Tag Archives: self-cleaning

Superhydrophobic nanoflowers

I’m getting to the science but first this video of what looks like jiggling jello,

In actuality, it’s a superhydrophobic coating demonstration and a July 2, 2019 news item on phys.org provides more information,

Plant leaves have a natural superpower—they’re designed with water repelling characteristics. Called a superhydrophobic surface, this trait allows leaves to cleanse themselves from dust particles. Inspired by such natural designs, a team of researchers at Texas A&M University has developed an innovative way to control the hydrophobicity of a surface to benefit to the biomedical field.

Researchers in Dr. Akhilesh K. Gaharwar’s lab in the Department of Biomedical Engineering have developed a “lotus effect” by incorporating atomic defects in nanomaterials, which could have widespread applications in the biomedical field including biosensing, lab-on-a-chip, blood-repellent, anti-fouling and self-cleaning applications.

A July 2, 2019 Texas A&M University news release (also on EurekAlert) by Jennifer Reiley, which originated the news item, expands on the theme,

Superhydrophobic materials are used extensively for self-cleaning characteristic of devices. However, current materials require alteration to the chemistry or topography of the surface to work. This limits the use of superhydrophobic materials.

“Designing hydrophobic surfaces and controlling the wetting behavior has long been of great interest, as it plays crucial role in accomplishing self-cleaning ability,” Gaharwar said. “However, there are limited biocompatible approach to control the wetting behavior of the surface as desired in several biomedical and biotechnological applications.”

The Texas A&M design adopts a ‘nanoflower-like’ assembly of two-dimensional (2D) atomic layers to protect the surface from wetting. The team recently released a study published in Chemical Communications. 2D nanomaterials are an ultrathin class of nanomaterials and have received considerable attention in research. Gaharwar’s lab used 2D molybdenum disulfide (MoS2), a new class of 2D nanomaterials that has shown enormous potential in nanoelectronics, optical sensors, renewable energy sources, catalysis and lubrication, but has not been investigated for biomedical applications. This innovative approach demonstrates applications of this unique class of materials to the biomedical industry.

“These 2D nanomaterials with their hexagonal packed layer repel water adherence, however, a missing atom from the top layer can allow easy access to water molecules by the next layer of atoms underneath making it transit from hydrophobic to hydrophilic,” said lead author of the study, Dr. Manish Jaiswal, a senior research associate in Gaharwar’s lab.

This innovative technique opens many doors for expanded applications in several scientific and technological areas. The superhydrophobic coating can be easily applied over various substrates such as glass, tissue paper, rubber or silica using the solvent evaporation method. These superhydrophobic coatings have wide-spread applications, not only in developing self-cleaning surfaces in nanoelectronics devices, but also for biomedical applications.

Specifically, the study demonstrated that blood and cell culture media containing proteins do not adhere to the surface, which is very promising. In addition, the team is currently exploring the potential applications of controlled hydrophobicity in stem cell fate.

Here’s a link to and a citation for the paper,

Superhydrophobic states of 2D nanomaterials controlled by atomic defects can modulate cell adhesion by Manish K. Jaiswal, Kanwar Abhay Singh, Giriraj Lokhande and Akhilesh K. Gaharwar. Chem. Commun., 2019, Advance Article DOI: 10.1039/C9CC00547A First published on 07 Jun 2019

This paper is open access.

The glorious glasswing butterfly and superomniphobic glass

This is not the first time the glasswing butterfly has inspired some new technology. Lat time, it was an eye implant,

The clear wings make this South-American butterfly hard to see in flight, a succesfull defense mechanism. Credit: Eddy Van 3000 from in Flanders fields – B – United Tribes ov Europe – the wings-become-windows butterfly. [downloaded from https://commons.wikimedia.org/wiki/Category:Greta_oto#/media/File:South-American_butterfly.jpg]

You’ll find that image and more in my May 22, 2018 posting about the eye implant. Don’t miss scrolling down to the video which features the butterfly fluttering its wings in the first few seconds.

Getting back to the glasswing butterfly’s latest act of inspiration a July 11, 2019 news item on ScienceDaily announces the work,

Glass for technologies like displays, tablets, laptops, smartphones, and solar cells need to pass light through, but could benefit from a surface that repels water, dirt, oil, and other liquids. Researchers from the University of Pittsburgh’s Swanson School of Engineering have created a nanostructure glass that takes inspiration from the wings of the glasswing butterfly to create a new type of glass that is not only very clear across a wide variety of wavelengths and angles, but is also antifogging.

A July 11, 2019 University of Pittsburgh news release (also on EurekAlert), which originated the news item, provides more technical detail about the new glass,

The nanostructured glass has random nanostructures, like the glasswing butterfly wing, that are smaller than the wavelengths of visible light. This allows the glass to have a very high transparency of 99.5% when the random nanostructures are on both sides of the glass. This high transparency can reduce the brightness and power demands on displays that could, for example, extend battery life. The glass is antireflective across higher angles, improving viewing angles. The glass also has low haze, less than 0.1%, which results in very clear images and text.

“The glass is superomniphobic, meaning it repels a wide variety of liquids such as orange juice, coffee, water, blood, and milk,” explains Sajad Haghanifar, lead author of the paper and doctoral candidate in industrial engineering at Pitt. “The glass is also anti-fogging, as water condensation tends to easily roll off the surface, and the view through the glass remains unobstructed. Finally, the nanostructured glass is durable from abrasion due to its self-healing properties–abrading the surface with a rough sponge damages the coating, but heating it restores it to its original function.”

Natural surfaces like lotus leaves, moth eyes and butterfly wings display omniphobic properties that make them self-cleaning, bacterial-resistant and water-repellant–adaptations for survival that evolved over millions of years. Researchers have long sought inspiration from nature to replicate these properties in a synthetic material, and even to improve upon them. While the team could not rely on evolution to achieve these results, they instead utilized machine learning.

“Something significant about the nanostructured glass research, in particular, is that we partnered with SigOpt to use machine learning to reach our final product,” says Paul Leu, PhD, associate professor of industrial engineering, whose lab conducted the research. Dr. Leu holds secondary appointments in mechanical engineering and materials science and chemical engineering. “When you create something like this, you don’t start with a lot of data, and each trial takes a great deal of time. We used machine learning to suggest variables to change, and it took us fewer tries to create this material as a result.”

“Bayesian optimization and active search are the ideal tools to explore the balance between transparency and omniphobicity efficiently, that is, without needing thousands of fabrications, requiring hundreds of days.” said Michael McCourt, PhD, research engineer at SigOpt. Bolong Cheng, PhD, fellow research engineer at SigOpt, added, “Machine learning and AI strategies are only relevant when they solve real problems; we are excited to be able to collaborate with the University of Pittsburgh to bring the power of Bayesian active learning to a new application.”

Here’s an image illustrating the work from the researchers,

Courtesy: University of Pittsburgh

Here’s a link to and a citation for the paper,

Creating glasswing butterfly-inspired durable antifogging superomniphobic supertransmissive, superclear nanostructured glass through Bayesian learning and optimization by Sajad Haghanifar, Michael McCourt, Bolong Cheng, Jeffrey Wuenschell, Paul Ohodnickic, and Paul W. Leu. Mater. Horiz., 2019, Advance Article DOI: 10.1039/C9MH00589G first published on 10 Jun 2019

This paper is behind a paywall. One more thing, here’s SigOpt, the company the scientists partnered.

Historic and other buildings get protection from pollution?

This Sept. 15, 2017 news item on Nanowerk announces a new product for protecting buildings from pollution,

The organic pollution decomposing properties of titanium dioxide (TiO2 ) have been known for about half a century. However, practical applications have been few and hard to develop, but now a Greek paint producer claims to have found a solution

A Sept. 11, 2017 Youris (European Research Media Center) press release by Koen Mortelmans which originated the news item expands on the theme,

The photocatalytic properties of anatase, one of the three naturally occurring forms of titanium dioxide, were discovered in Japan in the late 1960s. Under the influence of the UV-radiation in sunlight, it can decompose organic pollutants such as bacteria, fungi and nicotine, and some inorganic materials into carbon dioxide. The catalytic effect is caused by the nanostructure of its crystals.

Applied outdoors, this affordable and widely available material could represent an efficient self-cleaning solution for buildings. This is due to the chemical reaction, which leaves a residue on building façades, a residue then washed away when it rains. Applying it to monuments in urban areas may save our cultural heritage, which is threatened by pollutants.

However, “photocatalytic paints and additives have long been a challenge for the coating industry, because the catalytic action affects the durability of resin binders and oxidizes the paint components,” explains Ioannis Arabatzis, founder and managing director of NanoPhos, based in the Greek town of Lavrio, in one of the countries home to some of the most important monuments of human history. The Greek company is testing a paint called Kirei, inspired by a Japanese word meaning both clean and beautiful.

According to Arabatzis, it’s an innovative product because it combines the self-cleaning action of photocatalytic nanoparticles and the reflective properties of cool wall paints. “When applied on exterior surfaces this paint can reflect more than 94% of the incident InfraRed radiation (IR), saving energy and reducing costs for heating and cooling”, he says. “The reflection values are enhanced by the self-cleaning ability. Compared to conventional paints, they remain unchanged for longer.”

The development of Kirei has been included in the European project BRESAER (BREakthrough Solutions for Adaptable Envelopes in building Refurbishment) which is studying a sustainable and adaptable “envelope system” to renovate buildings. The new paint was tested and subjected to quality controls following ISO standard procedures at the company’s own facilities and in other independent laboratories. “The lab results from testing in artificial, accelerated weathering conditions are reliable,” Arabatzis claims. “There was no sign of discolouration, chalking, cracking or any other paint defect during 2,000 hours of exposure to the simulated environmental conditions. We expect the coating’s service lifetime to be at least ten years.”

Many studies are being conducted to exploit the properties of titanium dioxide. Jan Duyzer, researcher at the Netherlands Organisation for Applied Scientific Research (TNO) in Utrecht, focused on depollution: “There is no doubt about the ability of anatase to decrease the levels of nitrogen oxides in the air. But in real situations, there are many differences in pollution, wind, light, and temperature. We were commissioned by the Dutch government specifically to find a way to take nitrogen oxides out of the air on roads and in traffic tunnels. We used anatase coated panels. Our results were disappointing, so the government decided to discontinue the research. Furthermore, we still don’t know what caused the difference between lab and life. Our best current hypothesis is that the total surface of the coated panels is very small compared to the large volumes of polluted air passing over them,” he tells youris.com.

Experimental deployment of titanium dioxide panels on an acoustic wall along a Dutch highway – Courtesy of Netherlands Organisation for Applied Scientific Research (TNO)

“In laboratory conditions the air is blown over the photocatalytic surface with a certain degree of turbulence. This results in the NOx-particles and the photocatalytic material coming into full contact with one another,” says engineer Anne Beeldens, visiting professor at KU Leuven, Belgium. Her experience with photocatalytic TiO2 is also limited to nitrogen dioxide (NOx) pollution.

In real applications, the air stream at the contact surface becomes laminar. This results in a lower velocity of the air at the surface and a lower depollution rate. Additionally, not all the air will be in contact with the photocatalytic surfaces. To ensure a good working application, the photocatalytic material needs to be positioned so that all the air is in contact with the surface and flows over it in a turbulent manner. This would allow as much of the NOx as possible to be in contact with photocatalytic material. In view of this, a good working application could lead to a reduction of 5 to 10 percent of NOx in the air, which is significant compared to other measures to reduce pollutants.”

The depollution capacity of TiO2 is undisputed, but most applications and tests have only involved specific kinds of substances. More research and measurements are required if we are to benefit more from the precious features of this material.

I think the most recent piece here on protecting buildings, i.e., the historic type, from pollution is an Oct. 21, 2014 posting: Heart of stone.

Revolutionary ‘smart’ windows from the UK

This is the first time I’ve seen self-cleaning and temperature control features mentioned together with regard to a ‘smart’ window, which makes this very exciting news. From a Jan. 20, 2016 UK Engineering and Physical Sciences Research Council (EPSRC) press release (also on EurekAlert),

A revolutionary new type of smart window could cut window-cleaning costs in tall buildings while reducing heating bills and boosting worker productivity. Developed by University College London (UCL) with support from EPSRC, prototype samples confirm that the glass can deliver three key benefits:

Self-cleaning: The window is ultra-resistant to water, so rain hitting the outside forms spherical droplets that roll easily over the surface – picking up dirt, dust and other contaminants and carrying them away. This is due to the pencil-like, conical design of nanostructures engraved onto the glass, trapping air and ensuring only a tiny amount of water comes into contact with the surface. This is different from normal glass, where raindrops cling to the surface, slide down more slowly and leave marks behind.
Energy-saving: The glass is coated with a very thin (5-10nm) film of vanadium dioxide which during cold periods stops thermal radiation escaping and so prevents heat loss; during hot periods it prevents infrared radiation from the sun entering the building. Vanadium dioxide is a cheap and abundant material, combining with the thinness of the coating to offer real cost and sustainability advantages over silver/gold-based and other coatings used by current energy-saving windows.
Anti-glare: The design of the nanostructures also gives the windows the same anti-reflective properties found in the eyes of moths and other creatures that have evolved to hide from predators. It cuts the amount of light reflected internally in a room to less than 5 per cent – compared with the 20-30 per cent achieved by other prototype vanadium dioxide coated, energy-saving windows – with this reduction in ‘glare’ providing a big boost to occupant comfort.

This is the first time that a nanostructure has been combined with a thermochromic coating. The bio-inspired nanostructure amplifies the thermochromics properties of the coating and the net result is a self-cleaning, highly performing smart window, said Dr Ioannis Papakonstantinou of UCL.

The UCL team calculate that the windows could result in a reduction in heating bills of up to 40 per cent, with the precise amount in any particular case depending on the exact latitude of the building where they are incorporated. Windows made of the ground-breaking glass could be especially well-suited to use in high-rise office buildings.

Dr Ioannis Papakonstantinou of UCL, project leader, explains: It’s currently estimated that, because of the obvious difficulties involved, the cost of cleaning a skyscraper’s windows in its first 5 years is the same as the original cost of installing them. Our glass could drastically cut this expenditure, quite apart from the appeal of lower energy bills and improved occupant productivity thanks to less glare. As the trend in architecture continues towards the inclusion of more glass, it’s vital that windows are as low-maintenance as possible.

So, when can I buy these windows? (from the press release; Note: Links have been removed)

Discussions are now under way with UK glass manufacturers with a view to driving this new window concept towards commercialisation. The key is to develop ways of scaling up the nano-manufacturing methods that the UCL team have specially developed to produce the glass, as well as scaling up the vanadium dioxide coating process. Smart windows could begin to reach the market within around 3-5 years [emphasis mine], depending on the team’s success in securing industrial interest.

Dr Papakonstantinou says: We also hope to develop a ‘smart’ film that incorporates our nanostructures and can easily be added to conventional domestic, office, factory and other windows on a DIY [do-it-yourself] basis to deliver the triple benefit of lower energy use, less light reflection and self-cleaning, without significantly affecting aesthetics.

Professor Philip Nelson, Chief Executive of EPSRC said: This project is an example of how investing in excellent research drives innovation to produce tangible benefits. In this case the new technique could deliver both energy savings and cost reductions.

A 5-year European Research Council (ERC) starting grant (IntelGlazing) has been awarded to fabricate smart windows on a large scale and test them under realistic, outdoor environmental conditions.

The UCL team that developed the prototype smart window includes Mr Alaric Taylor, a PhD student in Dr Papakonstantinou’s group, and Professor Ivan Parkin from UCL’s Department of Chemistry.

I wish them good luck.

One last note, these new windows are the outcome of a 2.5 year EPSRC funded project: Biologically Inspired Nanostructures for Smart Windows with Antireflection and Self-Cleaning Properties, which ended in Sept.  2015.

Cleaning antennae—ant style

The University of Cambridge (UK) has produced research that could lead to cleaning at the microscale and nanoscale and it’s all due to ants. From a July 28, 2015 news item on Nanowerk (Note: A link has been removed),

For an insect, grooming is a serious business. If the incredibly sensitive hairs on their antennae get too dirty, they are unable to smell food, follow pheromone trails or communicate. So insects spend a significant proportion of their time just keeping themselves clean. Until now, however, no-one has really investigated the mechanics of how they actually go about this.

In a study published in Open Science (“Functional morphology and efficiency of the antenna cleaner in Camponotus rufifemur ants”), Alexander Hackmann and colleagues from the Department of Zoology [University of Cambridge] have undertaken the first biomechanical investigation of how ants use different types of hairs in their cleaning apparatus to clear away dirt from their antennae.

A July 27, 2015 University of Cambridge press release, which originated the news item, expands on the theme,

“Insects have developed ingenious ways of cleaning very small, sensitive structures, so finding out exactly how they work could have fascinating applications for nanotechnology – where contamination of small things, especially electronic devices, is a big problem. Different insects have all kinds of different cleaning devices, but no-one has really looked at their mechanical function in detail before,” explains Hackmann.

Camponotus rufifemur ants possess a specialised cleaning structure on their front legs that is actively used to groom their antennae. A notch and spur covered in different types of hairs form a cleaning device similar in shape to a tiny lobster claw. During a cleaning movement, the antenna is pulled through the device which clears away dirt particles using ‘bristles’, a ‘comb’ and a ‘brush’.

To investigate how the different hairs work, Hackmann painstakingly constructed an experimental mechanism to mimic the ant’s movements and pull antennae through the cleaning structure under a powerful microscope. This allowed him to film the process in extreme close up and to measure the cleaning efficiency of the hairs using fluorescent particles.

What he discovered was that the three clusters of hairs perform a different function in the cleaning process. The dirty antenna surface first comes into contact with the ‘bristles’ (shown in the image in red) which scratch away the largest particles. It is then drawn past the ‘comb’ (shown in the image in blue) which removes smaller particles that get trapped between the comb hairs. Finally, it is drawn through the ‘brush’ (shown in the image in green) which removes the smallest particles.

Scanning electron micrograph of the tarsal notch (Alexander Hackmann). Courtesy: University of Cambridge

Scanning electron micrograph of the tarsal notch (Alexander Hackmann). Courtesy: University of Cambridge

The news release offers more detail about the ‘notch’s’ cleaning properties,

“While the ‘bristles’ and the ‘comb’ scrape off larger particles mechanically, the ‘brush’ seems to attract smaller dirt particles from the antenna by adhesion,” says Hackmann, who works in the laboratory of Dr Walter Federle.

Where the ‘bristles’ and ‘comb’ are rounded and fairly rigid, the ‘brush’ hairs are flat, bendy and covered in ridges – this increases the surface area for contact with the dirt particles, which stick to the hairs. Researchers do not yet know what makes the ‘brush’ hairs sticky – whether it is due to electrostatic forces, sticky secretions, or a combination of factors.

“The arrangement of ‘bristles’, ‘combs’ and ‘brush’ lets the cleaning structure work as a particle filter that can clean different sized dirt particles with a single cleaning stroke,” says Hackmann. “Modern nanofabrication techniques face similar problems with surface contamination, and as a result the fabrication of micron-scale devices requires very expensive cleanroom technology. We hope that understanding the biological system will lead to building bioinspired devices for cleaning on micro and nano scales.”

If you want to see the a video of the ‘cleaning action’, you can check either Nanowerk’s July 28, 2015 news item or the University of Cambridge’s July 27, 2015 press release.

Here’s a link to and citation for the paper,

Functional morphology and efficiency of the antenna cleaner in Camponotus rufifemur ants by Alexander Hackmann, Henry Delacave, Adam Robinson, David Labonte, and Walter Federle. Royal Society Open Science DOI: 10.1098/rsos.150129  Published 22 July 2015

As you may have guessed from the journal’s title, this is an open access paper.

Glasswing butterflies teach us about reflection

Contrary to other transparent surfaces, the wings of the glasswing butterfly (Greta Oto) hardly reflect any light. Lenses or displays of mobiles might profit from the investigation of this phenomenon. (Photo: Radwanul Hasan Siddique, KIT)

Contrary to other transparent surfaces, the wings of the glasswing butterfly (Greta Oto) hardly reflect any light. Lenses or displays of mobiles might profit from the investigation of this phenomenon. (Photo: Radwanul Hasan Siddique, KIT)

I wouldn’t have really believed. Other than glass, I’ve never seen anything in nature that’s as transparent and distortion-free as this butterfly’s wings.

An April 22, 2015 news item on ScienceDaily provides more information about the butterfly,

The effect is known from the smart phone: Sun is reflected by the display and hardly anything can be seen. In contrast to this, the glasswing butterfly hardly reflects any light in spite of its transparent wings. As a result, it is difficult for predatory birds to track the butterfly during the flight. Researchers of KIT under the direction of Hendrik Hölscher found that irregular nanostructures on the surface of the butterfly wing cause the low reflection. In theoretical experiments, they succeeded in reproducing the effect that opens up fascinating application options, e.g. for displays of mobile phones or laptops.

An April 22, 2015 Karlsruhe Institute of Technology (KIT) press release (also on EurekAlert), which originated the news item, explains the scientific interest,

Transparent materials such as glass, always reflect part of the incident light. Some animals with transparent surfaces, such as the moth with its eyes, succeed in keeping the reflections small, but only when the view angle is vertical to the surface. The wings of the glasswing butterfly that lives mainly in Central America, however, also have a very low reflection when looking onto them under higher angles. Depending on the view angle, specular reflection varies between two and five percent. For comparison: As a function of the view angle, a flat glass plane reflects between eight and 100 percent, i.e. reflection exceeds that of the butterfly wing by several factors. Interestingly, the butterfly wing does not only exhibit a low reflection of the light spectrum visible to humans, but also suppresses the infrared and ultraviolet radiation that can be perceived by animals. This is important to the survival of the butterfly.

For research into this so far unstudied phenomenon, the scientists examined glasswings by scanning electron microscopy. Earlier studies revealed that regular pillar-like nanostructures are responsible for the low reflections of other animals. The scientists now also found nanopillars on the butterfly wings. In contrast to previous findings, however, they are arranged irregularly and feature a random height. Typical height of the pillars varies between 400 and 600 nanometers, the distance of the pillars ranges between 100 and 140 nanometers. This corresponds to about one thousandth of a human hair.

In simulations, the researchers mathematically modeled this irregularity of the nanopillars in height and arrangement. They found that the calculated reflected amount of light exactly corresponds to the observed amount at variable view angles. In this way, they proved that the low reflection at variable view angles is caused by this irregularity of the nanopillars. Hölscher’s doctoral student Radwanul Hasan Siddique, who discovered this effect, considers the glasswing butterfly a fascinating animal: “Not only optically with its transparent wings, but also scientifically. In contrast to other natural phenomena, where regularity is of top priority, the glasswing butterfly uses an apparent chaos to reach effects that are also fascinating for us humans.”

The findings open up a range of applications wherever low-reflection surfaces are needed, for lenses or displays of mobile phones, for instance. Apart from theoretical studies of the phenomenon, the infrastructure of the Institute of Microstructure Technology also allows for practical implementation. First application tests are in the conception phase at the moment. Prototype experiments, however, already revealed that this type of surface coating also has a water-repellent and self-cleaning effect.

Here’s a link to and a citation for the paper,

The role of random nanostructures for the omnidirectional anti-reflection properties of the glasswing butterfly by Radwanul Hasan Siddique, Guillaume Gomard, & Hendrik Hölscher. Nature Communications 6, Article number: 6909 doi:10.1038/ncomms7909 Published 22 April 2015

The paper is behind a paywall but there is a free preview via ReadCube Access.

How geckos self-clean, even in dusty environments

An Australian research team claims a world first with regard to ‘gecko research’ according to a March 16, 2015* news item on ScienceDaily,

In a world first, a research team including James Cook University [JCU] scientists has discovered how geckos manage to stay clean, even in dusty deserts.

The process, described in Interface, a journal of the Royal Society, may also turn out to have important human applications.

JCU’s Professor Lin Schwarzkopf said the group found that tiny droplets of water on geckos, for instance from condensing dew, come into contact with hundreds of thousands of extremely small hair-like spines that cover the animals’ bodies.

A March 16, 2015 JCU press release (also on EurekAlert), which originated the news item, provides more detail,

“If you have seen how drops of water roll off a car after it is waxed, or off a couch that’s had protective spray used on it, you’ve seen the process happening,” she said. “The wax and spray make the surface very bumpy at micro and nano levels, and the water droplets remain as little balls, which roll easily and come off with gravity or even a slight wind.”

The geckos’ hair-like spines trap pockets of air and work on the same principle, but have an even more dramatic effect. Through a scanning electron microscope, tiny water droplets can be seen rolling into each other and jumping like popcorn off the skin of the animal as they merge and release energy.

Scientists were aware that hydrophobic surfaces repelled water, and that the rolling droplets helped clean the surfaces of leaves and insects, but this is the first time it has been documented in a vertebrate animal. Box-patterned geckos live in semi-arid habitats, with little rain but may have dew forming on them when the temperature drops overnight.

Professor Schwarzkopf said the process may help geckos keep clean, as the water can carry small particles of dust and dirt away from their body. “They tend to live in dry environments where they can’t depend on it raining, and this keeps process them clean,” she said.

She said there were possible applications for marine-based electronics that have to shed water quickly in use and for possible “superhydrophobic” clothing that would not get wet or dirty and would never need washing.

I’ve been reading about self-cleaning products for years now. (sigh) Where are they? Despite this momentary lapse into sighing and wailing, I am much encouraged that scientists are still trying to figure out how to create self-cleaning products.

Here’s a link to and a citation for the paper,

Removal mechanisms of dew via self-propulsion off the gecko skin by Gregory S. Watson, Lin Schwarzkopf, Bronwen W. Cribb, Sverre Myhra, Marty Gellender, and Jolanta A. Watson.
Interface, April 2015, Volume: 12 Issue: 105 DOI: 10.1098/rsif.2014.1396 Published 11 March 2015

This paper is open access.

*’2014′ corrected to ‘2015’ on Feb. 28, 2017.

The perfect keyboard: it self-cleans and self-powers and it can identify its owner(s)

There’s a pretty nifty piece of technology being described in a Jan. 21, 2015 news item on Nanowerk, which focuses on the security aspects first (Note: A link has been removed),

In a novel twist in cybersecurity, scientists have developed a self-cleaning, self-powered smart keyboard that can identify computer users by the way they type. The device, reported in the journal ACS Nano (“Personalized Keystroke Dynamics for Self-Powered Human–Machine Interfacing”), could help prevent unauthorized users from gaining direct access to computers.

A Jan. 21, 2015 American Chemical Society (ACS) news release (also on EurekAlert), which originated the news item, continues with the keyboard’s security features before briefly mentioning the keyboard’s self-powering and self-cleaning capabilities,

Zhong Lin Wang and colleagues note that password protection is one of the most common ways we control who can log onto our computers — and see the private information we entrust to them. But as many recent high-profile stories about hacking and fraud have demonstrated, passwords are themselves vulnerable to theft. So Wang’s team set out to find a more secure but still cost-effective and user-friendly approach to safeguarding what’s on our computers.

The researchers developed a smart keyboard that can sense typing patterns — including the pressure applied to keys and speed — that can accurately distinguish one individual user from another. So even if someone knows your password, he or she cannot access your computer because that person types in a different way than you would. It also can harness the energy generated from typing to either power itself or another small device. And the special surface coating repels dirt and grime. The scientists conclude that the keyboard could provide an additional layer of protection to boost the security of our computer systems.

Here’s a link to and a citation for the paper,

Personalized Keystroke Dynamics for Self-Powered Human–Machine Interfacing by Jun Chen, Guang Zhu, Jin Yang, Qingshen Jing, Peng Bai, Weiqing Yang, Xuewei Qi, Yuanjie Su, and Zhong Lin Wang. ACS Nano, Article ASAP DOI: 10.1021/nn506832w Publication Date (Web): December 30, 2014

Copyright © 2014 American Chemical Society

This paper is behind a paywall. I did manage a peek at the paper and found that the keyboard is able to somehow harvest the mechanical energy of typing and turn it into electricity so it can self-power. Self-cleaning is made possible by a nanostructure surface modification. An idle thought and a final comment. First, I wonder what happens if you want to or have to share your keyboard? Second, a Jan. 21, 2015 article about the intelligent keyboard by Luke Dormehl for Fast Company notes that the researchers are from the US and China and names two of the institutions involved in this collaboration, Georgia Institute of Technology and the Beijing Institute of Nanoenergy and Nanosystems,.

ETA Jan. 23, 2015: There’s a Georgia Institute of Technology Jan. 21, 2015 news release on EurekAlert about the intelligent keyboard which offers more technical details such as these,

Conventional keyboards record when a keystroke makes a mechanical contact, indicating the press of a specific key. The intelligent keyboard records each letter touched, but also captures information about the amount of force applied to the key and the length of time between one keystroke and the next. Such typing style is unique to individuals, and so could provide a new biometric for securing computers from unauthorized use.

In addition to providing a small electrical current for registering the key presses, the new keyboard could also generate enough electricity to charge a small portable electronic device or power a transmitter to make the keyboard wireless.

An effect known as contact electrification generates current when the user’s fingertips touch a plastic material on which a layer of electrode material has been coated. Voltage is generated through the triboelectric and electrostatic induction effects. Using the triboelectric effect, a small charge can be produced whenever materials are brought into contact and then moved apart.

“Our skin is dielectric and we have electrostatic charges in our fingers,” Wang noted. “Anything we touch can become charged.”

Instead of individual mechanical keys as in traditional keyboards, Wang’s intelligent keyboard is made up of vertically-stacked transparent film materials. Researchers begin with a layer of polyethylene terephthalate between two layers of indium tin oxide (ITO) that form top and bottom electrodes.

Next, a layer of fluorinated ethylene propylene (FEP) is applied onto the ITO surface to serve as an electrification layer that generates triboelectric charges when touched by fingertips. FEP nanowire arrays are formed on the exposed FEP surface through reactive ion etching.

The keyboard’s operation is based on coupling between contact electrification and electrostatic induction, rather than the traditional mechanical switching. When a finger contacts the FEP, charge is transferred at the contact interface, injecting electrons from the skin into the material and creating a positive charge.

When the finger moves away, the negative charges on the FEP side induces positive charges on the top electrode, and equal amounts of negative charges on the bottom electrode. Consecutive keystrokes produce a periodic electrical field that drives reciprocating flows of electrons between the electrodes. Though eventually dissipating, the charges remain on the FEP surface for an extended period of time.

Wang believes the new smart keyboard will be competitive with existing keyboards, in both cost and durability. The new device is based on inexpensive materials that are widely used in the electronics industry.

Self-cleaning products dangerous?

For anyone else out there who hates housecleaning, this is heartbreaking research. Personally, I’m not sure I can ever forgive Professor Jonathan Raff at Indian University for this (from a June 12, 2103 Indiana University news release; also on EurekAlert),

Research by Indiana University [IU] environmental scientists shows that air-pollution-removal technology used in “self-cleaning” paints and building surfaces may actually cause more problems than they solve.

The study finds that titanium dioxide coatings, seen as promising for their role in breaking down airborne pollutants on contact, are likely in real-world conditions to convert abundant ammonia to nitrogen oxide, the key precursor of harmful ozone pollution.

“As air quality standards become more stringent, people are going to be thinking about other technologies that can reduce pollution,” said Jonathan D. Raff, assistant professor in the School of Public and Environmental Affairs at IU Bloomington and an author of the study. “Our research suggests that this may not be one of them.”

Here’s a link to and a citation for this published study,

Photooxidation of Ammonia on TiO2 as a Source of NO and NO2 under Atmospheric Conditions by Mulu A. Kebede, Mychel E. Varner ‡, Nicole K. Scharko, R. Benny Gerber, and Jonathan D. Raff. J. Am. Chem. Soc., 2013, 135 (23), pp 8606–8615 DOI: 10.1021/ja401846x Publication Date (Web): May 30, 2013

Copyright © 2013 American Chemical Society

This research is behind a paywall.

The news release goes on to explain what makes this latest discovery about titanium dioxide particularly relevant,

The findings are timely because the Environmental Protection Agency is developing stricter regulations for ground-level ozone, a primary component in photochemical smog. The pollution is linked to serious health problems, including breathing difficulties and heart and lung disease.

Ozone is produced by reactions involving nitrogen oxides (NOx), which come primarily from motor vehicle emissions, and volatile organic compounds resulting from industrial processes. Equipping cars with catalytic converters has been effective at reducing ozone in urban areas. But different technologies may be needed to meet tighter air-quality standards of the future.

The need has sparked interest in titanium dioxide, a common mineral that is used as a whitening agent in paints and surface coatings. The compound acts as a photocatalyst, breaking down nitrogen oxides, ammonia and other pollutants in the presence of sunlight. “Self-cleaning” surfaces coated with titanium dioxide can break down chemical grime that will otherwise adhere to urban buildings. News stories have celebrated “smog-eating” tiles and concrete surfaces coated with the compound.

But Raff and his colleagues show that, in normal environmental conditions, titanium dioxide also catalyzes the incomplete breakdown of ammonia into nitrogen oxides. Ammonia is an abundant constituent in motor vehicle emissions, and its conversion to nitrogen oxides could result in increases in harmful ozone concentrations.

“We show that uptake of atmospheric NH3 (ammonia) onto surfaces containing TiO2 (titanium dioxide) is not a permanent removal process, as previously thought, but rather a photochemical route for generating reactive oxides of nitrogen that play a role in air pollution and are associated with significant health effects,” the authors write.

Raff, who is also an adjunct professor of chemistry in the IU College of Arts and Sciences, said other studies missed the effect on ammonia because they investigated reactions that occur with high levels of emissions under industrial conditions, not the low levels and actual humidity levels typically present in urban environments.

The findings also call into question other suggestions for using titanium dioxide for environmental remediation — for example, to remove odor-causing organic compounds from emissions produced by confined livestock feeding operations. Titanium dioxide has also been suggested as a geo-engineering substance that could be injected into the upper atmosphere to reflect sunlight away from the Earth and combat global warming.

Further studies in Raff’s lab are aimed at producing better understanding of the molecular processes involved when titanium dioxide catalyzes the breakdown of ammonia. The results could suggest approaches for developing more effective pollution-control equipment as well as improvements in industrial processes involving ammonia.

It’ll be interesting to see how that resolves itself. I imagine some of the civil society groups are going to get very excited about this research.

University of Twente (Holland) researchers love their metaphors: ‘bed of nails’ and ‘soccer balls’

In the last week there have been a couple of news releases from Dutch researchers at the University of Twente’s MESA+ Institute for Nanotechnology which feature some metaphors. The first was a Sept. 20, 2012 news item on Nanowerk (Note: I have removed a link),

Nanotechnology researchers develop ‘bed of nails’ material for clean surfaces

Scientists at the University of Twente’s MESA+ Institute for Nanotechnology have developed a new material that is not only extremely water-repellent but also extremely oil-repellent. It contains minuscule pillars which retain droplets. What makes the material unique is that the droplets stay on top even when they evaporate (slowly getting smaller). This opens the way to such things as smartphone screens that really cannot get dirty. The study appears today in the scientific journal Soft Matter (“Absence of an evaporation-driven wetting transition on omniphobic surfaces”).

The University of Twente Sept. 12, 2012 news release, which originated the news item explores the metaphor and the technology,

Water-repellent surfaces can be used as a coating for windows, obviating the need to clean them ever again. These surfaces have an orderly arrangement of tiny pillars less than one-hundredth of a millimetre high (similar to a bed of nails but on an extremely small scale). Water droplets stay on the tips of the pillars, retaining the shape of perfectly round tiny pearls. As a result they can roll off the surface like marbles, taking all the dirt with them.

Nanotechnologists at the University of Twente have now managed to create a silicon surface that retains not only water droplets but also oil droplets like tiny pearls …. What makes the material unique is that the droplets remain in place even when they evaporate (get smaller).

With existing materials, evaporating droplets drop down between the pillars onto the surface after a while, changing in shape to hemispheres which can no longer simply roll off the surface. The surface can therefore still get dirty. By modifying the edges and the roughness of the minuscule pillars the UT scientists have managed to create a surface on which the droplets do not drop down even when they evaporate but stay neatly on top.

The Sept. 27, 2012 news item on Nanowerk features another metaphor, one which is well known amongst followers of the nanotechnology scene,

Nanotechnologists create miniscule soccer balls

Nanotechnologists at the University of Twente’s MESA+ research institute have developed a method whereby minuscule polystyrene spheres, automatically and under controlled conditions, form an almost perfect ball that looks suspiciously like a football, but about a thousand times smaller. The spheres organize themselves in such a way that they approach the densest arrangement possible, known as ‘closest packing of spheres’. The method provides nanotechnologists with a new way of creating minuscule 3D structures.

Soccer balls usually reference buckminster fullerenes (bucky balls). The news item explains this new use further,

The method developed by the University of Twente scientists involves placing a drop of water containing thousands of polystyrene spheres one micrometre in size (a thousand times smaller than a millimetre) on a superhydrophobic surface. As the drop is allowed to evaporate very slowly under controlled conditions the distances between the spheres become smaller and smaller and surprisingly they form a highly organized 3D structure. The spheres were found to organize themselves of their own accord in such a way that the ball they form approaches the most compact arrangement possible (‘closest packing of spheres’), with 74% of the space filled by the spheres. Like a football, the structures that form are almost perfectly spherical, consisting of a large number of planes. The researchers have therefore dubbed their material ‘microscopic soccer balls’. The minuscule footballs are a hundred to a thousand micrometres in size, containing from ten thousand to as much as a billion of the tiny polystyrene spheres.

There’s more on the University of Twente’s MESA+ Institute for Nanotechnology website but you will need to have Dutch language skills.

It’s always good to see metaphors and I like when scientists (or whoever’s writing the news releases) get create that way.