Tag Archives: seawater

Powered with salt water

Apparently, salt water can be used both in the production of fusion energy (a form of nuclear energy) and, according to new research from the University of Illinois into a nanofluidic device, electricity. From a September 22, 2023 University of Illinois news release (also on EurekAlert),

There is a largely untapped energy source along the world’s coastlines: the difference in salinity between seawater and freshwater. A new nanodevice can harness this difference to generate power.

A team of researchers at the University of Illinois Urbana-Champaign has reported a design for a nanofluidic device capable of converting ionic flow into usable electric power in the journal Nano Energy. The team believes that their device could be used to extract power from the natural ionic flows at seawater-freshwater boundaries.

“While our design is still a concept at this stage, it is quite versatile and already shows strong potential for energy applications,” said Jean-Pierre Leburton, a U. of I. professor of electrical & computer engineering and the project lead. “It began with an academic question – ‘Can a nanoscale solid-state device extract energy from ionic flow?’ – but our design exceeded our expectations and surprised us in many ways.”

When two bodies of water with different salinity meet, such as where a river empties into an ocean, salt molecules naturally flow from higher concentration to lower concentration. The energy of these flows can be harvested because they consist of electrically charged particles called ions that form from the dissolved salt.

Leburton’s group designed a nanoscale semiconductor device that takes advantage of a phenomenon called “Coulomb drag” between flowing ions and electric charges in the device. When the ions flow through a narrow channel in the device, electric forces cause the device charges to move from one side to the other creating voltage and electric current.

The researchers found two surprising behaviors when they simulated their device. First, while they expected that Coulomb drag would primarily occur through the attractive force between opposite electric charges, the simulations indicated that the device works equally well if the electric forces are repulsive. Both positively and negatively charged ions contribute to drag.

“Just as noteworthy, our study indicates that there is an amplification effect” said Mingye Xiong, a graduate student in Leburton’s group and the study’s lead author. “Since the moving ions are so massive compared to the device charges, the ions impart large amounts of momentum to the charges, amplifying the underlying current.”

The researchers also found that these effects are independent of the specific channel configuration as well as the choice of materials, provided the channel diameter is narrow enough to ensure proximity between the ions and the charges.

The researchers are in the process of patenting their findings, and they are studying how arrays of these devices could scale for practical power generation.

“We believe that the power density of a device array could meet or exceed that of solar cells,” Leburton said. “And that’s not to mention the potential applications in other fields like biomedical sensing and nanofluidics.”

Here’s a link to and a citation for the paper,

Ionic coulomb drag in nanofluidic semiconductor channels for energy harvest by Mingye Xiong, Kewei Song, Jean-Pierre Leburton. Nano Energy Volume 117, 1 December 2023, 108860 DOI: https://doi.org/10.1016/j.nanoen.2023.108860

This paper is behind a paywall.

General Fusion: update to October 10, 2023

It seems that Canadian nuclear energy company General Fusion has finally moved from Burnaby to Richmond (both are part of the Metro Vancouver Region). The move first announced in 2021 (see my November 3, 2021 posting for the news and a description of fusion energy; Note: fission is a different form of nuclear energy, fusion is considered clean/green).

I found confirmation of the move in an August 9, 2023 article by Kenneth Chan for the dailyhive.com

If all goes as planned, a major hurdle in fusion-based, zero-emission clean energy innovation could be produced on Sea Island in Richmond in just three years from now.

BC-based General Fusion announced today it has plans to build a new magnetized target fusion (MTF) machine at the company’s global headquarters at 6020-6082 Russ Baker Way [emphasis mine] near the South Terminal of Vancouver International Airport (YVR). [Note: YVR is located in Richmond, BC]

Chan goes on to note (from his August 9, 2023 article), Note: A link has been removed,

This machine will be designed to achieve fusion conditions of over 100,000,000°C by 2025, with “scientific breakeven” conditions by 2026. This will “fast-track” the company’s technical progress.

More specifically, this further proof-of-concept will show General Fusion’s ability to “symmetrically compress magnetized plasmas in a repeatable manner and achieve fusion conditions at scale.”

General Fusion’s technology is designed to be lower cost by avoiding other approaches that require expensive superconducting magnets or high-powered lasers.

The YVR machine is intended to support further work and investment and reduce the risk of General Fusion’s commercial-scale demonstration test plan in Culham Campus of the United Kingdom Atomic Energy Authority (UKAEA) — located just outside of Oxford, west of London. The UK plant has effectively been delayed, [emphasis mine] with the goal now to provide electricity to the grid with commercial fusion energy by the early to mid-2030s.

“Our updated three-year Fusion Demonstration Program puts us on the best path forward to commercialize our technology by the 2030s,” said Greg Twinney, CEO of General Fusion, in a statement. “We’re harnessing our team’s existing strengths right here in Canada and delivering high-value, industry-leading technical milestones in the near term.”

Canada, always a colony

I wonder what happened to the UKAEA deal. In my October 28, 2022 posting (Overview of fusion energy scene) General Fusion was downright effusive in its enthusiasm about the joint path to commercialization with a demonstration machine to be built in the UK. Scroll down to my ‘Fusion energy explanation (2)’ subhead for more details.

It now looks as if the first demonstration will be build and tested in Canada, from an August 9, 2023 General Fusion news release,

General Fusion announced a new Magnetized Target Fusion (MTF) machine that will fast-track the company’s technical progress. To be built at the company’s new Richmond headquarters, this ground-breaking machine is designed to achieve fusion conditions of over 100 million degrees Celsius by 2025, [emphasis mine] and progress toward scientific breakeven by 2026. In addition, the company completed the first close of its Series F raise for a combined $25 million USD (approximately $33.5 million CAD) of funding. The round was anchored by existing investors, BDC Capital and GIC. It also included new grant funding from the Government of British Columbia, which builds upon the Canadian government’s ongoing support through the Strategic Innovation Fund (SIF). 

This machine represents a significant new pillar to accelerate and de-risk [emphasis mine] General Fusion’s Demonstration Program, designed to leverage the company’s recent technological advancements and provide electricity to the grid with commercial fusion energy by the early to mid-2030s.  

Over the next two to three years, General Fusion will work closely with the UK Atomic Energy Authority [UKAEA] to validate the data gathered from [Lawson Machine 26] LM26 and incorporate it into the design of the company’s planned commercial scale demonstration in the UK.

So, the machine is being ‘de-risked’ in Canada first, eh?

September 2023

There was an interesting UK addition to General Fusion’s board of directors according to a September 6, 2023 news release,

Today [September 6, 2023], General Fusion announced the appointment of Norman Harrison to its Board of Directors. Norman is a world-class executive in the energy sector, with 40 years of unique experience providing leadership to both the fusion energy and nuclear fission communities.

His experience includes serving as the CEO of the UK Atomic Energy Authority (UKAEA) from 2006 to 2010 [emphasis mine], when he oversaw the groundbreaking research being conducted by the Joint European Torus (JET), the world’s largest fusion experiment and the only one operating using deuterium-tritium fuel, as it pushed the frontiers of fusion science. Norman’s expertise will support General Fusion as the company completes its Magnetized Target Fusion (MTF) demonstration, LM26 [scroll up to August 9, 2023 news release in the above for details] , at its Canadian headquarters. LM26 is targeting fusion conditions of 100 million degrees Celsius by 2025 and is charting a path to scientific breakeven equivalent by 2026. The results achieved by LM26 will be validated by the UKAEA and incorporated into the design of the company’s near-commercial machine, which is planned to be built at the UKAEA’s Culham Campus. 

Norman’s background also includes leading the construction and operations of large-scale power plants. As a result, his guidance will benefit General Fusion as it progresses to commercializing its MTF technology by the early to mid-2030s.

“I’ve been a part of the fusion energy industry for many years now. General Fusion’s unique technology stands out and has exciting promise to put fusion energy onto the electricity grid,” said Norman Harrison. “I am thrilled to join the General Fusion team and be a part of the company’s progress.”

“Norman’s wealth of expertise in advancing fusion technology and operating large electricity infrastructure provides us with meaningful insight into what is required to effectively bring Magnetized Target Fusion to the energy grid in a cost-effective, practical way,” said Greg Twinney, CEO, General Fusion. “We look forward to working with him as General Fusion transforms the commercial power industry with reliable fusion power.”

About General Fusion

General Fusion is pursuing a fast and practical approach to commercial fusion energy and is headquartered in Richmond, B.C. The company was established in 2002 and is funded by a global syndicate of leading energy venture capital firms, industry leaders and technology pioneers. …

So, after postponing plans to build a build a demonstration plant with UKAEA and deciding to build it in Canada where it can be ‘de-risked’ here first, General Fusion adds a former UKAEA CEO to their company board. This seems a little strategic to me.

October 2023

Here’s the latest from an October 10, 2023 news release,

Today [October 11, 2023], General Fusion and Kyoto Fusioneering announced a Memorandum of Understanding (MOU) to accelerate the commercialization of General Fusion’s proprietary Magnetized Target Fusion (MTF) technology, aiming for grid integration in the early to mid-2030s. The companies will collaborate to advance critical systems for MTF commercialization, including the tritium fuel cycle, liquid metal balance of plant, and power conversion cycle.

Tritium, a hydrogen isotope and key fusion fuel, does not occur naturally and must be produced or “bred” in the fusion process. General Fusion’s game-changing commercial power plant design features a proprietary liquid metal wall that compresses plasma to fusion conditions, protects the fusion machine’s vessel components, and breeds tritium upon interacting with the fusion products. This design allows the machine to be self-sustaining, generating fuel for the life of the power plant while facilitating efficient energy extraction from the fusion reaction through a liquid metal loop to a heat exchanger.

Kyoto Fusioneering specializes in fusion power plant systems that complement the plasma confinement core, are applicable to various fusion confinement concepts, such as MTF, and are on the critical path for fusion commercialization. The complementary capabilities of both organizations will enable parallel development of key systems supporting MTF commercialization. Initial collaboration under this MOU will focus on liquid metal experimentation and fuel cycle system development at both the General Fusion and Kyoto Fusioneering facilities, such as establishment of balance of plant and power conversion test facilities, liquid metal loops, and vacuum systems.

Quotes:

“Currently, our new machine, LM26, is on-track to achieve fusion conditions by 2025, and progress towards scientific breakeven by 2026,” said Greg Twinney, CEO, General Fusion. “Harnessing the unique technological and engineering expertise of Kyoto Fusioneering will be instrumental as we translate LM26’s groundbreaking results into the world’s first Magnetized Target Fusion power plant.”

“We’re thrilled to join forces with General Fusion. Our combined expertise will accelerate the path to commercial fusion energy, a critical step toward a sustainable, decarbonized future,” said Satoshi Konishi, Co-founder and Chief Fusioneer, Kyoto Fusioneering.

Quick Facts:

Magnetized Target Fusion [prepare yourself for 1 min. 21 secs. of an enthusiastic Michel Laberge, company founder and chief science officer] uniquely sidesteps challenges to commercialization that other technologies face. The proprietary liquid metal liner in the commercial fusion machine is mechanically compressed by high-powered pistons. This enables fusion conditions to be created in short pulses rather than creating a sustained reaction. General Fusion’s design does not require large superconducting magnets or an expensive array of lasers.

General Fusion’s design will use deuterium-tritium fuel for its commercial power plant. Both are isotopes of hydrogen. Deuterium occurs naturally and can be derived from seawater. Tritium needs to be produced, which is why General Fusion’s unique and proprietary technology that breeds tritium as a byproduct of the fusion reaction is a game-changer.

Kyoto Fusioneering was spun out of Kyoto University. It is home to world-class R&D facilities, and its team has a combined total of approximately 800 years of experience [emphasis mine].

About Kyoto Fusioneering

Kyoto Fusioneering, established in 2019 [emphasis mine], is a privately funded technology startup with facilities in Tokyo and Kyoto (Japan), Reading (UK), and Seattle (USA). The company specialises in developing advanced technologies for commercial fusion power plants, such as gyrotron systems, tritium fuel cycle technologies, and breeding blankets for tritium production and power generation. Working collaboratively with public and private fusion developers around the world, Kyoto Fusioneering’s mission is to make fusion energy the ultimate sustainable solution for humanity’s energy needs.

800 years of experience seems to be a bit of a stretch for a company established four years ago with 96 employees as of July 1, 2023 (see Kyoto Fusioneering’s Company Profile webpage) but hat’s off for the sheer gutsiness of it.

Cleaning up disasters with Hokusai’s blue and cellulose nanofibers to clean up contaminated soil and water in Fukushima

The Great Wave off Kanagawa (Under a wave off Kanagawa”), also known as The Great Wave or simply The Wave, by Katsushika Hokusai – Metropolitan Museum of Art, online database: entry 45434, Public Domain, https://commons.wikimedia.org/w/index.php?curid=2798407

I thought it might be a good idea to embed a copy of Hokusai’s Great Wave and the blue these scientists in Japan have used as their inspiration. (By the way, it seems these scientists collaborated with Mildred Dresselhaus who died at the age of 86, a few months after their paper was published. In honour of he and before the latest, here’s my Feb. 23, 2017 posting about the ‘Queen of Carbon’.)

Now onto more current news, from an Oct. 13, 2017 news item on Nanowerk (Note: A link has been removed),

By combining the same Prussian blue pigment used in the works of popular Edo-period artist Hokusai and cellulose nanofiber, a raw material of paper, a University of Tokyo research team succeeded in synthesizing compound nanoparticles, comprising organic and inorganic substances (Scientific Reports, “Cellulose nanofiber backboned Prussian blue nanoparticles as powerful adsorbents for the selective elimination of radioactive cesium”). This new class of organic/inorganic composite nanoparticles is able to selectively adsorb, or collect on the surface, radioactive cesium.

The team subsequently developed sponges from these nanoparticles that proved highly effective in decontaminating the water and soil in Fukushima Prefecture exposed to radioactivity following the nuclear accident there in March 2011.

I think these are the actual sponges not an artist’s impression,

Decontamination sponge spawned from current study
Cellulose nanofiber-Prussian blue compounds are permanently anchored in spongiform chambers (cells) in this decontamination sponge. It can thus be used as a powerful adsorbent for selectively eliminating radioactive cesium. © 2017 Sakata & Mori Laboratory.

An Oct. 13, 2017 University of Tokyo press release, which originated the news item, provides more detail about the sponges and the difficulties of remediating radioactive air and soil,

Removing radioactive materials such as cesium-134 and -137 from contaminated seawater or soil is not an easy job. First of all, a huge amount of similar substances with competing functions has to be removed from the area, an extremely difficult task. Prussian blue (ferric hexacyanoferrate) has a jungle gym-like colloidal structure, and the size of its single cubic orifice, or opening, is a near-perfect match to the size of cesium ions; therefore, it is prescribed as medication for patients exposed to radiation for selectively adsorbing cesium. However, as Prussian blue is highly attracted to water, recovering it becomes highly difficult once it is dissolved into the environment; for this reason, its use in the field for decontamination has been limited.

Taking a hint from the Prussian blue in Hokusai’s woodblock prints not losing their color even when getting wet from rain, the team led by Professor Ichiro Sakata and Project Professor Bunshi Fugetsu at the University of Tokyo’s Nanotechnology Innovation Research Unit at the Policy Alternatives Research Institute, and Project Researcher Adavan Kiliyankil Vipin at the Graduate School of Engineering developed an insoluble nanoparticle obtained from combining cellulose and Prussian blue—Hokusai had in fact formed a chemical bond in his handling of Prussian blue and paper (cellulose).

The scientists created this cellulose-Prussian blue combined nanoparticle by first preparing cellulose nanofibers using a process called TEMPO oxidization and securing ferric ions (III) onto them, then introduced a certain amount of hexacyanoferrate, which adhered to Prussian blue nanoparticles with a diameter ranging from 5–10 nanometers. The nanoparticles obtained in this way were highly resistant to water, and moreover, were capable of adsorbing 139 mg of radioactive cesium ion per gram.

Field studies on soil decontamination in Fukushima have been underway since last year. A highly effective approach has been to sow and allow plant seeds to germinate inside the sponge made from the nanoparticles, then getting the plants’ roots to take up cesium ions from the soil to the sponge. Water can significantly shorten decontamination times compared to soil, which usually requires extracting cesium from it with a solvent.

It has been more than six years since the radioactive fallout from a series of accidents at the Fukushima Daiichi nuclear power plant following the giant earthquake and tsunami in northeastern Japan. Decontamination with the cellulose nanofiber-Prussian blue compound can lead to new solutions for contamination in disaster-stricken areas.

“I was pondering about how Prussian blue immediately gets dissolved in water when I happened upon a Hokusai woodblock print, and how the indigo color remained firmly set in the paper, without bleeding, even after all these years,” reflects Fugetsu. He continues, “That revelation provided a clue for a solution.”

“The amount of research on cesium decontamination increased after the Chernobyl nuclear power plant accident, but a lot of the studies were limited to being academic and insufficient for practical application in Fukushima,” says Vipin. He adds, “Our research offers practical applications and has high potential for decontamination on an industrial scale not only in Fukushima but also in other cesium-contaminated areas.”

Here’s a link to and a citation for the paper,

Cellulose nanofiber backboned Prussian blue nanoparticles as powerful adsorbents for the selective elimination of radioactive cesium by Adavan Kiliyankil Vipin, Bunshi Fugetsu, Ichiro Sakata, Akira Isogai, Morinobu Endo, Mingda Li, & Mildred S. Dresselhaus. Scientific Reports 6, Article number: 37009 (2016) doi:10.1038/srep37009 Published online: 15 November 2016

This is open access.

Carbon nanotubes for water desalination

In discussions about water desalination and carbon nanomaterials,  it’s graphene that’s usually mentioned these days. By contrast, scientists from the US Department of Energy’s Lawrence Livermore National Laboratory (LLNL) have turned to carbon nanotubes,

There are two news items about the work at LLNL on ScienceDaily, this first one originated by the American Association for the Advancement of Science (AAAS) offers a succinct summary of the work (from an August 24, 2017 news item on ScienceDaily,

At just the right size, carbon nanotubes can filter water with better efficiency than biological proteins, a new study reveals. The results could pave the way to new water filtration systems, at a time when demands for fresh water pose a global threat to sustainable development.

A class of biological proteins, called aquaporins, is able to effectively filter water, yet scientists have not been able to manufacture scalable systems that mimic this ability. Aquaporins usually exhibit channels for filtering water molecules at a narrow width of 0.3 nanometers, which forces the water molecules into a single-file chain.

Here, Ramya H. Tunuguntla and colleagues experimented with nanotubes of different widths to see which ones are best for filtering water. Intriguingly, they found that carbon nanotubes with a width of 0.8 nanometers outperformed aquaporins in filtering efficiency by a factor of six.

These narrow carbon nanotube porins (nCNTPs) were still slim enough to force the water molecules into a single-file chain. The researchers attribute the differences between aquaporins and nCNTPS to differences in hydrogen bonding — whereas pore-lining residues in aquaporins can donate or accept H bonds to incoming water molecules, the walls of CNTPs cannot form H bonds, permitting unimpeded water flow.

The nCNTPs in this study maintained permeability exceeding that of typical saltwater, only diminishing at very high salt concentrations. Lastly, the team found that by changing the charges at the mouth of the nanotube, they can alter the ion selectivity. This advancement is highlighted in a Perspective [in Science magazine] by Zuzanna Siwy and Francesco Fornasiero.

The second Aug. 24, 2017 news item on ScienceDaily offers a more technical  perspective,

Lawrence Livermore scientists, in collaboration with researchers at Northeastern University, have developed carbon nanotube pores that can exclude salt from seawater. The team also found that water permeability in carbon nanotubes (CNTs) with diameters smaller than a nanometer (0.8 nm) exceeds that of wider carbon nanotubes by an order of magnitude.

The nanotubes, hollow structures made of carbon atoms in a unique arrangement, are more than 50,000 times thinner than a human hair. The super smooth inner surface of the nanotube is responsible for their remarkably high water permeability, while the tiny pore size blocks larger salt ions.

There’s a rather lovely illustration for this work,

An artist’s depiction of the promise of carbon nanotube porins for desalination. The image depicts a stylized carbon nanotube pipe that delivers clean desalinated water from the ocean to a kitchen tap. Image by Ryan Chen/LLNL

An Aug. 24, 2017 LLNL news release (also on EurekAlert), which originated the second news item, proceeds

Increasing demands for fresh water pose a global threat to sustainable development, resulting in water scarcity for 4 billion people. Current water purification technologies can benefit from the development of membranes with specialized pores that mimic highly efficient and water selective biological proteins.

“We found that carbon nanotubes with diameters smaller than a nanometer bear a key structural feature that enables enhanced transport. The narrow hydrophobic channel forces water to translocate in a single-file arrangement, a phenomenon similar to that found in the most efficient biological water transporters,” said Ramya Tunuguntla, an LLNL postdoctoral researcher and co-author of the manuscript appearing in the Aug. 24 [2017]edition of Science.

Computer simulations and experimental studies of water transport through CNTs with diameters larger than 1 nm showed enhanced water flow, but did not match the transport efficiency of biological proteins and did not separate salt efficiently, especially at higher salinities. The key breakthrough achieved by the LLNL team was to use smaller-diameter nanotubes that delivered the required boost in performance.

“These studies revealed the details of the water transport mechanism and showed that rational manipulation of these parameters can enhance pore efficiency,” said Meni Wanunu, a physics professor at Northeastern University and co-author on the study.

“Carbon nanotubes are a unique platform for studying molecular transport and nanofluidics,” said Alex Noy, LLNL principal investigator on the CNT project and a senior author on the paper. “Their sub-nanometer size, atomically smooth surfaces and similarity to cellular water transport channels make them exceptionally suited for this purpose, and it is very exciting to make a synthetic water channel that performs better than nature’s own.”

This discovery by the LLNL scientists and their colleagues has clear implications for the next generation of water purification technologies and will spur a renewed interest in development of the next generation of high-flux membranes.

Here’s a link to and a citation for the paper,

Enhanced water permeability and tunable ion selectivity in subnanometer carbon nanotube porins by Ramya H. Tunuguntla, Robert Y. Henley, Yun-Chiao Yao, Tuan Anh Pham, Meni Wanunu, Aleksandr Noy. Science 25 Aug 2017: Vol. 357, Issue 6353, pp. 792-796 DOI: 10.1126/science.aan2438

This paper is behind a paywall.

And, Northeastern University issued an August 25, 2017 news release (also on EurekAlert) by Allie Nicodemo,

Earth is 70 percent water, but only a tiny portion—0.007 percent—is available to drink.

As potable water sources dwindle, global population increases every year. One potential solution to quenching the planet’s thirst is through desalinization—the process of removing salt from seawater. While tantalizing, this approach has always been too expensive and energy intensive for large-scale feasibility.

Now, researchers from Northeastern have made a discovery that could change that, making desalinization easier, faster and cheaper than ever before. In a paper published Thursday [August 24, 2017] in Science, the group describes how carbon nanotubes of a certain size act as the perfect filter for salt—the smallest and most abundant water contaminant.

Filtering water is tricky because water molecules want to stick together. The “H” in H2O is hydrogen, and hydrogen bonds are strong, requiring a lot of energy to separate. Water tends to bulk up and resist being filtered. But nanotubes do it rapidly, with ease.

A carbon nanotube is like an impossibly small rolled up sheet of paper, about a nanometer in diameter. For comparison, the diameter of a human hair is 50 to 70 micrometers—50,000 times wider. The tube’s miniscule size, exactly 0.8 nm, only allows one water molecule to pass through at a time. This single-file lineup disrupts the hydrogen bonds, so water can be pushed through the tubes at an accelerated pace, with no bulking.

“You can imagine if you’re a group of people trying to run through the hallway holding hands, it’s going to be a lot slower than running through the hallway single-file,” said co-author Meni Wanunu, associate professor of physics at Northeastern. Wanunu and post doctoral student Robert Henley collaborated with scientists at the Lawrence Livermore National Laboratory in California to conduct the research.

Scientists led by Aleksandr Noy at Lawrence Livermore discovered last year [2016] that carbon nanotubes were an ideal channel for proton transport. For this new study, Henley brought expertise and technology from Wanunu’s Nanoscale Biophysics Lab to Noy’s lab, and together they took the research one step further.

In addition to being precisely the right size for passing single water molecules, carbon nanotubes have a negative electric charge. This causes them to reject anything with the same charge, like the negative ions in salt, as well as other unwanted particles.

“While salt has a hard time passing through because of the charge, water is a neutral molecule and passes through easily,” Wanunu said. Scientists in Noy’s lab had theorized that carbon nanotubes could be designed for specific ion selectivity, but they didn’t have a reliable system of measurement. Luckily, “That’s the bread and butter of what we do in Meni’s lab,” Henley said. “It created a nice symbiotic relationship.”

“Robert brought the cutting-edge measurement and design capabilities of Wanunu’s group to my lab, and he was indispensable in developing a new platform that we used to measure the ion selectivity of the nanotubes,” Noy said.

The result is a novel system that could have major implications for the future of water security. The study showed that carbon nanotubes are better at desalinization than any other existing method— natural or man-made.

To keep their momentum going, the two labs have partnered with a leading water purification organization based in Israel. And the group was recently awarded a National Science Foundation/Binational Science Foundation grant to conduct further studies and develop water filtration platforms based on their new method. As they continue the research, the researchers hope to start programs where students can learn the latest on water filtration technology—with the goal of increasing that 0.007 percent.

As is usual in these cases there’s a fair degree of repetition but there’s always at least one nugget of new information, in this case, a link to Israel. As I noted many times, the Middle East is experiencing serious water issues. My most recent ‘water and the Middle East’ piece is an August 21, 2017 post about rainmaking at the Masdar Institute in United Arab Emirates. Approximately 50% of the way down the posting, I mention Israel and Palestine’s conflict over water.

Using only sunlight to desalinate water

The researchers seem to believe that this new desalination technique could be a game changer. From a June 20, 2017 news item on Azonano,

An off-grid technology using only the energy from sunlight to transform salt water into fresh drinking water has been developed as an outcome of the effort from a federally funded research.

The desalination system uses a combination of light-harvesting nanophotonics and membrane distillation technology and is considered to be the first major innovation from the Center for Nanotechnology Enabled Water Treatment (NEWT), which is a multi-institutional engineering research center located at Rice University.

NEWT’s “nanophotonics-enabled solar membrane distillation” technology (NESMD) integrates tried-and-true water treatment methods with cutting-edge nanotechnology capable of transforming sunlight to heat. …

A June 19, 2017 Rice University news release, which originated the news item, expands on the theme,

More than 18,000 desalination plants operate in 150 countries, but NEWT’s desalination technology is unlike any other used today.

“Direct solar desalination could be a game changer for some of the estimated 1 billion people who lack access to clean drinking water,” said Rice scientist and water treatment expert Qilin Li, a corresponding author on the study. “This off-grid technology is capable of providing sufficient clean water for family use in a compact footprint, and it can be scaled up to provide water for larger communities.”

The oldest method for making freshwater from salt water is distillation. Salt water is boiled, and the steam is captured and run through a condensing coil. Distillation has been used for centuries, but it requires complex infrastructure and is energy inefficient due to the amount of heat required to boil water and produce steam. More than half the cost of operating a water distillation plant is for energy.

An emerging technology for desalination is membrane distillation, where hot salt water is flowed across one side of a porous membrane and cold freshwater is flowed across the other. Water vapor is naturally drawn through the membrane from the hot to the cold side, and because the seawater need not be boiled, the energy requirements are less than they would be for traditional distillation. However, the energy costs are still significant because heat is continuously lost from the hot side of the membrane to the cold.

“Unlike traditional membrane distillation, NESMD benefits from increasing efficiency with scale,” said Rice’s Naomi Halas, a corresponding author on the paper and the leader of NEWT’s nanophotonics research efforts. “It requires minimal pumping energy for optimal distillate conversion, and there are a number of ways we can further optimize the technology to make it more productive and efficient.”

NEWT’s new technology builds upon research in Halas’ lab to create engineered nanoparticles that harvest as much as 80 percent of sunlight to generate steam. By adding low-cost, commercially available nanoparticles to a porous membrane, NEWT has essentially turned the membrane itself into a one-sided heating element that alone heats the water to drive membrane distillation.

“The integration of photothermal heating capabilities within a water purification membrane for direct, solar-driven desalination opens new opportunities in water purification,” said Yale University ‘s Menachem “Meny” Elimelech, a co-author of the new study and NEWT’s lead researcher for membrane processes.

In the PNAS study, researchers offered proof-of-concept results based on tests with an NESMD chamber about the size of three postage stamps and just a few millimeters thick. The distillation membrane in the chamber contained a specially designed top layer of carbon black nanoparticles infused into a porous polymer. The light-capturing nanoparticles heated the entire surface of the membrane when exposed to sunlight. A thin half-millimeter-thick layer of salt water flowed atop the carbon-black layer, and a cool freshwater stream flowed below.

Li, the leader of NEWT’s advanced treatment test beds at Rice, said the water production rate increased greatly by concentrating the sunlight. “The intensity got up 17.5 kilowatts per meter squared when a lens was used to concentrate sunlight by 25 times, and the water production increased to about 6 liters per meter squared per hour.”

Li said NEWT’s research team has already made a much larger system that contains a panel that is about 70 centimeters by 25 centimeters. Ultimately, she said, NEWT hopes to produce a modular system where users could order as many panels as they needed based on their daily water demands.

“You could assemble these together, just as you would the panels in a solar farm,” she said. “Depending on the water production rate you need, you could calculate how much membrane area you would need. For example, if you need 20 liters per hour, and the panels produce 6 liters per hour per square meter, you would order a little over 3 square meters of panels.”

Established by the National Science Foundation in 2015, NEWT aims to develop compact, mobile, off-grid water-treatment systems that can provide clean water to millions of people who lack it and make U.S. energy production more sustainable and cost-effective. NEWT, which is expected to leverage more than $40 million in federal and industrial support over the next decade, is the first NSF Engineering Research Center (ERC) in Houston and only the third in Texas since NSF began the ERC program in 1985. NEWT focuses on applications for humanitarian emergency response, rural water systems and wastewater treatment and reuse at remote sites, including both onshore and offshore drilling platforms for oil and gas exploration.

There is a video but it is focused on the NEWT center rather than any specific water technologies,

For anyone interested in the technology, here’s a link to and a citation for the researchers’ paper,

Nanophotonics-enabled solar membrane distillation for off-grid water purification by Pratiksha D. Dongare, Alessandro Alabastri, Seth Pedersen, Katherine R. Zodrow, Nathaniel J. Hogan, Oara Neumann, Jinjian Wu, Tianxiao Wang, Akshay Deshmukh,f, Menachem Elimelech, Qilin Li, Peter Nordlander, and Naomi J. Halas. PNAS {Proceedings of the National Academy of Sciences] doi: 10.1073/pnas.1701835114 June 19, 2017

This paper appears to be open access.

Seawater batteries to replace lithium-ion batteries?

Replacing lithium-ion batteries with seawater batteries is a little more complicated than going out to scoop a little seawater and returning home to cook up a battery according to a Dec. 7, 2016 American Chemical Society news release (also on EurkeAlert),

With the ubiquity of lithium-ion batteries in smartphones and other rechargeable devices, it’s hard to imagine replacing them. But the rising price of lithium has spurred a search for alternatives. One up-and-coming battery technology uses abundant, readily available seawater. Now, making this option viable is one step closer with a new report on a sodium-air, seawater battery. The study appears in the journal ACS Applied Materials & Interfaces.

Sodium-air — or sodium-oxygen — batteries are considered one of the most promising, and cost-effective alternatives to today’s lithium-ion standby. But some challenges remain before they can become a commercial reality. Soo Min Hwang, Youngsik Kim and colleagues have been tackling these challenges, using seawater as the catholyte — an electrolyte and cathode combined. In batteries, the electrolyte is the component that allows an electrical charge to flow between the cathode and anode. A constant flow of seawater into and out of the battery provides the sodium ions and water responsible for producing a charge. The reactions have been sluggish, however, so the researchers wanted to find a way to speed them up.

For their new battery, the team prepared a catalyst using porous cobalt manganese oxide nanoparticles. The pores create a large surface area for encouraging the electrochemical reactions needed to produce a charge. A hard carbon electrode served as the anode. The resulting battery performed efficiently over 100 cycles with an average discharge voltage of about 2.7 volts. This doesn’t yet measure up to a lithium-ion cell, which can reach 3.6 to 4.0 volts, but the advance is getting close to bridging the gap, the researchers say.

Here’s a link to and a citation for the paper,

A Metal–Organic Framework Derived Porous Cobalt Manganese Oxide Bifunctional Electrocatalyst for Hybrid Na–Air/Seawater Batteries by Mari Abirami, Soo Min Hwang, Juchan Yang, Sirugaloor Thangavel Senthilkumar, Junsoo Kim, Woo-Seok Go, Baskar Senthilkumar, Hyun-Kon Song, and Youngsik Kim. ACS Appl. Mater. Interfaces, 2016, 8 (48), pp 32778–32787
DOI: 10.1021/acsami.6b10082 Publication Date (Web): November 14, 2016

Copyright © 2016 American Chemical Society

This paper is behind a paywall.

Osmotic power: electricity generated with water, salt and a 3-atoms-thick membrane


EPFL researchers have developed a system that generates electricity from osmosis with unparalleled efficiency. Their work, featured in “Nature”, uses seawater, fresh water, and a new type of membrane just three atoms thick.

A July 13, 2016 news item on Nanowerk highlights  research on osmotic power at École polytechnique fédérale de Lausanne (EPFL; Switzerland),

Proponents of clean energy will soon have a new source to add to their existing array of solar, wind, and hydropower: osmotic power. Or more specifically, energy generated by a natural phenomenon occurring when fresh water comes into contact with seawater through a membrane.

Researchers at EPFL’s Laboratory of Nanoscale Biology have developed an osmotic power generation system that delivers never-before-seen yields. Their innovation lies in a three atoms thick membrane used to separate the two fluids. …

A July 14, 2016 EPFL press release (also on EurekAlert but published July 13, 2016), which originated the news item, describes the research,

The concept is fairly simple. A semipermeable membrane separates two fluids with different salt concentrations. Salt ions travel through the membrane until the salt concentrations in the two fluids reach equilibrium. That phenomenon is precisely osmosis.

If the system is used with seawater and fresh water, salt ions in the seawater pass through the membrane into the fresh water until both fluids have the same salt concentration. And since an ion is simply an atom with an electrical charge, the movement of the salt ions can be harnessed to generate electricity.

A 3 atoms thick, selective membrane that does the job

EPFL’s system consists of two liquid-filled compartments separated by a thin membrane made of molybdenum disulfide. The membrane has a tiny hole, or nanopore, through which seawater ions pass into the fresh water until the two fluids’ salt concentrations are equal. As the ions pass through the nanopore, their electrons are transferred to an electrode – which is what is used to generate an electric current.

Thanks to its properties the membrane allows positively-charged ions to pass through, while pushing away most of the negatively-charged ones. That creates voltage between the two liquids as one builds up a positive charge and the other a negative charge. This voltage is what causes the current generated by the transfer of ions to flow.

“We had to first fabricate and then investigate the optimal size of the nanopore. If it’s too big, negative ions can pass through and the resulting voltage would be too low. If it’s too small, not enough ions can pass through and the current would be too weak,” said Jiandong Feng, lead author of the research.

What sets EPFL’s system apart is its membrane. In these types of systems, the current increases with a thinner membrane. And EPFL’s membrane is just a few atoms thick. The material it is made of – molybdenum disulfide – is ideal for generating an osmotic current. “This is the first time a two-dimensional material has been used for this type of application,” said Aleksandra Radenovic, head of the laboratory of Nanoscale Biology

Powering 50’000 energy-saving light bulbs with 1m2 membrane

The potential of the new system is huge. According to their calculations, a 1m2 membrane with 30% of its surface covered by nanopores should be able to produce 1MW of electricity – or enough to power 50,000 standard energy-saving light bulbs. And since molybdenum disulfide (MoS2) is easily found in nature or can be grown by chemical vapor deposition, the system could feasibly be ramped up for large-scale power generation. The major challenge in scaling-up this process is finding out how to make relatively uniform pores.

Until now, researchers have worked on a membrane with a single nanopore, in order to understand precisely what was going on. ” From an engineering perspective, single nanopore system is ideal to further our fundamental understanding of 8=-based processes and provide useful information for industry-level commercialization”, said Jiandong Feng.

The researchers were able to run a nanotransistor from the current generated by a single nanopore and thus demonstrated a self-powered nanosystem. Low-power single-layer MoS2 transistors were fabricated in collaboration with Andras Kis’ team at at EPFL, while molecular dynamics simulations were performed by collaborators at University of Illinois at Urbana–Champaign

Harnessing the potential of estuaries

EPFL’s research is part of a growing trend. For the past several years, scientists around the world have been developing systems that leverage osmotic power to create electricity. Pilot projects have sprung up in places such as Norway, the Netherlands, Japan, and the United States to generate energy at estuaries, where rivers flow into the sea. For now, the membranes used in most systems are organic and fragile, and deliver low yields. Some systems use the movement of water, rather than ions, to power turbines that in turn produce electricity.

Once the systems become more robust, osmotic power could play a major role in the generation of renewable energy. While solar panels require adequate sunlight and wind turbines adequate wind, osmotic energy can be produced just about any time of day or night – provided there’s an estuary nearby.

Here’s a link to and a citation for the paper,

Single-layer MoS2 nanopores as nanopower generators by Jiandong Feng, Michael Graf, Ke Liu, Dmitry Ovchinnikov, Dumitru Dumcenco, Mohammad Heiranian, Vishal Nandigana, Narayana R. Aluru, Andras Kis, & Aleksandra Radenovic. Nature (2016)  doi:10.1038/nature18593 Published online 13 July 2016

This paper is behind a paywall.