Tag Archives: sensor

Bloodless diabetes monitor enabled by nanotechnology

There have been some remarkable advances in the treatment of many diseases, diabetes being one of them. Of course, we can always make things better.and monitoring a diabetic patient’s glucose without have to draw blood is an improvement that may occur sooner rather than later as an April 9,2018 news item on Nanowerk suggests,

Scientists have created a non-invasive, adhesive patch, which promises the measurement of glucose levels through the skin without a finger-prick blood test, potentially removing the need for millions of diabetics to frequently carry out the painful and unpopular tests.

The patch does not pierce the skin, instead it draws glucose out from fluid between cells across hair follicles, which are individually accessed via an array of miniature sensors using a small electric current. The glucose collects in tiny reservoirs and is measured. Readings can be taken every 10 to 15 minutes over several hours.

Crucially, because of the design of the array of sensors and reservoirs, the patch does not require calibration with a blood sample — meaning that finger prick blood tests are unnecessary.

The device can measure glucose levels without piercing the skin Courtesy: University of Bath

An April 9, 2018 University of Bath press release, which originated the news item, expands on the theme,

Having established proof of the concept behind the device in a study published in Nature Nanotechnology, the research team from the University of Bath hopes that it can eventually become a low-cost, wearable sensor that sends regular, clinically relevant glucose measurements to the wearer’s phone or smartwatch wirelessly, alerting them when they may need to take action.

An important advantage of this device over others is that each miniature sensor of the array can operate on a small area over an individual hair follicle – this significantly reduces inter- and intra-skin variability in glucose extraction and increases the accuracy of the measurements taken such that calibration via a blood sample is not required.

The project is a multidisciplinary collaboration between scientists from the Departments of Physics, Pharmacy & Pharmacology, and Chemistry at the University of Bath.

Professor Richard Guy, from the Department of Pharmacy & Pharmacology, said: “A non-invasive – that is, needle-less – method to monitor blood sugar has proven a difficult goal to attain. The closest that has been achieved has required either at least a single-point calibration with a classic ‘finger-stick’, or the implantation of a pre-calibrated sensor via a single needle insertion. The monitor developed at Bath promises a truly calibration-free approach, an essential contribution in the fight to combat the ever-increasing global incidence of diabetes.”

Dr Adelina Ilie, from the Department of Physics, said: “The specific architecture of our array permits calibration-free operation, and it has the further benefit of allowing realisation with a variety of materials in combination. We utilised graphene as one of the components as it brings important advantages: specifically, it is strong, conductive, flexible, and potentially low-cost and environmentally friendly. In addition, our design can be implemented using high-throughput fabrication techniques like screen printing, which we hope will ultimately support a disposable, widely affordable device.”

In this study the team tested the patch on both pig skin, where they showed it could accurately track glucose levels across the range seen in diabetic human patients, and on healthy human volunteers, where again the patch was able to track blood sugar variations throughout the day.

The next steps include further refinement of the design of the patch to optimise the number of sensors in the array, to demonstrate full functionality over a 24-hour wear period, and to undertake a number of key clinical trials.

Diabetes is a serious public health problem which is increasing. The World Health Organization predicts the world-wide incidence of diabetes to rise from 171M in 2000 to 366M in 2030. In the UK, just under six per cent of adults have diabetes and the NHS spends around 10% of its budget on diabetes monitoring and treatments. Up to 50% of adults with diabetes are undiagnosed.

An effective, non-invasive way of monitoring blood glucose could both help diabetics, as well as those at risk of developing diabetes, make the right choices to either manage the disease well or reduce their risk of developing the condition. The work was funded by the Engineering and Physical Sciences Research Council (EPSRC), the Medical Research Council (MRC), and the Sir Halley Stewart Trust.

Here’s a link to and a citation for the paper,

Non-invasive, transdermal, path-selective and specific glucose monitoring via a graphene-based platform by Luca Lipani, Bertrand G. R. Dupont, Floriant Doungmene, Frank Marken, Rex M. Tyrrell, Richard H. Guy, & Adelina Ilie. Nature Nanotechnology (2018) doi:10.1038/s41565-018-0112-4 Published online: 09 April 2018

This paper is behind a paywall.

The security of the Internet of Nano-Things with NanoMalaysia’s CEO Dr Rezal Khairi Ahmad

I’ve not come across the Internet of Nano-Things before and I’m always glad to be introduced to something new. In this case, I’m doubly happy as I get to catch up (a little) with the Malaysian nano scene. From an April 19, 2017 article by Avanti Kumar for mis.asia.com (Note: Links have been removed),

After being certified in 2011 as a nanocentre, national applied research agency MIMOS continued to make regular moves to boost Malaysia’s nanotechnology ambitions. This included helping to develop the national graphene action plan (NGAP 2020).

Much of the task of driving and commercialising the NGAP ecosystem is in the hands of NanoMalaysia, which was incorporated in 2011 as a company limited by guarantee (CLG) under Malaysia’s Ministry of Science, Technology and Innovation (MOSTI) to act as a business entity.

During another event in March 2016 where I saw that 360 new products were to be commercialised under NGAP, NanoMalaysia’s chief executive officer Dr. Rezal Khairi Ahmad said that benefits would include a US$5 billion impact on GNI (gross net income) and 9,000 related new jobs by the year 2020.

In his capacity as a keynote speaker at this year’s Computerworld Security Summit in Kuala Lumpur (20 April 2017), Dr Rezal agreed to a security-themed interview on this relatively new industry sector.  This is also part of a series of special security features.

To start, I asked Dr Rezal for a brief run-through of his role.

[RKA]  I’m the founding Chief Executive Officer and also Board Member of NanoMalaysia, Nano Commerce Sdn. Bhd, representing NanoMalaysia’s business interests, the Chairman of NanoVerify Sdn. Bhd, a nanotechnology certification entity and a Director of Nanovation Ventures Sdn. Bhd., an investment arm of NanoMalaysia.

Prior to this, I served as Acting Under-Secretary of National Nanotechnology Directorate, Ministry of Science, Technology and Innovation on the policy aspect of nanotechnology and vice president of [national investment body] Khazanah Nasional touching on human capital and investment research.

NanoMalaysia’s primary role in the development of Malaysia’s National Graphene Action Plan 2020 together with Agensi Inovasi Malaysia and PEMANDU [Performance Management & Delivery Unit attached to Prime Minister’s Office] is a major landmark in our journey to ensure Malaysia stays competitive in the global innovation landscape particularly in nanotechnology, which cuts across all industries including ICT [information and communications technologies].

Can you talk about graphene and its significance to local industry?

Graphene is touted as one of the game-changing advanced materials made of one atom-thick carbon and acknowledged by World Economic Forum [WEF] as no. 4 emerging technology in 2016.

Beyond being a fancy nano material, graphene plays a central role in the development of endogenous hardware aspects of Malaysia’s Internet of Things aspirations or the now evolved Internet of Nano-Things (IoNT). Some of these are:
-·Super small, lightweight and hyper-sensitive low-cost Graphene-based sensors and Radio Frequency ID (RFID)
– Higher speed, Low loss and power consumption graphene based optical transmitter and receiver for 5G systems
– Making IoNT a low-cost and practical industrial and domestic solutions in Malaysia.

Let’s move to the security aspects of nanotechnology: what’s your take on IoNT?

In the context of IoNT, which WEF acknowledged to be the top emerging technology in 2016, the current work-in-progress,  ‘ubiquitous’ deployment of sensors in Malaysia and worldwide, I certainly see increasing data security risks at the sensor, transmission, collection, processing and even analytics levels.

The initial industry approaches to IoNT data security will probably be polarised between cascaded and centralised system approaches.

I think some hacking attacks will obviously focus on data theft. I therefore foresee a trend favouring cascaded security – with both hardware, software and more advanced data encryption technologies in place.

What security steps do you currently advise?

The priority is to tackle potential data theft at every stage of IoNT systems.  The best-available preventive measures should include some versions of cascaded and embedded security in the form of hardware tags and advanced encryption.

To end, what’s your main message for business and IT leaders?

The digital era has removed the clear line that once separated State and Business as well as People. Everything and everyone is more interconnected. We are now an ecosystem both by chance and design. Cyber-attacks can be made to afflict either one and be used to hold any one at ransom thus creating a local or even global systemic chain reaction effect.

The connected world presents endless commercial, social and environmental development opportunities…and threats. The development and deployment of emerging cyber-related technologies, in particular IoNT – which promises a market size of US$9.69 billion by 2020 – should be done responsibly in the form of infused data security technologies to ensure prolific market acceptance and profitable returns.

For our part, NanoMalaysia is working with various parties locally and abroad push Malaysia’s strategic industry sectors to be relevant to the Fourth Industrial Revolution supported by cyber-physical systems manifesting into full automation, robots, artificial intelligence, de-centralised power generation, energy storage, water and food supplies, remote assets and logistics management and custom manufacturing requiring secured data sensing, traffic and analytics systems in place.

If you have the time, I advise reading the article in its entirety.

Semi-living gloves as sensors

Researchers at the Massachusetts Institute of Technology (MIT) are calling it a new ‘living material’ according to a Feb. 16, 2017 news item on Nanowerk,

Engineers and biologists at MIT have teamed up to design a new “living material” — a tough, stretchy, biocompatible sheet of hydrogel injected with live cells that are genetically programmed to light up in the presence of certain chemicals.

Researchers have found that the hydrogel’s mostly watery environment helps keep nutrients and programmed bacteria alive and active. When the bacteria reacts to a certain chemical, the bacteria are programmed to light up, as seen on the left. Courtesy of the researchers

A Feb. 15, 2017 MIT news release, which originated the news item, provides more information about this work,

In a paper published this week in the Proceedings of the National Academy of Sciences, the researchers demonstrate the new material’s potential for sensing chemicals, both in the environment and in the human body.

The team fabricated various wearable sensors from the cell-infused hydrogel, including a rubber glove with fingertips that glow after touching a chemically contaminated surface, and bandages that light up when pressed against chemicals on a person’s skin.

Xuanhe Zhao, the Robert N. Noyce Career Development associate professor of mechanical engineering at MIT, says the group’s living material design may be adapted to sense other chemicals and contaminants, for uses ranging from crime scene investigation and forensic science, to pollution monitoring and medical diagnostics.

“With this design, people can put different types of bacteria in these devices to indicate toxins in the environment, or disease on the skin,” says Timothy Lu, associate professor of biological engineering and of electrical engineering and computer science. “We’re demonstrating the potential for living materials and devices.”

The paper’s co-authors are graduate students Xinyue Liu, Tzu-Chieh Tang, Eleonore Tham, Hyunwoo Yuk, and Shaoting Lin.

Infusing life in materials

Lu and his colleagues in MIT’s Synthetic Biology Group specialize in creating biological circuits, genetically reprogramming the biological parts in living cells such as E. coli to work together in sequence, much like logic steps in an electrical circuit. In this way, scientists can reengineer living cells to carry out specific functions, including the ability to sense and signal the presence of viruses and toxins.

However, many of these newly programmed cells have only been demonstrated in situ, within Petri dishes, where scientists can carefully control the nutrient levels necessary to keep the cells alive and active — an environment that has proven extremely difficult to replicate in synthetic materials.

“The challenge to making living materials is how to maintain those living cells, to make them viable and functional in the device,” Lu says. “They require humidity, nutrients, and some require oxygen. The second challenge is how to prevent them from escaping from the material.”

To get around these roadblocks, others have used freeze-dried chemical extracts from genetically engineered cells, incorporating them into paper to create low-cost, virus-detecting diagnostic strips. But extracts, Lu says, are not the same as living cells, which can maintain their functionality over a longer period of time and may have higher sensitivity for detecting pathogens.

Other groups have seeded heart muscle cells onto thin rubber films to make soft, “living” actuators, or robots. When bent repeatedly, however, these films can crack, allowing the live cells to leak out.

A lively host

Zhao’s group in MIT’s Soft Active Materials Laboratory has developed a material that may be ideal for hosting living cells. For the past few years, his team has come up with various formulations of hydrogel — a tough, highly stretchable, biocompatible material made from a mix of polymer and water. Their latest designs have contained up to 95 percent water, providing an environment which Zhao and Lu recognized might be suitable for sustaining living cells. The material also resists cracking even when repeatedly stretched and pulled — a property that could help contain cells within the material.

The two groups teamed up to integrate Lu’s genetically programmed bacterial cells into Zhao’s sheets of hydrogel material. They first fabricated layers of hydrogel and patterned narrow channels within the layers using 3-D printing and micromolding techniques. They fused the hydrogel to a layer of elastomer, or rubber, that is porous enough to let in oxygen. They then injected E. coli cells into the hydrogel’s channels. The cells were programmed to fluoresce, or light up, when in contact with certain chemicals that pass through the hydrogel, in this case a natural compound known as DAPG (2,4-diacetylphloroglucinol).

The researchers then soaked the hydrogel/elastomer material in a bath of nutrients which infused throughout the hydrogel and helped to keep the bacterial cells alive and active for several days.

To demonstrate the material’s potential uses, the researchers first fabricated a sheet of the material with four separate, narrow channels, each containing a type of bacteria engineered to glow green in response to a different chemical compound. They found each channel reliably lit up when exposed to its respective chemical.

Next, the team fashioned the material into a bandage, or “living patch,” patterned with channels containing bacteria sensitive to rhamnose, a naturally occurring sugar. The researchers swabbed a volunteer’s wrist with a cotton ball soaked in rhamnose, then applied the hydrogel patch, which instantly lit up in response to the chemical.

Finally, the researchers fabricated a hydrogel/elastomer glove whose fingertips contained swirl-like channels, each of which they filled with different chemical-sensing bacterial cells. Each fingertip glowed in response to picking up a cotton ball soaked with a respective compound.

The group has also developed a theoretical model to help guide others in designing similar living materials and devices.

“The model helps us to design living devices more efficiently,” Zhao says. “It tells you things like the thickness of the hydrogel layer you should use, the distance between channels, how to pattern the channels, and how much bacteria to use.”

Ultimately, Zhao envisions products made from living materials, such as gloves and rubber soles lined with chemical-sensing hydrogel, or bandages, patches, and even clothing that may detect signs of infection or disease.

Here’s a link to and a citation for the paper,

Stretchable living materials and devices with hydrogel–elastomer hybrids hosting programmed cells by Xinyue Liu, Tzu-Chieh Tang, Eléonore Tham, Hyunwoo Yuk, Shaoting Lin, Timothy K. Lu, and Xuanhe Zhao. PNAS February 15, 2017 doi: 10.1073/pnas.1618307114 Published online before print February 15, 2017

This paper appears to be open access.

Little black graphene dress

Graphene Dress. Courtesy: intu

I don’t think there are many women who can carry off this garment. Of course that’s not the point as the dress is designed to show off its technical capabilities. A Jan. 31, 2017 news item on Nanowerk announces the little black graphene dress (lbgd?),

Science and fashion have been brought together to create the world’s most technically advanced dress, the intu Little Black Graphene Dress.

The new prototype garment showcases the future uses of the revolutionary, Nobel Prize winning material graphene and incorporating it into fashion for the first time, in the ultimate wearable tech statement garment.

A Jan. 25, 2017 National Graphene Institute at University of Manchester press release, which originated the news item, expands on the theme,

The project between intu Trafford Centre, renowned wearable tech company Cute Circuit which has made dresses for the likes of Katy Perry and Nicole Scherzinger and the National Graphene Institute at The University of Manchester, uses graphene in a number of innovative ways to create the world’s most high tech LBD – highlighting the material’s incredible properties.

The dress is complete with a graphene sensor which captures the rate in which the wearer is breathing via a contracting graphene band around the models waist, the micro LED which is featured across the bust on translucent conductive graphene responds to the sensor making the LED flash and changing colour depending on breathing rate. It marks a major step in the future uses of graphene in fashion where it is hoped the highly conductive transparent material could be used to create designs which act as screens showcasing digital imagery which could be programmed to change and updated by the wearer meaning one garment could be in any colour hue or design.

The 3D printed graphene filament shows the intricate structural detail of graphene in raised diamond shaped patterns and showcases graphene’s unrivalled conductivity with flashing LED lights.

The high tech LBD can be controlled by The Q app created by Cute Circuit to change the way the garment illuminates.

The dress was created by the Manchester shopping centre to celebrate Manchester’s crown as the European City of Science. The dress will then be on display at intu Trafford Centre, it will then be available for museums and galleries to loan for fashion displays.

Richard Paxton, general manager at intu Trafford Centre said: “We have a real passion for fashion and fashion firsts, this dress is a celebration of Manchester, its amazing love for innovation and textiles, showcasing this new wonder material in a truly unique and exciting way. It really is the world’s most high-tech dress featuring the most advanced super-material and something intu is very proud to have created in collaboration with Cute Circuit and the National Graphene Institute. Hopefully this project inspires more people to experiment with graphene and its wide range of uses.”

Francesca Rosella, Chief Creative Director for Cute Circuit said: “This was such an exciting project for us to get involved in, graphene has never been used in the fashion industry and being the first to use it was a real honour allowing us to have a lot of fun creating the stunning intu Little Black Graphene Dress, and showcasing graphene’s amazing properties.”

Dr Paul Wiper, Research Associate, National Graphene Institute said: “This is a fantastic project, graphene is still very much at its infancy for real-world applications and showcasing its amazing properties through the forum of fashion is very exciting. The dress is truly a one of a kind and shows what creativity, imagination and a desire to innovate can create using graphene and related two-dimensional materials.”

The dress is modelled by Britain’s Next Top Model finalist Bethan Sowerby who is from Manchester and used to work at intu Trafford Centre’s Top Shop.

Probably not coming soon to a store near you.

DNA as a sensor

McMaster University (Ontario, Canada) researchers have developed a technique for using DNA (deoxyribonucleic acid) as a sensor according to a July 7, 2016 news item on ScienceDaily,

Researchers at McMaster University have established a way to harness DNA as the engine of a microscopic “machine” they can turn on to detect trace amounts of substances that range from viruses and bacteria to cocaine and metals.

“It’s a completely new platform that can be adapted to many kinds of uses,” says John Brennan, director of McMaster’s Biointerfaces Insitute and co-author of a paper in the journal Nature Communications that describes the technology. “These DNA nano-architectures are adaptable, so that any target should be detectable.”

A July 7, 2016 McMaster University news release (also on EurekAlert), which originated the news item, expands on the theme,

DNA is best known as a genetic material, but is also a very programmable molecule that lends itself to engineering for synthetic applications.

The new method shapes separately programmed pieces of DNA material into pairs of interlocking circles.

The first remains inactive until it is released by the second, like a bicycle wheel in a lock. When the second circle, acting as the lock, is exposed to even a trace of the target substance, it opens, freeing the first circle of DNA, which replicates quickly and creates a signal, such as a colour change.

“The key is that it’s selectively triggered by whatever we want to detect,” says Brennan, who holds the Canada Research Chair in Bioanalytical Chemistry and Biointerfaces. “We have essentially taken a piece of DNA and forced it to do something it was never designed to do. We can design the lock to be specific to a certain key. All the parts are made of DNA, and ultimately that key is defined by how we build it.”

The idea for the “DNA nanomachine” comes from nature itself, explains co-author Yingfu Li, who holds the Canada Research Chair in Nucleic Acids Research.

“Biology uses all kinds of nanoscale molecular machines to achieve important functions in cells,” Li says. “For the first time, we have designed a DNA-based nano-machine that is capable of achieving ultra-sensitive detection of a bacterial pathogen.”

The DNA-based nanomachine is being further developed into a user-friendly detection kit that will enable rapid testing of a variety of substances, and could move to clinical testing within a year.

Here’s a link to and a citation for the paper,

Programming a topologically constrained DNA nanostructure into a sensor by Meng Liu, Qiang Zhang, Zhongping Li, Jimmy Gu, John D. Brennan, & Yingfu Li. Nature Communications 7, Article number: 12074  doi:10.1038/ncomms12074 Published 23 June 2016

This paper is open access.

Sensing fuel leaks and fuel-based explosives with a nanofibril composite

A March 28, 2016 news item on Nanowerk highlights some research from the University of Utah (US),

Alkane fuel is a key ingredient in combustible material such as gasoline, airplane fuel, oil — even a homemade bomb. Yet it’s difficult to detect and there are no portable scanners available that can sniff out the odorless and colorless vapor.

But University of Utah engineers have developed a new type of fiber material for a handheld scanner that can detect small traces of alkane fuel vapor, a valuable advancement that could be an early-warning signal for leaks in an oil pipeline, an airliner, or for locating a terrorist’s explosive.

A March 25, 2016 University of Utah news release, which originated the news item, provides a little more detail,

Currently, there are no small, portable chemical sensors to detect alkane fuel vapor because it is not chemically reactive. The conventional way to detect it is with a large oven-sized instrument in a lab.

“It’s not mobile and very heavy,” Zang [Ling Zang, University of Utah materials science and engineering professor] says of the larger instrument. “There’s no way it can be used in the field. Imagine trying to detect the leak from a gas valve or on the pipelines. You ought to have something portable.”

So Zang’s team developed a type of fiber composite that involves two nanofibers transferring electrons from one to the other.

That kind of interaction would then signal the detector that the alkane vapor is present. Vaporsens, a University of Utah spinoff company, has designed a prototype of the handheld detector with an array of 16 sensor materials that will be able to identify a broad range of chemicals including explosives.  This new composite material will be incorporated into the sensor array to include the detection of alkanes. Vaporsens plans to introduce the device on the market in about a year and a half, says Zang, who is the company’s chief science officer.

Such a small sensor device that can detect alkane vapor will benefit three main categories:

  • Oil pipelines. If leaks from pipelines are not detected early enough, the resulting leaked oil could contaminate the local environment and water sources. Typically, only large leaks in pipelines can be detected if there is a drop in pressure. Zang’s portable sensor — when placed along the pipeline — could detect much smaller leaks before they become bigger.
  • Airplane fuel tanks. Fuel for aircraft is stored in removable “bladders” made of flexible fabric. The only way a leak can be detected is by seeing the dyed fuel seeping from the plane and then removing the bladder to inspect it. Zang’s sensors could be placed around the bladder to warn a pilot if a leak is occurring in real time and where it is located.
  • Security. The scanner will be designed to locate the presence of explosives such as bombs at airports or in other buildings. Many explosives, such as the bomb used in the Oklahoma City bombing in 1995, use fuel oils like diesel as one of its major components. These fuel oils are forms of alkane.

The research was funded by the Department of Homeland Security, National Science Foundation and NASA. The lead author of the paper is University of Utah materials science and engineering doctoral student Chen Wang, and [Benjamin] Bunes is the co-author.

Here’s a link to and a citation for the paper,

Interfacial Donor–Acceptor Nanofibril Composites for Selective Alkane Vapor Detection by Chen Wang, Benjamin R. Bunes, Miao Xu, Na Wu, Xiaomei Yang, Dustin E. Gross, and Ling Zang. ACS Sens DOI: 10.1021/acssensors.6b00018 Publication Date (Web): March 09, 2016

Copyright © 2016 American Chemical Society

This paper is behind a paywall.

Glove sensors and toxic substances

Gloves that change colour as a signal you’re handling toxic substances have been developed by a research team at  the Fraunhofer Institute according to a May 2, 2013 Fraunhofer Research Institution for Modular Solid State Technologies EMFT news release (also on EurekAlert as a re-issued June 7, 2013 news release),

Employees in chemical production, the semiconductor industry or in laboratories are frequently exposed to harmful substances. The problem: Many of these aggressive substances are imperceptible to human senses, which makes handling them so risky. That’s why there is a broad range of solutions that employers can use to protect their staff from hazardous substances – from highly sensitive measuring equipment to heat imaging cameras. Soon, this spectrum will be enhanced by one more clever solution that is easy to handle, and that dispenses with a power supply. Researchers at the Fraunhofer Research Institution for Modular Solid State Technologies EMFT in Regensburg have engineered a glove that recognizes if toxic substances are present in the surrounding air.

Here’s an image of the glove,

The sensor glove turns blue in the presence of hazardous substances. (© Fraunhofer EMFT)

The sensor glove turns blue in the presence of hazardous substances. (© Fraunhofer EMFT)

The news release provides more details,

The protective glove is equipped with custom-made sensor materials and indicates the presence of toxic substances by changing colors. In this regard, the scientists adapted the materials to the corresponding analytes, and thus, the application. The color change – from colorless (no toxic substance) to blue (toxic substance detected), for example – warns the employee immediately. …

….

The warning signal is triggered by an indicator dye integrated into the glove that reacts to the presence of analytes, in this case, the toxic substances. The experts at EMFT used a variety of techniques in order to furnish textiles with sensor-activated dyes. The sensor-activated dyes are applied to the clothing with the customary dye and print process, for example, by affixing them in an immersion bath. Previously, the researchers used targeted chemical modification to adapt the color molecules to the fiber properties of the respective textile. Alternatively, the textiles can also be coated with sensor particles that are furnished with sensor dyes. For this purpose, the scientists integrated the dye molecules either into commercial pigments or they built them up on an entirely synthetic basis. The pigments are then manufactured according to the customary textile finishing process, for instance, the sensor particles are also suitable for silkscreening. “Which version we opt for depends on the requirements of the planned application,” says Trupp [Dr. Sabine Trupp, head of the Fraunhofer EMFT Sensor Materials group].

The challenge lies foremost in the tailored development of sensor dyes. “The dye molecule must detect a specific analyte in a targeted manner – only then will a chemical reaction occur. Moreover, the dye must adhere securely; it cannot disappear due to washing. We aim for the customer’s preferences in the color selection as well. All of these aspects must be kept in mind when developing the molecule and pigment properties,” explains Trupp.

The technology could be extended to do more and could be adapted for other applications (from the news release),

The expert already has new ideas about how the solution could be developed further. For example, a miniaturized sensor module, integrated into textiles, could record toxic substances, store the measurement data and even transmit them to a main unit. This way, you could document how frequently an individual within a hazardous environment was exposed to poisonous concentrations over a longer period of time.

The researchers also envision other potential applications in the foodstuffs industry: In the future, color indicator systems integrated into foils or bottle closures are intended to make the quality status of the packaged foods visible. Because the sell-by date does not represent a guarantee of any kind. Foodstuffs may often spoil prematurely – unnoticed by the consumer – due to a packaging error, or in the warehousing, or due to disruptions in the refrigeration chain. Oil-based and fat-containing products are specifically prone to this, as are meats, fish and ready meals.

The notion that food packaging could be designed to include sensors that alert consumers and retailers about product spoilage is not new and was mentioned recently and briefly in my Mar. 25, 2013 posting which featured excerpts from an interview with biotechnologist Christoph Meili about nanotechnology-enabled food packaging.

Nano sense of snow

According to a Dec. 19, 2012 news item on Azonano there’s a nanotechnology-enabled sensor which can identify snow depth,

Snow is the be-all and end-all for alpine ski resorts. Now a tiny sensor has been developed to determine how much cold gold there is on the slopes and how much more should be produced. The sensor is based on Norwegian radar technology and is no larger than a match head.

The processor chip from Novelda is the result of high-level nanotechnology. The minuscule Norwegian-designed silicon chip has already become an international success. Customers around the world are creating applications based on the technology.

The US-based company Flat Earth has drawn on Novelda’s technology to develop the SDS-715 snow-depth sensor. [emphasis mine] It is capable of measuring snow depth from 15 cm to 2 m with a margin of error of 3.5 cm.

The sensor is mounted beneath the vehicle that prepares the tracks. Snow depth is measured at one-second intervals. A separate application can be used to display snow depths via Google Earth.

There are widespread applications for the nanoscale sensor. Eirik Næss-Ulseth, Chairman of the Board in Novelda, envisions integrating the chips into athletic garments to replace pulse sensors that are currently held in place with an elastic band.

“We have already proven that the chips can be used to measure pulse and breathing rates at a distance,” he explains.

Novelda was founded as a spin-off company from the University in Oslo. …

The Research Council of Norway provided the Dec. 17, 2012 news release, written by Siw Ellen Jakobsen/Else Lie and translated by Glenn Wells/Carol B. Eckmann, which originated the news item. Oddly, Novelda issued a June 5, 2011 news release about a similar, if not identical, product,

Flat Earth Incorporated announced today they have developed the first mobile snow depth sensor based on the Novelda AS NVA6000 CMOS impulse radar chip. The SDS-715 provides a non-contact approach for determining snow depth on the go. [emphasis mine] Measurement range is 0.15 to 2.0 meters with an accuracy of approximately 3.5 cm, snow condition dependent.

This rugged low cost snow depth measurement system is designed for snow grooming operations at Alpine and Nordic ski resorts. Snow depth beneath the snowcat is measured every second, approximately every 3 meters at 8 kmph. The SDS-715 is cheaper than current ground penetrating radar systems on the market today. When used with Flat Earth’s CatWorks Snowcat navigation and information system, depth maps of the resort trails can be created and viewed in Google Earth.

For those new to marketing and promotion, it never hurts to reissue or send more information about a previously announced product, especially when it can be tied in with a season. Still, this is a bit longer than usual between campaigns.

For anyone interested in Flat Earth; nanoscale radar products and consulting, the company’s website is under construction and due to be unveiled sometime December 2012 (or, later this month).

Nanocanaries don’t die

It’s upsetting to think about the canaries in the mines singing to their heart’s content only to topple over and die when toxic gases make their presence felt during the mining process. The alternative, of course, is to sacrifice miners. Thankfully, choosing the lesser of two evils will no longer be necessary (actually, I don’t they’ve used canaries in quite a while) as scientists work on sensors that can detect any number of things not just toxic gases in the mines. The University of Massachusetts at Lowell is the latest to announce work on sensors (from the Nov. 15, 2012 news item on Nanowerk),

To detect the toxicity of engineered nanomaterials, such as carbon nanotubes, on living cells, electrical engineering Assoc. Prof. Joel Therrien — along with biology Prof. Susan Braunhut, chemistry Prof. Kenneth Marx and work environment Asst. Prof. Dhimiter Bello — has developed a “nanocanary,” the modern-day, high-tech equivalent of the canary in a coal mine that warned miners of dangerous buildups of toxic gases in the mine shaft.
The nanocanary is an ultrasensitive biosensor designed to continuously monitor tiny physiological changes in the live cells contained within it.

The Nov. 14, 2012 news release by Edwin L. Aguirre, which originated the news item, mentions a recent podcast by one of the researchers (Joel Therrien),

In a recent podcast produced by the Museum of Science in Boston, Therrien talked about the importance of studying how nano-sized particles affect human health and the environment as well as in the safe development of commercial nano products.

“Our biosensor has a wide range of applications, from testing for toxicity in nanomanufacturing to drug development and customized cancer therapeutics,” notes Therrien.

“In testing the toxicity of carbon nanotubes, for example, since the sensor can directly detect adverse effects on living cells, we are able to identify the threshold concentration at which carbon nanotubes lead to the cells’ death,” he explains. “The sensor can also be used to test the response of normal and cancerous cells to drug therapies. In the future, this technology may help guide oncologists in selecting the most appropriate drug for a cancer patient. We also see the potential for this to partially replace animals in testing drugs and other products.”

Therrien’s 16 min. podcast can be heard here.