Tag Archives: Singapore

Are there any leaders in the ‘graphene race’?

Tom Eldridge, a director and co-founder of Fullerex, has written a Jan. 5, 2017 essay titled: Is China still leading the graphene race? for Nanotechnology Now. Before getting to the essay, here’s a bit more about Fullerex and Tom Eldridge’s qualifications. From Fullerex’s LinkedIn description,

Fullerex is a leading independent broker of nanomaterials and nano-intermediates. Our mission is to support the advancement of nanotechnology in creating radical, transformative and sustainable improvement to society. We are dedicated to achieving these aims by accelerating the commercialisation and usage of nanomaterials across industry and beyond. Fullerex is active in market development and physical trading of advanced materials. We generate demand for nanomaterials across synergistic markets by stimulating innovation with end-users and ensuring robust supply chains are in place to address the growing commercial trade interest. Our end-user markets include Polymers and Polymer Composites, Coatings, Tyre and Rubber, Cementitious Composites, 3D Printing and Printed Electronics, the Energy sector, Lubricating Oils and Functional Fluids. The materials we cover: Nanomaterials: Includes fullerenes, carbon nanotubes and graphene, metal and metal oxide nanoparticles, and organic-inorganic hybrids. Supplied as raw nanopowders or ready-to-use dispersions and concentrates. Nano-intermediates: Producer goods and semi-finished products such as nano-enabled coatings, polymer masterbatches, conductive inks, thermal interface materials and catalysts.

As for Tom Eldridge, here’s more about him, his brother, and the company from the Fullerex About page,

Fullerex was founded by Joe and Tom Eldridge, brothers with a keen interest in nanotechnology and the associated emerging market for nanomaterials.

Joe has a strong background in trading with nearly 10 years’ experience as a stockbroker, managing client accounts for European Equities and FX. At University he read Mathematics at Imperial College London gaining a BSc degree and has closely followed the markets for disruptive technologies and advanced materials for a number of years.

Tom worked in the City of London for 7 years in commercial roles throughout his professional career, with an expertise in market data, financial and regulatory news. In his academic background, he earned a BSc degree in Physics and Philosophy at Kings College London and is a member of the Institute of Physics.

As a result, Fullerex has the strong management composition that allows the company to support the growth of the nascent and highly promising nanomaterials industry. Fullerex is a flexible company with drive, enthusiasm and experience, committed to aiding the development of this market.

Getting back to the matter at hand, that’s a rather provocative title for Tom Eldridge’s essay,. given that he’s a Brit and (I believe) the Brits viewed themselves as leaders in the ‘graphene race’ but he offers a more nuanced analysis than might be expected from the title. First, the patent landscape (from Eldridge’s Jan. 5, 2017 essay),

As competition to exploit the “wonder material” has intensified around the world, detailed reports have so far been published which set out an in-depth depiction of the global patent landscape for graphene, notably from CambridgeIP and the UK Intellectual Property Office, in 2013 and 2015 respectively. Ostensibly the number of patents and patent applications both indicated that China was leading the innovation in graphene technology. However, on closer inspection it became less clear as to how closely the patent figures themselves reflect actual progress and whether this will translate into real economic impact. Some of the main reasons to be doubtful included:

– 98% of the Chinese patent applications only cover China, so therefore have no worldwide monopoly.
– A large number of the Chinese patents are filed in December, possibly due to demand to meet patent quotas. The implication being that the patent filings follow a politically driven agenda, rather than a purely innovation or commercially driven agenda.
– In general, inventors could be more likely to file for patent protection in some countries rather than others e.g. for tax purposes. Which therefore does not give a truly accurate picture of where all the actual research activity is based.
– Measuring the proportion of graphene related patents to overall patents is more indicative of graphene specialisation, which shows that Singapore has the largest proportion of graphene patents, followed by China, then South Korea.

(Intellectual Property Office, 2015), (Ellis, 2015), (CambridgeIP, 2013)

Then, there’s the question of production,

Following the recent launch of the latest edition of the Bulk Graphene Pricing Report, which is available exclusively through The Graphene Council, Fullerex has updated its comprehensive list of graphene producers worldwide, and below is a summary of the number of graphene producers by country in 2017.

Summary Table Showing the Number of Graphene Producers by Country and Region

The total number of graphene producers identified is 142, across 27 countries. This research expands upon previous surveys of the graphene industry, such as the big data analysis performed by Nesta in 2015 (Shapira, 2015). The study by Nesta [formerly  NESTA, National Endowment for Science, Technology and the Arts) is an independent charity that works to increase the innovation capacity of the UK; see Wikipedia here for more about NESTA] revealed 65 producers throughout 16 countries but was unable to glean accurate data on producers in Asia, particularly China.

As we can now see however from the data collected by Fullerex, China has the largest number of graphene producers, followed by the USA, and then the UK.

In addition to having more companies active in the production and sale of graphene than any other country, China also holds about 2/3rds of the global production capacity, according to Fullerex.

Eldridge goes on to note that the ‘graphene industry’ won’t truly grow and develop until there are substantive applications for the material. He also suggests taking another look at the production figures,

As with the patent landscape, rather than looking at the absolute figures, we can review the numbers in relative terms. For instance, if we normalise to account for the differences in the size of each country, by looking at the number of producers as a proportion of GDP, we see the following: Spain (7.18), UK (4.48), India (3.73), China (3.57), Canada (3.28) [emphasis mine], USA (1.79) (United Nations, 2013).

Unsurprisingly, each leading country has a national strategy for economic development which involves graphene prominently.

For instance, The Spanish Council for Scientific Research has lent 9 of its institutes along with 10 universities and other public R&D labs involved in coordinating graphene projects with industry.

The Natural Sciences and Engineering Research Council of Canada [NSERC] has placed graphene as one of five research topics in its target area of “Advanced Manufacturing” for Strategic Partnership Grants.

The UK government highlights advanced materials as one of its Eight Great Technologies, within which graphene is a major part of, having received investment for the NGI and GEIC buildings, along with EPSRC and Innovate UK projects. I wrote previously about the UK punching above its weight in terms of research, ( http://fullerex.com/index.php/articles/130-the-uk-needs-an-industrial-revolution-can-graphene-deliver/ ) but that R&D spending relative to GDP was too low compared to other developed nations. It is good to see that investment into graphene production in the UK is bucking that trend, and we should anticipate this will provide a positive economic outcome.

Yes, I’m  particularly interested in the fact Canada becomes more important as a producer when the numbers are relative but it is interesting to compare the chart with Eldridge’s text and to note how importance shifts depending on what numbers are being considered.

I recommend reading Eldridge’s piece in its entirety.

A few notes about graphene in Canada

By the way, the information in Eldridge’s essay about NSERC’s placement of graphene as a target area for grants is news to me. (As I have often noted here, I get more information about the Canadian nano scene from international sources than I do from our national sources.)

Happily I do get some home news such as a Jan. 5, 2017 email update from Lomiko Metals, a Canadian junior exploration company focused on graphite and lithium. The email provides the latest information from the company (as I’m not an expert in business or mining this is not an endorsement),

On December 13, 2016 we were excited to announce the completion of our drill program at the La Loutre flake graphite property. We received very positive results from our 1550 meter drilling program in 2015 in the area we are drilling now. In that release I stated, “”The intercepts of multiple zones of mineralization in the Refractory Zone where we have reported high grade intercepts previously is a very promising sign. The samples have been rushed to the ALS Laboratory for full assay testing,” We hope to have the results of those assays shortly.

December 16, 2016 Lomiko announced a 10:1 roll back of our shares. We believe that this roll back is important as we work towards securing long term equity financing for the company. Lomiko began trading on the basis of the roll back on December 19.

We believe that Graphite has a bright future because of the many new products that will rely on the material. I have attached a link to a video on Lomiko, Graphite and Graphene.  

https://youtu.be/Y–Y_Ub6oC4

January 3, 2017 Lomiko announced the extension and modification of its option agreements with Canadian Strategic Metals Inc. for the La Loutre and Lac des Iles properties. The effect of this extension is to give Lomiko additional time to complete the required work under the agreements.

Going forward Lomiko is in a much stronger position as the result of our share roll back. Potential equity funders who are very interested in our forthcoming assay results from La Loutre and the overall prospects of the company, have been reassured by our share consolidation.

Looking forward to 2017, we anticipate the assays of the La Loutre drilling to be delivered in the next 90 days, sooner we hope. We also anticipate additional equity funding will become available for the further exploration and delineation of the La Loutre and Lac des Iles properties and deposits.

More generally, we are confident that the market for large flake graphite will become firmer in 2017. Lomiko’s strategy of identifying near surface, ready to mine, graphite nodes puts us in the position to take advantage of improvements in the graphite price without having to commit large sums to massive mine development. As we identify and analyze the graphite nodes we are finding we increase the potential resources of the company. 2017 should see significantly improved resource estimates for Lomiko’s properties.

As I wasn’t familiar with the term ‘roll back of shares’, I looked it up and found this in an April 18, 2012 posting by Dudley Pierce Baker on kitco.com,

As a general rule, we hate to see an announcement of a share rollback, however, there exceptions which we cover below. Investors should always be aware that if a company has, say over 150 million shares outstanding, in our opinion, it is a potential candidate for a rollback and the announcement should not come as a surprise.

Weak markets, a low share price, a large number of shares outstanding, little or no cash and you have a company which is an idea candidate for a rollback.

The basic concept of a rollback or consolidation in a company’s shares is rather simple.

We are witnessing a few cases of rollbacks not with the purpose of raising more money but rather to facilitate the listing of the company’s shares on the NYSE [New York Stock Exchange] Amex.

I have no idea what situation Lomiko finds itself in but it should be noted that graphere research has been active since 2004 when the first graphene sheets were extracted from graphite. This is a relatively new field of endeavour and Lomiko (along with other companies) is in the position of pioneering the effort here in Canada. That said, there are many competitors to graphene and major international race to commercialize nanotechnology-enabled products.

Are there any leaders in the ‘graphene race?

Getting back to the question in the headline, I don’t think there are any leaders at the moment. No one seems to have what they used to call “a killer app,” that one application/product that everyone wants and which drive demand for graphene.

Disorderly conduct amongst electrons

An Oct. 7, 2016 news item on Nanowerk highlights some research from A*STAR (Singapore’s Agency for Science and Technology Research), Note: A link has been removed,

Solid materials whose atoms are arranged in a well-ordered crystalline structure are usually better conductors of electricity than randomly structured, or amorphous, solids. Recently, however, A*STAR researchers found that iron-tellurium (FeTe) breaks this rule, displaying higher conductivity, and optical reflectivity, in the amorphous phase.

A recent study, published in the journal Acta Materialia (“Unravelling the anomalous electrical and optical phase-change characteristics in FeTe”), describes their efforts to understand why FeTe’s behavior is counterintuitive to expectations.

Iron-tellurium conducts electricity best when in a disordered amorphous phase. ©KTSDESIGN/Science Photo Library/Getty Courtesy: A*STAR

Iron-tellurium conducts electricity best when in a disordered amorphous phase. ©KTSDESIGN/Science Photo Library/Getty Courtesy: A*STAR

An Oct. 7, 2016 A*STAR press release, which originated the news item, explains more,

FeTe is a phase-change material, with the ability to rapidly switch its state from crystalline to amorphous and back again when it is heated or cooled, a property which makes it useful for data storage and memory applications. Conventional phase-change materials such as germanium-antimony-tellurium (GST), commonly used in rewritable DVDs, display higher optical reflectivity and electrical conductivity in their crystalline state because the highly-ordered structuring of atoms in the crystal results in more electron vacancies, or holes, that act as charge carriers.

“FeTe behaves differently from other phase-change materials,” explains Kewu Bai at the A*STAR Institute of High Performance Computing, who worked on the project with scientists from the National University of Singapore. “We hypothesized that these unusual characteristics may be connected with the behavior of ‘lone-pair’ electrons. This refers to a pair of electrons from any one atom that are not involved in the bonding of materials.”

The team prepared thin films of FeTe at room temperature to produce amorphous structures, and at 220 degrees Celsuis to acquire crystalline samples, and showed that the films could be flipped between the two states using a fast pulsing laser. They analyzed the molecular structure of the different films using X-ray spectroscopy, electron microscopy and first-principle calculations to investigate these unusual properties of FeTe.

The researchers confirmed the existence of lone-pair electrons in both the amorphous and crystalline phases. In the crystalline phase, where Te and Fe atoms were strongly bonded in a regular lattice, electrons were engaged in strong hybridization, meaning their orbitals overlapped and caused their electrons to localize. Thus, lone-pair electrons were incorporated as part of the integral structure.

In contrast, when FeTe entered its amorphous phase, some Te atoms were orientated so that their lone-pair electrons delocalized from the atoms, resulting in holes that acted as charge carriers.

“We are hopeful that FeTe could prove to be useful material for phase-change memory,” says Bai. “It could also act as an effective thermo-electric material, generating electric current in response to temperature.”

Here’s a link to and a citation for the paper,

Unravelling the anomalous electrical and optical phase-change characteristics in FeTe by H.W. Ho, P.S. Branicio, W.D. Song, K. Bai, Teck L. Tan, R. Ji, Y. Yang, P. Yang, Y.H. Du, M.B. Sullivan. Acta Materialia Volume 112, 15 June 2016, Pages 67–76  http://dx.doi.org/10.1016/j.actamat.2016.04.017

This paper is behind a paywall.

Oil spill cleanup nanotechnology-enabled solution from A*STAR

A*STAR (Singapore’s Agency for Science Technology and Research) has developed a new technology for cleaning up oil spills according to an Oct. 11, 2016 news item on Nanowerk,

Oceanic oil spills are tough to clean up. They dye feathers a syrupy sepia and tan fish eggs a toxic tint. The more turbulent the waters, the farther the slick spreads, with inky droplets descending into the briny deep.

Now technology may be able to succeed where hard-working volunteers have failed in the past. Researchers at the A*STAR Institute of Bioengineering and Nanotechnology (IBN) are using nanotechnology to turn an oil spill into a floating mass of brown jelly that can be scooped up before it can make its way into the food chain.

“Nanoscience makes it possible to tailor the essential structures of materials at the nanometer scale to achieve specific properties,” says chemist Yugen Zhang at IBN, who is developing some of the technologies. “Structures and materials in the nanometer size range often take on distinctive properties that are not seen in other size ranges,” adds Huaqiang Zeng, another chemist at IBN.

An Oct. 11, 2016 A*STAR press release, which originated the news item, describes some of problematic solutions before describing the new technology,

There are many approaches to cleaning an oil spill, and none are completely effective. Fresh, thick grease can be set ablaze or contained by floating barriers for skimmers to scoop out. The slick can also be inefficiently hardened, messily absorbed, hazardously dispersed, or slowly consumed by oil-grazing bacteria. All of these are deficient on a large scale, especially in rough waters.

Organic molecules with special gelling abilities offer a cheap, simple and environmentally friendly alternative for cleaning up the mess. Zeng has developed several such molecules that turn crude oil into jelly within minutes.

To create his ‘supergelators’, Zeng designed the molecules to associate with each other without forming physical bonds. When sprayed on contaminated seawater, the molecules immediately bundle into long fibers between 40 and 800 nanometers wide. These threads create a web that traps the interspersed oil in a giant blob that floats on the water’s surface. The gunk can then be swiftly sieved out of the ocean. Valuable crude oil can later be reclaimed using a common technique employed by petroleum refineries called fractional distillation.

Zeng tested the supergelators on four types of crude oil with different densities, viscosities and sulfur levels in a small round dish. The results were impressive. “The supergelators solidified both freshly spilled crude oil and highly weathered crude oil 37 to 60 times their own weight,” says Zeng. The materials used to produce these organic molecules are cheap and non toxic, which make them a commercially viable solution for managing accidents out at sea. Zeng hopes to work with industrial partners to test the nanomolecules on a much larger scale.

Zeng and his colleagues have developed other other ‘water’ applications as well,

Unsalty water

Scientists at IBN are also using nanoscience to remove salt from seawater and heavy metals from contaminated water.

With dwindling global fresh and ground water reserves, many countries are looking to desalination as a viable source of drinking water. Desalination is expected to meet 30 per cent of the water demand of Singapore by 2060, which will mean tripling the country’s current desalination capacity. But desalination demands huge energy consumption and reverse osmosis, the mainstream technology it depends on, has a relatively high cost. Reverse osmosis works by using extreme pressures to squeeze water molecules through tightly knit membranes.

An emerging alternative solution mimics the way proteins embedded in cell membranes, known as aquaporins, channel water in and out. Some research groups have even created membranes made of fatty lipid molecules that can accommodate natural aquaporins. Zeng has developed a cheaper and more resilient replacement.

His building blocks consist of helical noodles with sticky ends that connect to form long spirals. Water molecules can flow through the 0.3 nanometer openings at the center of the spirals, but all the other positively and negatively charged ions that make up saltwater are too bulky to pass. These include sodium, potassium, calcium, magnesium, chlorine and sulfur oxide. “In water, all of these ions are highly hydrated, attached to lots of water molecules, which makes them too large to go through the channels,” says Zeng.

The technology could lead to global savings of up to US$5 billion a year, says Zeng, but only after several more years of testing and tweaking the lipid membrane’s compatibility and stability with the nanospirals. “This is a major focus in my group right now,” he says. “We want to get this done, so that we can reduce the cost of water desalination to an acceptable level.”

Stick and non-stick

Nanomaterials also offer a low-cost, effective and sustainable way to filter out toxic metals from drinking water.

Heavy metal levels in drinking water are stringently regulated due to the severe damage the substances can cause to health, even at very low concentrations. The World Health Organization requires that levels of lead, for example, remain below ten parts per billion (ppb). Treating water to these standards is expensive and extremely difficult.

Zhang has developed an organic substance filled with pores that can trap and remove toxic metals from water to less than one ppb. Each pore is ten to twenty nanometers wide and packed with compounds, known as amines that stick to the metals.

Exploiting the fact that amines lose their grip over the metals in acidic conditions, the valuable and limited resource can be recovered by industry, and the polymers reused.

The secret behind the success of Zhang’s polymers is the large surface area covered by the pores, which translates into more opportunities to interact with and trap the metals. “Other materials have a surface area of about 100 square meters per gram, but ours is 1,000 square meters per gram,” says Zhang. “It is 10 times higher.”

Zhang tested his nanoporous polymers on water contaminated with lead. He sprinkled a powdered version of the polymer into a slightly alkaline liquid containing close to 100 ppb of lead. Within seconds, lead levels reduced to below 0.2 ppb. Similar results were observed for cadmium, copper and palladium. Washing the polymers in acid released up to 93 per cent of the lead.

With many companies keen to scale these technologies for real-world applications, it won’t be long before nanoscience treats the Earth for its many maladies.

I wonder if the researchers have found industrial partners (who could be named) to bring these solutions for oil spill cleanups, desalination, and water purification to the market.

Graphene Malaysia 2016 gathering and Malaysia’s National Graphene Action Plan 2020

Malaysia is getting ready to host a graphene conference according to an Oct. 10, 2016 news item on Nanotechnology Now,

The Graphene Malaysia 2016 [Nov. 8 – 9, 2016] (www.graphenemalaysiaconf.com) is jointly organized by NanoMalaysia Berhad and Phantoms Foundation. The conference will be centered on graphene industry interaction and collaborative innovation. The event will be launched under the National Graphene Action Plan 2020 (NGAP 2020), which will generate about 9,000 jobs and RM20 (US$4.86) billion GNI impact by the year 2020.

First speakers announced:
Murni Ali (Nanomalaysia, Malaysia) | Francesco Bonaccorso (Istituto Italiano di Tecnologia, Italy) | Antonio Castro Neto (NUS, Singapore) | Antonio Correia (Phantoms Foundation, Spain)| Pedro Gomez-Romero (ICN2 (CSIC-BIST), Spain) | Shu-Jen Han (Nanoscale Science & Technology IBM T.J. Watson Research Center, USA) | Kuan-Tsae Huang (AzTrong, USA/Taiwan) | Krzysztof Koziol (FGV Cambridge Nanosystems, UK) | Taavi Madiberk (Skeleton Technologies, Estonia) | Richard Mckie (BAE Systems, UK) | Pontus Nordin (Saab AB, Saab Aeronautics, Sweden) | Elena Polyakova (Graphene Laboratories Inc., USA) | Ahmad Khairuddin Abdul Rahim (Malaysian Investment Development Authority (MIDA), Malaysia) | Adisorn Tuantranont (Thailand Organic and Printed Electronics Innovation Center, Thailand) |Archana Venugopal (Texas Instruments, USA) | Won Jong Yoo (Samsung-SKKU Graphene-2D Center (SSGC), South Korea) | Hongwei Zhu (Tsinghua University, China)

You can check for more information and deadlines in the Nanotechnology Now Oct. 10, 2016 news item.

The Graphene Malalysia 2016 conference website can be found here and Malaysia’s National Graphene Action Plan 2020, which is well written, can be found here (PDF).  This portion from the executive summary offers some insight into Malyasia’s plans to launch itself into the world of high income nations,

Malaysia’s aspiration to become a high-income nation by 2020 with improved jobs and better outputs is driving the country’s shift away from “business as usual,” and towards more innovative and high value add products. Within this context, and in accordance with National policies and guidelines, Graphene, an emerging, highly versatile carbon-based nanomaterial, presents a unique opportunity for Malaysia to develop a high value economic ecosystem within its industries.  Isolated only in 2004, Graphene’s superior physical properties such as electrical/ thermal conductivity, high strength and high optical transparency, combined with its manufacturability have raised tremendous possibilities for its application across several functions and make it highly interesting for several applications and industries.  Currently, Graphene is still early in its development cycle, affording Malaysian companies time to develop their own applications instead of relying on international intellectual property and licenses.

Considering the potential, several leading countries are investing heavily in associated R&D. Approaches to Graphene research range from an expansive R&D focus (e.g., U.S. and the EU) to more focused approaches aimed at enhancing specific downstream applications with Graphene (e.g., South Korea). Faced with the need to push forward a multitude of development priorities, Malaysia must be targeted in its efforts to capture Graphene’s potential, both in terms of “how to compete” and “where to compete”. This National Graphene Action Plan 2020 lays out a set of priority applications that will be beneficial to the country as a whole and what the government will do to support these efforts.

Globally, much of the Graphene-related commercial innovation to date has been upstream, with producers developing techniques to manufacture Graphene at scale. There has also been some development in downstream sectors, as companies like Samsung, Bayer MaterialScience, BASF and Siemens explore product enhancement with Graphene in lithium-ion battery anodes and flexible displays, and specialty plastic and rubber composites. However the speed of development has been uneven, offering Malaysian industries willing to invest in innovation an opportunity to capture the value at stake. Since any innovation action plan has to be tailored to the needs and ambitions of local industry, Malaysia will focus its Graphene action plan initially on larger domestic industries (e.g., rubber) and areas already being targeted by the government for innovation such as energy storage for electric vehicles and conductive inks.

In addition to benefiting from the physical properties of Graphene, Malaysian downstream application providers may also capture the benefits of a modest input cost advantage for the domestic production of Graphene.  One commonly used Graphene manufacturing technique, the chemical vapour deposition (CVD) production method, requires methane as an input, which can be sourced economically from local biomass. While Graphene is available commercially from various producers around the world, downstream players may be able to enjoy some cost advantage from local Graphene supply. In addition, co-locating with a local producer for joint product development has the added benefit of speeding up the R&D lifecycle.

That business about finding downstream applications could also to the Canadian situation where we typically offer our resources (upstream) but don’t have an active downstream business focus. For example, we have graphite mines in Ontario and Québec which supply graphite flakes for graphene production which is all upstream. Less well developed are any plans for Canadian downstream applications.

Finally, it was interesting to note that the Phantoms Foundation is organizing this Malaysian conference since the same organization is organizing the ‘2nd edition of Graphene & 2D Materials Canada 2016 International Conference & Exhibition’ (you can find out more about the Oct. 18 – 20, 2016 event in my Sept. 23, 2016 posting). I think the Malaysians have a better title for their conference, far less unwieldy.

Innovation and two Canadian universities

I have two news bits and both concern the Canadian universities, the University of British Columbia (UBC) and the University of Toronto (UofT).

Creative Destruction Lab – West

First, the Creative Destruction Lab, a technology commercialization effort based at UofT’s Rotman School of Management, is opening an office in the west according to a Sept. 28, 2016 UBC media release (received via email; Note: Links have been removed; this is a long media release which interestingly does not mention Joseph Schumpeter the man who developed the economic theory which he called: creative destruction),

The UBC Sauder School of Business is launching the Western Canadian version of the Creative Destruction Lab, a successful seed-stage program based at UofT’s Rotman School of Management, to help high-technology ventures driven by university research maximize their commercial impact and benefit to society.

“Creative Destruction Lab – West will provide a much-needed support system to ensure innovations formulated on British Columbia campuses can access the funding they need to scale up and grow in-province,” said Robert Helsley, Dean of the UBC Sauder School of Business. “The success our partners at Rotman have had in helping commercialize the scientific breakthroughs of Canadian talent is remarkable and is exactly what we plan to replicate at UBC Sauder.”

Between 2012 and 2016, companies from CDL’s first four years generated over $800 million in equity value. It has supported a long line of emerging startups, including computer-human interface company Thalmic Labs, which announced nearly USD $120 million in funding on September 19, one of the largest Series B financings in Canadian history.

Focusing on massively scalable high-tech startups, CDL-West will provide coaching from world-leading entrepreneurs, support from dedicated business and science faculty, and access to venture capital. While some of the ventures will originate at UBC, CDL-West will also serve the entire province and extended western region by welcoming ventures from other universities. The program will closely align with existing entrepreneurship programs across UBC, including, e@UBC and HATCH, and actively work with the BC Tech Association [also known as the BC Technology Industry Association] and other partners to offer a critical next step in the venture creation process.

“We created a model for tech venture creation that keeps startups focused on their essential business challenges and dedicated to solving them with world-class support,” said CDL Founder Ajay Agrawal, a professor at the Rotman School of Management and UBC PhD alumnus.

“By partnering with UBC Sauder, we will magnify the impact of CDL by drawing in ventures from one of the country’s other leading research universities and B.C.’s burgeoning startup scene to further build the country’s tech sector and the opportunities for job creation it provides,” said CDL Director, Rachel Harris.

CDL uses a goal-setting model to push ventures along a path toward success. Over nine months, a collective of leading entrepreneurs with experience building and scaling technology companies – called the G7 – sets targets for ventures to hit every eight weeks, with the goal of maximizing their equity-value. Along the way ventures turn to business and technology experts for strategic guidance on how to reach goals, and draw on dedicated UBC Sauder students who apply state-of the-art business skills to help companies decide which market to enter first and how.

Ventures that fail to achieve milestones – approximately 50 per cent in past cohorts – are cut from the process. Those that reach their objectives and graduate from the program attract investment from the G7, as well as other leading venture-capital firms.

Currently being assembled, the CDL-West G7 will be comprised of entrepreneurial luminaries, including Jeff Mallett, the founding President, COO and Director of Yahoo! Inc. from 1995-2002 – a company he led to $4 billion in revenues and grew from a startup to a publicly traded company whose value reached $135 billion. He is now Managing Director of Iconica Partners and Managing Partner of Mallett Sports & Entertainment, with ventures including the San Francisco Giants, AT&T Park and Mission Rock Development, Comcast Bay Area Sports Network, the San Jose Giants, Major League Soccer, Vancouver Whitecaps FC, and a variety of other sports and online ventures.

Already bearing fruit, the Creative Destruction Lab partnership will see several UBC ventures accepted into a Machine Learning Specialist Track run by Rotman’s CDL this fall. This track is designed to create a support network for enterprises focused on artificial intelligence, a research strength at UofT and Canada more generally, which has traditionally migrated to the United States for funding and commercialization. In its second year, CDL-West will launch its own specialist track in an area of strength at UBC that will draw eastern ventures west.

“This new partnership creates the kind of high impact innovation network the Government of Canada wants to encourage,” said Brandon Lee, Canada’s Consul General in San Francisco, who works to connect Canadian innovation to customers and growth capital opportunities in Silicon Valley. “By collaborating across our universities to enhance our capacity to turn the scientific discoveries into businesses in Canada, we can further advance our nation’s global competitiveness in the knowledge-based industries.”

The Creative Destruction Lab is guided by an Advisory Board, co-chaired by Vancouver-based Haig Farris, a pioneer of the Canadian venture capitalist industry, and Bill Graham, Chancellor of Trinity College at UofT and former Canadian cabinet minister.

“By partnering with Rotman, UBC Sauder will be able to scale up its support for high-tech ventures extremely quickly and with tremendous impact,” said Paul Cubbon, Leader of CDL-West and a faculty member at UBC Sauder. “CDL-West will act as a turbo booster for ventures with great ideas, but which lack the strategic roadmap and funding to make them a reality.”

CDL-West launched its competitive application process for the first round of ventures that will begin in January 2017. Interested ventures are encouraged to submit applications via the CDL website at: www.creativedestructionlab.com

Background

UBC Technology ventures represented at media availability

Awake Labs is a wearable technology startup whose products measure and track anxiety in people with Autism Spectrum Disorder to better understand behaviour. Their first device, Reveal, monitors a wearer’s heart-rate, body temperature and sweat levels using high-tech sensors to provide insight into care and promote long term independence.

Acuva Technologies is a Vancouver-based clean technology venture focused on commercializing breakthrough UltraViolet Light Emitting Diode technology for water purification systems. Initially focused on point of use systems for boats, RVs and off grid homes in North American market, where they already have early sales, the company’s goal is to enable water purification in households in developing countries by 2018 and deploy large scale systems by 2021.

Other members of the CDL-West G7 include:

Boris Wertz: One of the top tech early-stage investors in North America and the founding partner of Version One, Wertz is also a board partner with Andreessen Horowitz. Before becoming an investor, Wertz was the Chief Operating Officer of AbeBooks.com, which sold to Amazon in 2008. He was responsible for marketing, business development, product, customer service and international operations. His deep operational experience helps him guide other entrepreneurs to start, build and scale companies.

Lisa Shields: Founder of Hyperwallet Systems Inc., Shields guided Hyperwallet from a technology startup to the leading international payments processor for business to consumer mass payouts. Prior to founding Hyperwallet, Lisa managed payments acceptance and risk management technology teams for high-volume online merchants. She was the founding director of the Wireless Innovation Society of British Columbia and is driven by the social and economic imperatives that shape global payment technologies.

Jeff Booth: Co-founder, President and CEO of Build Direct, a rapidly growing online supplier of home improvement products. Through custom and proprietary web analytics and forecasting tools, BuildDirect is reinventing and redefining how consumers can receive the best prices. BuildDirect has 12 warehouse locations across North America and is headquartered in Vancouver, BC. In 2015, Booth was awarded the BC Technology ‘Person of the Year’ Award by the BC Technology Industry Association.

Education:

CDL-west will provide a transformational experience for MBA and senior undergraduate students at UBC Sauder who will act as venture advisors. Replacing traditional classes, students learn by doing during the process of rapid equity-value creation.

Supporting venture development at UBC:

CDL-west will work closely with venture creation programs across UBC to complete the continuum of support aimed at maximizing venture value and investment. It will draw in ventures that are being or have been supported and developed in programs that span campus, including:

University Industry Liaison Office which works to enable research and innovation partnerships with industry, entrepreneurs, government and non-profit organizations.

e@UBC which provides a combination of mentorship, education, venture creation, and seed funding to support UBC students, alumni, faculty and staff.

HATCH, a UBC technology incubator which leverages the expertise of the UBC Sauder School of Business and entrepreneurship@UBC and a seasoned team of domain-specific experts to provide real-world, hands-on guidance in moving from innovative concept to successful venture.

Coast Capital Savings Innovation Hub, a program base at the UBC Sauder Centre for Social Innovation & Impact Investing focused on developing ventures with the goal of creating positive social and environmental impact.

About the Creative Destruction Lab in Toronto:

The Creative Destruction Lab leverages the Rotman School’s leading faculty and industry network as well as its location in the heart of Canada’s business capital to accelerate massively scalable, technology-based ventures that have the potential to transform our social, industrial, and economic landscape. The Lab has had a material impact on many nascent startups, including Deep Genomics, Greenlid, Atomwise, Bridgit, Kepler Communications, Nymi, NVBots, OTI Lumionics, PUSH, Thalmic Labs, Vertical.ai, Revlo, Validere, Growsumo, and VoteCompass, among others. For more information, visit www.creativedestructionlab.com

About the UBC Sauder School of Business

The UBC Sauder School of Business is committed to developing transformational and responsible business leaders for British Columbia and the world. Located in Vancouver, Canada’s gateway to the Pacific Rim, the school is distinguished for its long history of partnership and engagement in Asia, the excellence of its graduates, and the impact of its research which ranks in the top 20 globally. For more information, visit www.sauder.ubc.ca

About the Rotman School of Management

The Rotman School of Management is located in the heart of Canada’s commercial and cultural capital and is part of the University of Toronto, one of the world’s top 20 research universities. The Rotman School fosters a new way to think that enables graduates to tackle today’s global business and societal challenges. For more information, visit www.rotman.utoronto.ca.

It’s good to see a couple of successful (according to the news release) local entrepreneurs on the board although I’m somewhat puzzled by Mallett’s presence since, if memory serves, Yahoo! was not doing that well when he left in 2002. The company was an early success but utterly dwarfed by Google at some point in the early 2000s and these days, its stock (both financial and social) has continued to drift downwards. As for Mallett’s current successes, there is no mention of them.

Reuters Top 100 of the world’s most innovative universities

After reading or skimming through the CDL-West news you might think that the University of Toronto ranked higher than UBC on the Reuters list of the world’s most innovative universities. Before breaking the news about the Canadian rankings, here’s more about the list from a Sept, 28, 2016 Reuters news release (receive via email),

Stanford University, the Massachusetts Institute of Technology and Harvard University top the second annual Reuters Top 100 ranking of the world’s most innovative universities. The Reuters Top 100 ranking aims to identify the institutions doing the most to advance science, invent new technologies and help drive the global economy. Unlike other rankings that often rely entirely or in part on subjective surveys, the ranking uses proprietary data and analysis tools from the Intellectual Property & Science division of Thomson Reuters to examine a series of patent and research-related metrics, and get to the essence of what it means to be truly innovative.

In the fast-changing world of science and technology, if you’re not innovating, you’re falling behind. That’s one of the key findings of this year’s Reuters 100. The 2016 results show that big breakthroughs – even just one highly influential paper or patent – can drive a university way up the list, but when that discovery fades into the past, so does its ranking. Consistency is key, with truly innovative institutions putting out groundbreaking work year after year.

Stanford held fast to its first place ranking by consistently producing new patents and papers that influence researchers elsewhere in academia and in private industry. Researchers at the Massachusetts Institute of Technology (ranked #2) were behind some of the most important innovations of the past century, including the development of digital computers and the completion of the Human Genome Project. Harvard University (ranked #3), is the oldest institution of higher education in the United States, and has produced 47 Nobel laureates over the course of its 380-year history.

Some universities saw significant movement up the list, including, most notably, the University of Chicago, which jumped from #71 last year to #47 in 2016. Other list-climbers include the Netherlands’ Delft University of Technology (#73 to #44) and South Korea’s Sungkyunkwan University (#66 to #46).

The United States continues to dominate the list, with 46 universities in the top 100; Japan is once again the second best performing country, with nine universities. France and South Korea are tied in third, each with eight. Germany has seven ranked universities; the United Kingdom has five; Switzerland, Belgium and Israel have three; Denmark, China and Canada have two; and the Netherlands and Singapore each have one.

You can find the rankings here (scroll down about 75% of the way) and for the impatient, the University of British Columbia ranked 50th and the University of Toronto 57th.

The biggest surprise for me was that China, like Canada, had two universities on the list. I imagine that will change as China continues its quest for science and innovation dominance. Given how they tout their innovation prowess, I had one other surprise, the University of Waterloo’s absence.

Barnacle footprints could be useful

An Aug. 18, 2016 news item on Nanowerk describes efforts by scientists at the University of Twente (The Netherlands) and A*STAR (Singapore) to trace a barnacle’s footprints (Note: A link has been removed),

Barnacle’s larvae leave behind tiny protein traces on a ship hull: but what is the type of protein and what is the protein-surface interaction? Conventional techniques can only identify dissolved proteins, and in large quantities. Using a modified type of an Atomic Force Microscope, scientists of the University of Twente in The Netherlands and A*STAR in Singapore, can now measure protein characteristics of even very small traces on a surface. They present the new technique in Nature Nanotechnology (“Measuring protein isoelectric points by AFM-based force spectroscopy using trace amounts of sample”).

An Aug. 16, 2016 University of Twente press release, which originated the news item, explains how the ‘footprints’ could lead to new applications for ships and boats and briefly describes the technical aspects of the research,

In infection diseases, membrane fouling, interaction with bacteria, as well as in rapid healing of wounds for example, the way proteins interact with a surface plays an important role. On a surface, they function in a different way than in solution. On a ship hull, the larvae of the barnacle will leave tiny traces of protein to test if the surface is attractive for long-term attachment. If we get to know more about this interaction, it will be possible to develop surface conditions that are less attractive for the barnacle. Large amounts of barnacles on a ship will have a destructive effect on flow resistance and will lead to more fuel consumption. The new measuring method makes use of a modified Atomic Force Microscope: a tiny ball glued to the cantilever of the microscope will attract protein molecules.

Modified AFM tip with a tiny ball that can attract protein molecules

FORCE MEASUREMENTS

An amount of just hundreds of protein molecules will be sufficient to determine a crucial value, called the iso-electric point (pI): this is the pH-value at which the protein has net zero electric charge. The pI value says a lot about the surroundings a protein will ‘feel comfortable’ in, and to which it preferably moves. Using the AFM microscope, of which the modified tip has collected protein molecules, it is possible to perform force measurements for different pH values. The tip will be attracted or repelled, or show no movement when the pI point is reached. For these measurement, the researchers made a special reference material consisting of several layers. Using this, the effect of a number of pH-values can be tested until the pI value is found.

The traces the larve leaves behind (left) and force measurements (right)

PAINT CHANGE

The tests have been successfully performed for a number of known proteins like fibrinogen, myoglobine and bovine albumin. And returning to the barnacle: the tiny protein footprint will contain enough molecules to determine the pI value. This quantifies the ideal surface conditions, and using this knowledge, new choices can be made for e.g. the paint that is used on a ship hull.

The research has been done within the group Materials Science and Technology of Polymers of Professor Julius Vancso, in close collaboration with colleagues of A*STAR in Singapore – Prof Vancso is a Visiting Professor there as well. His group is part of UT’s MESA+ Institute for Nanotechnology.

Here’s a link to and a citation for the paper,

Measuring protein isoelectric points by AFM-based force spectroscopy using trace amounts of sample by Shifeng Gu, Xiaoying Zhu, Dominik Jańczewski, Serina Siew Chen Lee, Tao He, Serena Lay Ming Teo, & G. Julius Vancso.  Nature Nanotechnology (2016) doi:10.1038/nnano.2016.118 Published online 25 July 2016

This paper is behind a paywall.

Robots judge a beauty contest

I have a lot of respect for good PR gimmicks and a beauty contest judged by robots (or more accurately, artificial intelligence) is a provocative idea wrapped up in a good public relations (PR) gimmick. A July 12, 2016 In Silico Medicine press release on EurekAlert reveals more,

Beauty.AI 2.0, a platform,” a platform, where human beauty is evaluated by a jury of robots and algorithm developers compete on novel applications of machine intelligence to perception is supported by Ernst and Young.

“We were very impressed by E&Y’s recent advertising campaign with a robot hand holding a beautiful butterfly and a slogan “How human is your algorithm?” and immediately invited them to participate. This slogan captures the very essence of our contest, which is constantly exploring new ideas in machine perception of humans”, said Anastasia Georgievskaya, Managing Scientist at Youth Laboratories, the organizer of Beauty.AI.

Beauty.AI contest is supported by the many innovative companies from the US, Europe, and Asia with some of the top cosmetics companies participating in collaborative research projects. Imagene Labs, one of the leaders in linking facial and biological information from Singapore operating across Asia, is a gold sponsor and research partner of the contest.

There are many approaches to evaluating human beauty. Features like symmetry, pigmentation, pimples, wrinkles may play a role and similarity to actors, models and celebrities may be used in the calculation of the overall score. However, other innovative approaches have been proposed. A robot developed by Insilico Medicine compares the chronological age with the age predicted by a deep neural network. Another team is training an artificially-intelligent system to identify features that contribute to the popularity of the people on dating sites.

“We look forward to collaborating with the Youth Laboratories team to create new AI algorithms. These will eventually allow consumers to objectively evaluate how well their wellness interventions – such as diet, exercise, skincare and supplements – are working. Based on the results they can then fine tune their approach to further improve their well-being and age better”, said Jia-Yi Har, Vice President of Imagene Labs.

The contest is open to anyone with a modern smartphone running either Android or iOS operating system, and Beauty.AI 2.0 app can be downloaded for free from either Google or Apple markets. Programmers and companies can participate by submitting their algorithm to the organizers through the Beauty.AI website.

“The beauty of Beauty.AI pageants is that algorithms are much more impartial than humans, and we are trying to prevent any racial bias and run the contest in multiple age categories. Most of the popular beauty contests discriminate by age, gender, marital status, body weight and race. Algorithms are much less partial”, said Alex Shevtsov, CEO of Youth Laboratories.

Very interesting take on beauty and bias. I wonder if they’re building change into their algorithms. After all, standards for beauty don’t remain static, they change over time.

Unfortunately, that question isn’t asked in Wency Leung’s July 4, 2016 article on the robot beauty contest for the Globe and Mail but she does provides more details about the contest and insight into the world of international cosmetics companies and their use of technology,

Teaching computers about aesthetics involves designing sophisticated algorithms to recognize and measure features like wrinkles, face proportions, blemishes and skin colour. And the beauty industry is rapidly embracing these high-tech tools to respond to consumers’ demand for products that suit their individual tastes and attributes.

Companies like Sephora and Avon, for instance, are using face simulation technology to provide apps that allow customers to virtually try on and shop for lipsticks and eye shadows using their mobile devices. Skincare producers are using similar technologies to track and predict the effects of serums and creams on various skin types. And brands like L’Oréal’s Lancôme are using facial analysis to read consumers’ skin tones to create personalized foundations.

“The more we’re able to use these tools like augmented reality [and] artificial intelligence to provide new consumer experiences, the more we can move to customizing and personalizing products for every consumer around the world, no matter what their skin tone is, no matter where they live, no matter who they are,” says Guive Balooch, global vice-president of L’Oréal’s technology incubator.

Balooch was tasked with starting up the company’s tech research hub four years ago, with a mandate to predict and invent solutions to how consumers would choose and use products in the future. Among its innovations, his team has come up with the Makeup Genius app, a virtual mirror that allows customers to try on products on a mobile screen, and a device called My UV Patch, a sticker sensor that users wear on their skin, which informs them through an app how much UV exposure they get.

These tools may seem easy enough to use, but their simplicity belies the work that goes on behind the scenes. To create the Makeup Genius app, for example, Balooch says the developers sought expertise from the animation industry to enable users to see themselves move onscreen in real time. The developers also brought in hundreds of consumers with different skin tones to test real products in the lab, and they tested the app on some 100,000 images in more than 40 lighting conditions, to ensure the colours of makeup products appeared the same in real life as they did onscreen, Balooch says.

The article is well worth reading in its entirety.

For the seriously curious, you can find Beauty AI here, In Silico Medicine here, and Imagene Labs here. I cannot find a website for Youth Laboratories featuring Anastasia Georgievskaya.

I last wrote about In Silico Medicine in a May 31, 2016 post about deep learning, wrinkles, and aging.

Oil spill cleanups with supergelators

Researchers in Singapore have proposed a new technology for cleaning up oil spills, according to a June 17, 2016 news item on Nanowerk,

Large-scale oil spills, where hundreds of tons of petroleum products are accidentally released into the oceans, not only have devastating effects on the environment, but have significant socio-economic impact as well [1].

Current techniques of cleaning up oil spills are not very efficient and may even cause further pollution or damage to the environment. These methods, which include the use of toxic detergent-like compounds called dispersants or burning of the oil slick, result in incomplete removal of the oil. The oil molecules remain in the water over long periods and may even be spread over a larger area as they are carried by wind and waves. Further, burning can only be applied to fresh oil slicks of at least 3 millimeters thick, and this process would also cause secondary environmental pollution.

In a bid to improve the technology utilized by cleanup crews to manage and contain such large spills, researchers from the Institute of Bioengineering and Nanotechnology (IBN) of A*STAR [located in Singapore] have invented a smart oil-scavenging material or supergelators that could help clean up oil spills efficiently and rapidly to prevent secondary pollution.

These supergelators are derived from highly soluble small organic molecules, which instantly self-assemble into nanofibers to form a 3D net that traps the oil molecules so that they can be removed easily from the surface of the water.

A June 17, 2016 IBN A*STAR media release, which originated the news item, provides more detail,

“Marine oil spills have a disastrous impact on the environment and marine life, and result in an enormous economic burden on society. Our rapid-acting supergelators offer an effective cleanup solution that can help to contain the severe environmental damage and impact of such incidents in the future,” said IBN Executive Director Professor Jackie Y. Ying.

Motivated by the urgent need for a more effective oil spill control solution, the IBN researchers developed new compounds that dissolve easily in environmentally friendly solvents and gel rapidly upon contact with oil. The supergelator molecules arrange themselves into a 3D network, entangling the oil molecules into clumps that can then be easily skimmed off the water’s surface.

“The most interesting and useful characteristic of our molecules is their ability to stack themselves on top of each other. These stacked columns allow our researchers to create and test different molecular constructions, while finding the best structure that will yield the desired properties,” said IBN Team Leader and Principal Research Scientist Dr Huaqiang Zeng. (Animation: Click to see how the supergelators stack themselves into columns.)

IBN’s supergelators have been tested on various types of weathered and unweathered crude oil in seawater, and have been found to be effective in solidifying all of them. The supergelators take only minutes to solidify the oil at room temperature for easy removal from water. In addition, tests carried out by the research team showed that the supergelator was not toxic to human cells, as well as zebrafish embryos and larvae. The researchers believe that these qualities would make the supergelators suitable for use in large oil spill areas.

The Institute is looking for industrial partners to further develop its technology for commercial use. [emphasis mine]

Video: Click to watch the supergelators in action

  1. The well documented BP Gulf of Mexico oil well accident in 2010 was a catastrophe on an unprecedented scale, with damages amounting to hundreds of billions of dollars. Its wide-ranging effects on the marine ecosystem, as well as the fishing and tourism industries, can still be felt six years on.

Here’s a link to and a citation for the paper,

Instant Room-Temperature Gelation of Crude Oil by Chiral Organogelators by Changliang Ren, Grace Hwee Boon Ng, Hong Wu, Kiat-Hwa Chan, Jie Shen, Cathleen Teh, Jackie Y. Ying, and Huaqiang Zeng. Chem. Mater., 2016, 28 (11), pp 4001–4008 DOI: 10.1021/acs.chemmater.6b01367 Publication Date (Web): May 10, 2016

Copyright © 2016 American Chemical Society

This paper is behind a paywall.

I have featured other nanotechnology-enabled oil spill cleanup solutions here. One of the more recent pieces is my Dec. 7, 2015 post about boron nitride sponges. The search terms: ‘oil spill’ and ‘oil spill cleanup’ will help you unearth more.

There have been some promising possibilities and I hope one day these clean up technologies will be brought to market.

Testing technology for a global quantum network

This work on quantum networks comes from a joint Singapore/UK research project, from a June 2, 2016 news item on ScienceDaily,

You can’t sign up for the quantum internet just yet, but researchers have reported a major experimental milestone towards building a global quantum network — and it’s happening in space.

With a network that carries information in the quantum properties of single particles, you can create secure keys for secret messaging and potentially connect powerful quantum computers in the future. But scientists think you will need equipment in space to get global reach.

Researchers from the National University of Singapore (NUS) and the University of Strathclyde, UK, have become the first to test in orbit technology for satellite-based quantum network nodes.

They have put a compact device carrying components used in quantum communication and computing into orbit. And it works: the team report first data in a paper published 31 May 2016 in the journal Physical Review Applied.

A June 2, 2016 National University of Singapore press release, which originated the news item, provides more detail,

The team’s device, dubbed SPEQS, creates and measures pairs of light particles, called photons. Results from space show that SPEQS is making pairs of photons with correlated properties – an indicator of performance.

Team-leader Alexander Ling, an Assistant Professor at the Centre for Quantum Technologies (CQT) at NUS said, “This is the first time anyone has tested this kind of quantum technology in space.”

The team had to be inventive to redesign a delicate, table-top quantum setup to be small and robust enough to fly inside a nanosatellite only the size of a shoebox. The whole satellite weighs just 1.65-kilogramme.

Towards entanglement

Making correlated photons is a precursor to creating entangled photons. Described by Einstein as “spooky action at a distance”, entanglement is a connection between quantum particles that lends security to communication and power to computing.

Professor Artur Ekert, Director of CQT, invented the idea of using entangled particles for cryptography. He said, “Alex and his team are taking entanglement, literally, to a new level. Their experiments will pave the road to secure quantum communication and distributed quantum computation on a global scale. I am happy to see that Singapore is one of the world leaders in this area.”

Local quantum networks already exist [emphasis mine]. The problem Ling’s team aims to solve is a distance limit. Losses limit quantum signals sent through air at ground level or optical fibre to a few hundred kilometers – but we might ultimately use entangled photons beamed from satellites to connect points on opposite sides of the planet. Although photons from satellites still have to travel through the atmosphere, going top-to-bottom is roughly equivalent to going only 10 kilometres at ground level.

The group’s first device is a technology pathfinder. It takes photons from a BluRay laser and splits them into two, then measures the pair’s properties, all on board the satellite. To do this it contains a laser diode, crystals, mirrors and photon detectors carefully aligned inside an aluminum block. This sits on top of a 10 centimetres by 10 centimetres printed circuit board packed with control electronics.

Through a series of pre-launch tests – and one unfortunate incident – the team became more confident that their design could survive a rocket launch and space conditions. The team had a device in the October 2014 Orbital-3 rocket which exploded on the launch pad. The satellite containing that first device was later found on a beach intact and still in working order.

Future plans

Even with the success of the more recent mission, a global network is still a few milestones away. The team’s roadmap calls for a series of launches, with the next space-bound SPEQS slated to produce entangled photons. SPEQS stands for Small Photon-Entangling Quantum System.

With later satellites, the researchers will try sending entangled photons to Earth and to other satellites. The team are working with standard “CubeSat” nanosatellites, which can get relatively cheap rides into space as rocket ballast. Ultimately, completing a global network would mean having a fleet of satellites in orbit and an array of ground stations.

In the meantime, quantum satellites could also carry out fundamental experiments – for example, testing entanglement over distances bigger than Earth-bound scientists can manage. “We are reaching the limits of how precisely we can test quantum theory on Earth,” said co-author Dr Daniel Oi at the University of Strathclyde.

Here’s a link to and a citation for the paper,

Generation and Analysis of Correlated Pairs of Photons aboard a Nanosatellite by Zhongkan Tang, Rakhitha Chandrasekara, Yue Chuan Tan, Cliff Cheng, Luo Sha, Goh Cher Hiang, Daniel K. L. Oi, and Alexander Ling. Phys. Rev. Applied 5, 054022 DOI: http://dx.doi.org/10.1103/PhysRevApplied.5.054022 Published 31 May 2016

This paper is behind a paywall.

An atom without properties?

There’s rather intriguing Swiss research into atoms and so-called Bell Correlations according to an April 21, 2016 news item on ScienceDaily,

The microscopic world is governed by the rules of quantum mechanics, where the properties of a particle can be completely undetermined and yet strongly correlated with those of other particles. Physicists from the University of Basel have observed these so-called Bell correlations for the first time between hundreds of atoms. Their findings are published in the scientific journal Science.

Everyday objects possess properties independently of each other and regardless of whether we observe them or not. Einstein famously asked whether the moon still exists if no one is there to look at it; we answer with a resounding yes. This apparent certainty does not exist in the realm of small particles. The location, speed or magnetic moment of an atom can be entirely indeterminate and yet still depend greatly on the measurements of other distant atoms.

An April 21, 2016 University of Basel (Switzerland) press release (also on EurekAlert), which originated the news item, provides further explanation,

With the (false) assumption that atoms possess their properties independently of measurements and independently of each other, a so-called Bell inequality can be derived. If it is violated by the results of an experiment, it follows that the properties of the atoms must be interdependent. This is described as Bell correlations between atoms, which also imply that each atom takes on its properties only at the moment of the measurement. Before the measurement, these properties are not only unknown – they do not even exist.

A team of researchers led by professors Nicolas Sangouard and Philipp Treutlein from the University of Basel, along with colleagues from Singapore, have now observed these Bell correlations for the first time in a relatively large system, specifically among 480 atoms in a Bose-Einstein condensate. Earlier experiments showed Bell correlations with a maximum of four light particles or 14 atoms. The results mean that these peculiar quantum effects may also play a role in larger systems.

Large number of interacting particles

In order to observe Bell correlations in systems consisting of many particles, the researchers first had to develop a new method that does not require measuring each particle individually – which would require a level of control beyond what is currently possible. The team succeeded in this task with the help of a Bell inequality that was only recently discovered. The Basel researchers tested their method in the lab with small clouds of ultracold atoms cooled with laser light down to a few billionths of a degree above absolute zero. The atoms in the cloud constantly collide, causing their magnetic moments to become slowly entangled. When this entanglement reaches a certain magnitude, Bell correlations can be detected. Author Roman Schmied explains: “One would expect that random collisions simply cause disorder. Instead, the quantum-mechanical properties become entangled so strongly that they violate classical statistics.”

More specifically, each atom is first brought into a quantum superposition of two states. After the atoms have become entangled through collisions, researchers count how many of the atoms are actually in each of the two states. This division varies randomly between trials. If these variations fall below a certain threshold, it appears as if the atoms have ‘agreed’ on their measurement results; this agreement describes precisely the Bell correlations.

New scientific territory

The work presented, which was funded by the National Centre of Competence in Research Quantum Science and Technology (NCCR QSIT), may open up new possibilities in quantum technology; for example, for generating random numbers or for quantum-secure data transmission. New prospects in basic research open up as well: “Bell correlations in many-particle systems are a largely unexplored field with many open questions – we are entering uncharted territory with our experiments,” says Philipp Treutlein.

Here’s a link to and a citation for the paper,

Bell correlations in a Bose-Einstein condensate by Roman Schmied, Jean-Daniel Bancal, Baptiste Allard, Matteo Fadel, Valerio Scarani, Philipp Treutlein, Nicolas Sangouard. Science  22 Apr 2016: Vol. 352, Issue 6284, pp. 441-444 DOI: 10.1126/science.aad8665

This paper is behind a paywall.