the environment with unknown effects on organisms including toxicity and interference with processes of the digestive system.

An important component of the project, to be investigated by Dr Tony Gutierrez at Heriot-Watt, will be the study of interactions between microorganisms and the nanoplastics to reveal how these interactions affect their fate and toxicology.

The aim, said Dr Henry, is to provide the information which is needed to effect real change.“We simply don’t know what effects these nano-plastic particles may pose to the marine environment, to filter-feeders and on to fish, and through the RealRiskNano project we aim to provide this urgently needed information to the people whose job it is to assess risk to the marine ecosystem and decide what steps need to be taken to mitigate it.”

You can find the RealRiskNano website here.

Upcoming PoetryFilm appearances and events

It’s been a while since I last (in a March 17, 2015 post) featured PoetryFilm. Here’s the latest from the organization’s Oct. 2015 newsletter,

  • I have been invited to join the International Jury for the CYCLOP International Videopoetry Festival, 20-22 November 2015 (Kiev, Ukraine)
  • PoetryFilm Paradox events, featuring poetry films about love, as part of the BFI LOVE season, 6 and 22 December 2015 (London, UK)
  • PoetryFilm screening + Zata Banks in conversation with filmmaker Roxana Vilk at The Scottish Poetry Library, 3 December 2015 (Scotland, UK)
  • I have been invited to judge the Carbon Culture Review poetry film competition (USA)
  • poetryfilmkanal in Germany recently invited me to write an article about the poetry film artform – it can be read here

FYI, the “I” in the announcement’s text is for Zata Banks, the founder and director of PoetryFilm since 2002.

There’s more about the CYCLOP International Videopoetry Festival in a Sept. 13, 2015 posting on the PoetryFilm website,

*The 5th CYCLOP International Videopoetry Festival will take place on 20 – 22 November 2015 in Ukraine (Kyiv). The festival programme features video poetry-related lectures, workshops, round tables, discussions, presentations of international contests and festivals, as well as a demonstration of the best examples of Ukrainian and world videopoetry, a competitive programme, an awards ceremony and other related projects.

One of the projects is a new Contest for International poetry films within the framework of the CYCLOP festival. The International Jury: Alastair Cook (Filmpoem Festival, Edinburgh, Scotland), Zata Banks (PoetryFilm, London, United Kingdom), Javier Robledo (VideoBardo, Buenos Aires, Argentina), John Bennet (videopoet, USA),  Alice Lyons (Videopoet, Sligo, Ireland), Sigrun Hoellrigl (Art Visuals & Poetry, Vienna, Austria), Lucy English (Liberated Words, Bristol, United Kingdom), Tom Konyves (poet, video producer, educator and a pioneer in the field of videopoetry, British Columbia, Canada), Polina Horodyska (CYCLOP Videopoetry Festival, Kyiv, Ukraine) and Thomas Zandegiacomo (ZEBRA Poetry Film Festival, Berlin, Germany).

*Copy taken from the CYCLOP website

You can find the CYCLOP website here but you will need Ukrainian language reading skills.

I can’t find a website for the Carbon Culture Review poetry film competition or a webpage for it on the Carbon Culture Review website but  here’s what they have to say about themselves on the journal’s About page,

Carbon Culture Review is a journal at the intersection of new literature, art, technology and contemporary culture. We define culture broadly as the values, attitudes, actions and inventions of our global society and its subcultures in our modern age. Carbon Culture Review is distributed in the United States and countries throughout the world by Publisher’s Distribution Group, Inc. and Annas International as well as digitally through 0s&1s, Magzter and Amazon. CCR is a member of Councils of Literary Magazines and Presses and also publishes monthly online issues.

The last item from the announcement that I’m highlighting is Zata’s essay for poetryfilmkanal ,

Poetry films offer creative opportunities for exploring new semiotic modes and for communicating messages and meanings in innovative ways. Poetry films open up new methods of engagement, new audiences, and new means of self-expression, and also provide rich potential for the creation, perception and experience of emotion and meaning.

We are surrounded by communicative signs in literature, art, culture and in the world at large. Whilst words represent one system of communicating, there are many other ways of making meanings, for instance, colour semiotics, typographic design, and haptic, olfactive, gustatory and durational experiences – indeed, a comprehensive list could be infinite. The uses of spoken and written words to communicate represent just two approaches among many. Through using meaning-making systems other than words, by communicating without words, or by not using words alone, we can bypass these direct signifiers and tap directly into pools of meaning, or the signifieds, associated with those words. Different combinations of systems, or modes, can reinforce each other, render meanings more complex and subtle, or contrast with each other to illuminate different perspectives. Powerful juxtapositions, associations and new meanings can therefore emerge.

The essay is a good introduction for beginners and a good refresher for those in need. Btw, I understand Zata got married in March 2015. Congratulations to Zata and Joe!

People for the Ethical Treatment of Animals (PETA) and a grant for in vitro nanotoxicity testing

This grant seems to have gotten its start at a workshop held at the US Environmental Protection Agency (EPA) in Washington, D.C., Feb. 24-25, 2015 as per this webpage on the People for Ethical Treatment of Animals (PETA) International Science Consortium Limited website,

The invitation-only workshop included experts from different sectors (government, industry, academia and NGO) and disciplines (in vitro and in vivo inhalation studies of NMs, fibrosis, dosimetry, fluidic models, aerosol engineering, and regulatory assessment). It focused on the technical details for the development and preliminary assessment of the relevance and reliability of an in vitro test to predict the development of pulmonary fibrosis in cells co-cultured at the air-liquid interface following exposure to aerosolized multi-walled carbon nanotubes (MWCNTs). During the workshop, experts made recommendations on cell types, exposure systems, endpoints and dosimetry considerations required to develop the in vitro model for hazard identification of MWCNTs.

The method is intended to be included in a non-animal test battery to reduce and eventually replace the use of animals in studies to assess the inhalation toxicity of engineered NMs. The long-term vision is to develop a battery of in silico and in vitro assays that can be used in an integrated testing strategy, providing comprehensive information on biological endpoints relevant to inhalation exposure to NMs which could be used in the hazard ranking of substances in the risk assessment process.

A September 1, 2015 news item on Azonano provides an update,

The PETA International Science Consortium Ltd. announced today the winners of a $200,000 award for the design of an in vitro test to predict the development of lung fibrosis in humans following exposure to nanomaterials, such as multi-walled carbon nanotubes.

Professor Dr. Barbara Rothen-Rutishauser of the Adolphe Merkle Institute at the University of Fribourg, Switzerland and Professor Dr. Vicki Stone of the School of Life Sciences at Heriot-Watt University, Edinburgh, U.K. will jointly develop the test method. Professor Rothen-Rutishauser co-chairs the BioNanomaterials research group at the Adolphe Merkle Institute, where her research is focused on the study of nanomaterial-cell interactions in the lung using three-dimensional cell models. Professor Vicki Stone is the Director of the Nano Safety Research Group at Heriot-Watt University and the Director of Toxicology for SAFENANO.

The Science Consortium is also funding MatTek Corporation for the development of a three-dimensional reconstructed primary human lung tissue model to be used in Professors Rothen-Rutishauser and Stone’s work. MatTek Corporation has extensive expertise in manufacturing human cell-based, organotypic in vitro models for use in regulatory and basic research applications. The work at MatTek will be led by Dr. Patrick Hayden, Vice President of Scientific Affairs, and Dr. Anna Maione, head of MatTek’s airway models research group.

I was curious about MatTek Corporation and found this on company’s About Us webpage,

MatTek Corporation was founded in 1985 by two chemical engineering professors from MIT. In 1991 the company leveraged its core polymer surface modification technology into the emerging tissue engineering market.

MatTek Corporation is at the forefront of tissue engineering and is a world leader in the production of innovative 3D reconstructed human tissue models. Our skin, ocular, and respiratory tissue models are used in regulatory toxicology (OECD, EU guidelines) and address toxicology and efficacy concerns throughout the cosmetics, chemical, pharmaceutical and household product industries.

EpiDerm™, MatTek’s first 3D human cell based in vitro model, was introduced in 1993 and became an immediate technical and commercial success.

I wish them good luck in their research on developing better ways to test toxicity.