Tag Archives: Seita Onishi

Psst: secret marriage … Buckyballs and Graphene get together!

A March 1, 2018 news item on Nanowerk announces  a new coupling,

Scientists combined buckyballs, [also known as buckminsterfullerenes, fullerenes, or C60] which resemble tiny soccer balls made from 60 carbon atoms, with graphene, a single layer of carbon, on an underlying surface. Positive and negative charges can transfer between the balls and graphene depending on the nature of the surface as well as the structural order and local orientation of the carbon ball. Scientists can use this architecture to develop tunable junctions for lightweight electronic devices.

The researchers have made this illustration of their work available,

Researchers are developing new, lightweight electronics that rapidly conduct electricity by covering a sheet of carbon (graphene) with buckyballs. Electricity is the flow of electrons. On these lightweight structures, electrons as well as positive holes (missing electrons) transfer between the balls and graphene. The team showed that the crystallinity and orientation of the balls, as well as the underlying layer, affected this charge transfer. The top image shows a calculation of the charge density for a specific orientation of the balls on graphene. The blue represents positive charges, while the red is negative. The bottom image shows that the balls are in a close-packed structure. The bright dots correspond to the projected images of columns of buckyball molecules. Courtesy: US Department of Energy Office of Science

A February 28, 2018 US Department of Energy (DoE) Office of Science news release, which originated the news item, provides more detail,

The Impact

Fast-moving electrons and their counterpart, holes, were preserved in graphene with crystalline buckyball overlayers. Significantly, the carbon ball provides charge transfer to the graphene. Scientists expect the transfer to be highly tunable with external voltages. This marriage has ramifications for smart electronics that run longer and do not break as easily, bringing us closer to sensor-embedded smart clothing and robotic skin.

Summary

Charge transfer at the interface between dissimilar materials is at the heart of almost all electronic technologies such as transistors and photovoltaic devices. In this study, scientists studied charge transfer at the interface region of buckyball molecules deposited on graphene, with and without a supporting substrate, such as hexagonal boron nitride. They employed ab initio density functional theory with van der Waals interactions to model the structure theoretically. Van der Waals interactions are weak connections between neutral molecules. The team used high-resolution transmission electron microscopy and electronic transport measurements to characterize experimentally the properties of the interface. The researchers observed that charge transfer between buckyballs and the graphene was sensitive to the nature of the underlying substrate, in addition, to the crystallinity and local orientation of the buckyballs. These studies open an avenue to devices where buckyball layers on top of graphene can serve as electron acceptors and other buckyball layers as electron donors. Even at room temperature, buckyball molecules were orientationally locked into position. This is in sharp contrast to buckyball molecules in un-doped bulk crystalline configurations, where locking occurs only at low temperature. High electron and hole mobilities are preserved in graphene with crystalline buckyball overlayers. This finding has ramifications for the development of organic high-mobility field-effect devices and other high mobility applications.

Here’s a link to and a citation for the paper,

Molecular Arrangement and Charge Transfer in C60 /Graphene Heterostructures by Claudia Ojeda-Aristizabal, Elton J. G. Santos, Seita Onishi, Aiming Yan, Haider I. Rasool, Salman Kahn, Yinchuan Lv, Drew W. Latzke, Jairo Velasco Jr., Michael F. Crommie, Matthew Sorensen, Kenneth Gotlieb, Chiu-Yun Lin, Kenji Watanabe, Takashi Taniguchi, Alessandra Lanzara, and Alex Zettl. ACS Nano, 2017, 11 (5), pp 4686–4693 DOI: 10.1021/acsnano.7b00551 Publication Date (Web): April 24, 2017

Copyright © 2017 American Chemical Society

This paper is behind a paywall.

“Ears like a bat” could come true for humans?

That old saying which describes people with exceptional hearing as having “ears like a bat” may come true if University of California at Berkeley (UC Berkeley) researchers have their way. From a July 7, 2015 news item on Nanowerk,

University of California, Berkeley, physicists have used graphene to build lightweight ultrasonic loudspeakers and microphones, enabling people to mimic bats or dolphins’ ability to use sound to communicate and gauge the distance and speed of objects around them.

A July 6, 2015 UC Berkeley news release by Robert Sanders (also on EurekAlert), which originated the news item, describes the problem addressed by the research and the new approach taken,

More practically, the wireless ultrasound devices complement standard radio transmission using electromagnetic waves in areas where radio is impractical, such as underwater, but with far more fidelity than current ultrasound or sonar devices. They can also be used to communicate through objects, such as steel, that electromagnetic waves can’t penetrate.

“Sea mammals and bats use high-frequency sound for echolocation and communication, but humans just haven’t fully exploited that before, in my opinion, because the technology has not been there,” said UC Berkeley physicist Alex Zettl. “Until now, we have not had good wideband ultrasound transmitters or receivers. These new devices are a technology opportunity.”

Speakers and microphones both use diaphragms, typically made of paper or plastic, that vibrate to produce or detect sound, respectively. The diaphragms in the new devices are graphene sheets a mere one atom thick that have the right combination of stiffness, strength and light weight to respond to frequencies ranging from subsonic (below 20 hertz) to ultrasonic (above 20 kilohertz). Humans can hear from 20 hertz up to 20,000 hertz, whereas bats hear only in the kilohertz range, from 9 to 200 kilohertz. The grapheme loudspeakers and microphones operate from well below 20 hertz to over 500 kilohertz.

Graphene consists of carbon atoms laid out in a hexagonal, chicken-wire arrangement, which creates a tough, lightweight sheet with unique electronic properties that have excited the physics world for the past 20 or more years.

“There’s a lot of talk about using graphene in electronics and small nanoscale devices, but they’re all a ways away,” said Zettl, who is a senior scientist at Lawrence Berkeley National Laboratory and a member of the Kavli Energy NanoSciences Institute, operated jointly by UC Berkeley and Berkeley Lab. “The microphone and loudspeaker are some of the closest devices to commercial viability, because we’ve worked out how to make the graphene and mount it, and it’s easy to scale up.”

Zettl, UC Berkeley postdoctoral fellow Qin Zhou and colleagues describe their graphene microphone and ultrasonic radio in a paper appearing online this week in the Proceedings of the National Academy of Sciences.

Radios and rangefinders

Two years ago, Zhou built loudspeakers using a sheet of graphene for the diaphragm, and since then has been developing the electronic circuitry to build a microphone with a similar graphene diaphragm.

One big advantage of graphene is that the atom-thick sheet is so lightweight that it responds well to the different frequencies of an electronic pulse, unlike today’s piezoelectric microphones and speakers. This comes in handy when using ultrasonic transmitters and receivers to transmit large amounts of information through many different frequency channels simultaneously, or to measure distance, as in sonar applications.

“Because our membrane is so light, it has an extremely wide frequency response and is able to generate sharp pulses and measure distance much more accurately than traditional methods,” Zhou said.

Graphene membranes are also more efficient, converting over 99 percent of the energy driving the device into sound, whereas today’s conventional loudspeakers and headphones convert only 8 percent into sound. Zettl anticipates that in the future, communications devices like cellphones will utilize not only electromagnetic waves – radio – but also acoustic or ultrasonic sound, which can be highly directional and long-range.

“Graphene is a magical material; it hits all the sweet spots for a communications device,” he said.

You never know who can give you a new idea for your research, from the news release,

When Zhou told his wife, Jinglin Zheng [also a physicist], about the ultrasound microphone, she suggested he try to capture the sound of bats chirping at frequencies too high for humans to hear. So they hauled the microphone to a park in Livermore and turned it on. When they slowed down the recording to one-tenth normal speed, converting the high frequencies to an audio range humans can hear, they were amazed at the quality and fidelity of the bat vocalizations.

“This is lightweight enough to mount on a bat and record what the bat can hear,” Zhou said.

Bat expert Michael Yartsev, a newly hired UC Berkeley assistant professor of bioengineering and member of the Helen Wills Neuroscience Institute, said, “These new microphones will be incredibly valuable for studying auditory signals at high frequencies, such as the ones used by bats. The use of graphene allows the authors to obtain very flat frequency responses in a wide range of frequencies, including ultrasound, and will permit a detailed study of the auditory pulses that are used by bats.”

Zettl noted that audiophiles would also appreciate the graphene loudspeakers and headphones, which have a flat response across the entire audible frequency range.

“A number of years ago, this device would have been darn near impossible to build because of the difficulty of making free-standing graphene sheets,” Zettl said. “But over the past decade the graphene community has come together to develop techniques to grow, transport and mount graphene, so building a device like this is now very straightforward; the design is simple.”

Here’s a link to and a citation for the paper,

Graphene electrostatic microphone and ultrasonic radio by Qin Zhou, Jinglin Zheng, Seita Onishi, M. F. Crommie, Alex K. Zettl. Proceedings of the National Academy of Sciences, 2015; 201505800 DOI: 10.1073/pnas.1505800112

This paper is behind a paywall.