Tag Archives: Sijie Lin

Smaller (20nm vs 110nm) silver nanoparticles are more likely to absorbed by fish

An Oct. 8, 2015 news item on Nanowerk offers some context for why researchers at the University of California at Los Angeles (UCLA) are studying silver nanoparticles and their entry into the water system,

More than 2,000 consumer products today contain nanoparticles — particles so small that they are measured in billionths of a meter.

Manufacturers use nanoparticles to help sunscreen work better against the sun’s rays and to make athletic apparel better at wicking moisture away from the body, among many other purposes.

Of those products, 462 — ranging from toothpaste to yoga mats — contain nanoparticles made from silver, which are used for their ability to kill bacteria. But that benefit might be coming at a cost to the environment. In many cases, simply using the products as intended causes silver nanoparticles to wind up in rivers and other bodies of water, where they can be ingested by fish and interact with other marine life.

For scientists, a key question has been to what extent organisms retain those particles and what effects they might have.

I’d like to know where they got those numbers “… 2,000 consumer products …” and “… 462 — ranging from toothpaste to yoga mats — contain nanoparticles made from silver… .”

Getting back to the research, an Oct. 7, 2015 UCLA news release, which originated the news item, describes the work in more detail,

A new study by the University of California Center for Environmental Implications of Nanotechnology has found that smaller silver nanoparticles were more likely to enter fish’s bodies, and that they persisted longer than larger silver nanoparticles or fluid silver nitrate. The study, published online in the journal ACS Nano, was led by UCLA postdoctoral scholars Olivia Osborne and Sijie Lin, and Andre Nel, director of UCLA’s Center for Environmental Implications of Nanotechnology and associate director of the California NanoSystems Institute at UCLA.

Nel said that although it is not yet known whether silver nanoparticles are harmful, the research team wanted to first identify whether they were even being absorbed by fish. CEIN, which is funded by the National Science Foundation, is focused on studying the effects of nanotechnology on the environment.

In the study, researchers placed zebrafish in water that contained fluid silver nitrate and two sizes of silver nanoparticles — some measuring 20 nanometers in diameter and others 110 nanometers. Although the difference in size between these two particles is so minute that it can only be seen using high-powered transmission electron microscopes, the researchers found that the two sizes of particles affected the fish very differently.

The researchers used zebrafish in the study because they have some genetic similarities to humans, their embryos and larvae are transparent (which makes them easier to observe). In addition, they tend to absorb chemicals and other substances from water.

Osborne said the team focused its research on the fish’s gills and intestines because they are the organs most susceptible to silver exposure.

“The gills showed a significantly higher silver content for the 20-nanometer than the 110-nanometer particles, while the values were more similar in the intestines,” she said, adding that both sizes of the silver particles were retained in the intestines even after the fish spent seven days in clean water. “The most interesting revelation was that the difference in size of only 90 nanometers made such a striking difference in the particles’ demeanor in the gills and intestines.”

The experiment was one of the most comprehensive in vivo studies to date on silver nanoparticles, as well as the first to compare silver nanoparticle toxicity by extent of organ penetration and duration with different-sized particles, and the first to demonstrate a mechanism for the differences.

Osborne said the results seem to indicate that smaller particles penetrated deeper into the fishes’ organs and stayed there longer because they dissolve faster than the larger particles and are more readily absorbed by the fish.

Lin said the results indicate that companies using silver nanoparticles have to strike a balance that recognizes their benefits and their potential as a pollutant. Using slightly larger nanoparticles might help make them somewhat safer, for example, but it also might make the products in which they’re used less effective.

He added that data from the study could be translated to understand how other nanoparticles could be used in more environmentally sustainable ways.

Nel said the team’s next step is to determine whether silver particles are potentially harmful. “Our research will continue in earnest to determine what the long-term effects of this exposure can be,” he said.

Here’s an image illustrating the findings,

Courtesy ACS Nano

Courtesy ACS Nano

Here’s a link to and a citation for the paper,

Organ-Specific and Size-Dependent Ag Nanoparticle Toxicity in Gills and Intestines of Adult Zebrafish by Olivia J. Osborne, Sijie Lin, Chong Hyun Chang, Zhaoxia Ji, Xuechen Yu, Xiang Wang, Shuo Lin, Tian Xia, and André E. Nel. ACS Nano, Article ASAP DOI: 10.1021/acsnano.5b04583 Publication Date (Web): September 1, 2015

Copyright © 2015 American Chemical Society

This paper is behind a paywall.

Copper nanoparticles, toxicity research, colons, zebrafish, and septic tanks

Alicia Taylor, a graduate student at UC Riverside, surrounded by buckets of effluent from the septic tank system she used for her research. Courtesy: University of California at Riverside

Alicia Taylor, a graduate student at UC Riverside, surrounded by buckets of effluent from the septic tank system she used for her research. Courtesy: University of California at Riverside

Those buckets of efflluent are strangely compelling. I think it’s the abundance of orange. More seriously, a March 2, 2015 news item on Nanowerk poses a question about copper nanoparticles,

What do a human colon, septic tank, copper nanoparticles and zebrafish have in common?

They were the key components used by researchers at the University of California, Riverside and UCLA [University of California at Los Angeles] to study the impact copper nanoparticles, which are found in everything from paint to cosmetics, have on organisms inadvertently exposed to them.

The researchers found that the copper nanoparticles, when studied outside the septic tank, impacted zebrafish embryo hatching rates at concentrations as low as 0.5 parts per million. However, when the copper nanoparticles were released into the replica septic tank, which included liquids that simulated human digested food and household wastewater, they were not bioavailable and didn’t impact hatching rates.

A March 2, 2015 University of California at Riverside (UCR) news release (also on EurekAlert), which originated the news item, provides more detail about the research,

“The results are encouraging because they show with a properly functioning septic tank we can eliminate the toxicity of these nanoparticles,” said Alicia Taylor, a graduate student working in the lab of Sharon Walker, a professor of chemical and environmental engineering at the University of California, Riverside’s Bourns College of Engineering.

The research comes at a time when products with nanoparticles are increasingly entering the marketplace. While the safety of workers and consumers exposed to nanoparticles has been studied, much less is known about the environmental implications of nanoparticles. The Environmental Protection Agency is currently accessing the possible effects of nanomaterials, including those made of copper, have on human health and ecosystem health.

The UC Riverside and UCLA [University of California at Los Angeles] researchers dosed the septic tank with micro copper and nano copper, which are elemental forms of copper but encompass different sizes and uses in products, and CuPRO, a nano copper-based material used as an antifungal agent to spray agricultural crops and lawns.

While these copper-based materials have beneficial purposes, inadvertent exposure to organisms such as fish or fish embryos has not received sufficient attention because it is difficult to model complicated exposure environments.

The UC Riverside researchers solved that problem by creating a unique experimental system that consists of the replica human colon and a replica two-compartment septic tank, which was originally an acyclic septic tank. The model colon is made of a custom-built 20-inch-long glass tube with a 2-inch diameter with a rubber stopper at both ends and a tube-shaped membrane typically used for dialysis treatments within the glass tube.

To simulate human feeding, 100 milliliters of a 20-ingredient mixture that replicated digested food was pumped into the dialysis tube at 9 a.m., 3 p.m. and 9 p.m. for five-day-long experiments over nine months.

The septic tank was filled with waste from the colon along with synthetic greywater, which is meant to simulate wastewater from sources such as sinks and bathtubs, and the copper nanoparticles. The researchers built a septic tank because 20 to 30 percent of American households rely on them for sewage treatment. Moreover, research has shown up to 40 percent of septic tanks don’t function properly. This is a concern if the copper materials are disrupting the function of the septic system, which would lead to untreated waste entering the soil and groundwater.

Once the primary chamber of the septic system was full, liquid began to enter the second chamber. Once a week, the effluent was drained from the secondary chamber and it was placed into sealed five-gallon containers. The effluent was then used in combination with zebrafish embryos in a high content screening process using multiwall plates to access hatching rates.

The remaining effluent has been saved and sits in 30 five-gallon buckets in a closet at UC Riverside because some collaborators have requested samples of the liquid for their experiments.

Here’s a link to and a citation for the paper,

Understanding the Transformation, Speciation, and Hazard Potential of Copper Particles in a Model Septic Tank System Using Zebrafish to Monitor the Effluent* by Sijie Lin, Alicia A. Taylor, Zhaoxia Ji, Chong Hyun Chang, Nichola M. Kinsinger, William Ueng, Sharon L. Walker, and André E. Nel. ACS Nano, 2015, 9 (2), pp 2038–2048 DOI: 10.1021/nn507216f
Publication Date (Web): January 27, 2015

Copyright © 2015 American Chemical Society

This paper is behind a paywall.

* Link added March 10, 2015.