Tag Archives: single-walled carbon nanotubes

OCSiAL (carbon nanotubes) makes moves: a production plant, maybe, in Israel and an international network

OCSiAl, the world’s largest nanotechnology business or developer of the revolutionary material TUBALL depending on the way the wind is blowing, has indicated interest in building a carbon nanotube production facility in Israel according to a Nov. 11, 2014 news item on the Economic Times (of India) website,

Nanotechnology company OCSiAl said on Tuesday [Nov. 11, 2014] it was in advanced talks to establish a production facility in southern Israel at an investment of $30 million.

OCSiAl said it intends to employ around 30 workers in Israel, mainly chemical engineers, industrial engineers, process engineers and automatic machine operators. It has started examining possible sites for the plant.

A Nov. 11, 2014 Time of Israel news article by David Shamah has more details,

The world’s biggest nanotechnology production company, OCSiAl, is shopping around in southern Israel for a site to build what could be the world’s largest nanotube production facility. It will produce as much as 50 tons of Single Wall Carbon Nanotubes (SWCNTs) a year – making it “possibly the largest producer of such nanotubes in the world,” the company announced Tuesday [Nov. 11, 2014].

….

… OCSiAl, … is the world’s biggest maker of the tiny SWCNTs. OCSiAl is an international nanotechnology company with operations in the US, UK, Germany, South Korea and Russia, headquartered in Luxembourg. The company employs 160 workers and is expected to hire 30 people for its Negev plant.

“Israel is one of the world’s leading knowledge and innovation centers in nanotechnology, and this is why we are interested in setting up a plant here,” said Konstantin Notman, vice president of OCSiAl. “We intend to deepen the contact with the Israeli market in all aspects – setting up our largest production facility here, enlarging our customer base, establishing contacts with Israeli dealers, and conducting cooperation with industrial companies and academic bodies.”

OCSiAL has a Nov. 13, 2014 news release, which despite the date seems to have inspired this news item about a SWCNT production plant in Israel.

There is this video produced by OCSiAL showing off some of its current production facilities,

On other fronts, OCSiAL has announced a worldwide partnership network program in a Nov. 12, 2014 news item on Azonano,

OCSiAl, developer of the revolutionary material TUBALL, is now focused on creating a worldwide partnership network. Facing a growing worldwide demand for new materials and solutions on one side, and a great interest of industrial manufacturers in providing these solutions without major changes in their business models and production processes on the other, OCSiAl presented TUBALL as an answer to these demands six months ago and now launches a partnership program.

An OCSiAL Nov. 14, 2014 news release, which despite the date seems to have originated the news item, provides more details,

TUBALL, first introduced in London this past spring, has gained attention of major brands in several industries since then. Not only due to its high “as produced” purity (75%+ of SWCNTs), but also because of its market price, which is 50 times lower than of other products with similar properties. That has been achieved by OCSiAl’s technology, which allows cost-efficient SWСNT synthesis in sufficient volumes and doesn’t require any further enrichment procedures.

To demonstrate TUBALL’s capabilities and to increase the number of its applications, OCSiAl has developed and licensed production technology for several TUBALL-based industrial modifiers: for cathodes of Li-ion batteries (TUBALL BATT), rubbers and tires (TUBALL RUBBER), thermoplastics (TUBALL PLAST), thermoset composites (TUBALL COMP) and for transparent conductive films (TUBALL INK). Modifiers for aluminium, concrete, paints and some other materials are under development.

The partnership program is compatible with various business models and works perfectly for different types of companies, including:

  • product manufacturers, who can produce TUBALL-enhanced versions of their current products;
  • solution providers, who can start their own production of TUBALL-based industrial modifiers (masterbatches and suspensions) using OCSiAl’s licensed technology for their own business, or to satisfy the demands of their clients;
  • large-scale distributors, who can introduce TUBALL and TUBALL-based modifiers to their local markets.

“We have great expectations for further prosperity of our business in cooperation with OCSiAl”, – says Managing Director of Evermore company Wu Lu-Hao. “We hope not only to attract new clients via highly sought TUBALL product, but to advance existing partnerships through offering new opportunities for development of our client’s products”

TUBALL’s introduction to the nanomaterials market served as a pivot point for many industries, which previously experienced difficulties with the industrial usage of nanomodifiers, due to their high cost and absence of an efficient synthesis technology, and the lack of any alternative solutions.

Now further development of a worldwide partnership network will remove the last geographical, technological and economical borders, empowering new wave of revolution in materials manufacture.

“Analytical studies suggest that the nanomaterials market will experience rapid growth in the next five to ten years, — says Yuri Koropachinskiy, OCSiAl’s President and co-founder — If you want to be there in 2025 — now is the time to start.”

You can find out more OCSiAl on its website; I last wrote about the company in a Sept. 11, 2014 posting.

OCSiAL will not be acquiring Zyvex

The world’s largest nanotechnology business: OCSiAl and its Zyvex acquisition as my June 23, 2014 post was titled is no longer true as per a Sept. 10, 2014 news item on Nanowerk,

Zyvex Technologies and OCSiAl today announced that a previously reported acquisition has been terminated. In June, the companies announced that Zyvex was to be acquired and would operate as the Zyvex Technologies division of OCSiAl. This decision does not affect future plans for cooperation between the companies.

Curiously Zyvex does not have a news release on its website about this latest turn of events although there is this Sept. 9, 2014 Zyvex news release on the Dayton [Ohio, US] Business Journal website, which appears to have originated the Nanowerk news item,

Zyvex Chairman Jim Von Ehr said, “When we started talking with OCSiAl earlier this year, we saw synergies in combining, but as we went along, it became apparent that we could better serve our customers and employees by remaining independent. We look forward to a continued relationship with OCSiAl across a number of areas, but as separate companies. The advanced technology and class-leading products offered by each company will continue to be independently available for commercial applications.”

About Zyvex Technologies
Zyvex was founded in 1997 as the first company solely focused on nanotechnology. Zyvex successfully introduced products to a variety of industries, from semiconductors to sporting goods, and received significant acclaim for its advances in commercializing molecular nanotechnology. More information can be found at www.zyvextech.com.

About OCSiAl
OCSiAl is the creator of a leading technology for the mass industrial production of single wall carbon nanotubes, redefining the market in terms of price and quality. … More information can be found at www.ocsial.com.

OCSiAL does have a Sept. 9, 2014 news release saying much the same as the Zyvex news release but offering a* quote from their Chief Executive Officer (CEO),

Max Atanassov, CEO of OCSiAl LLC said “Cancelling the deal was our mutual decision – we found it to be the best option. What is essential is that we continue to cooperate and see prospective opportunities in our partnership”.

The termination of the deal will not influence OCSiAl’s strategy and further plans. The company will continue to offer top-quality single wall carbon nanotubes (SWCNT) at industrial scale and specially designed universal nanomodifiers for various industries, including polymers, composite materials, elastomers, lithium-ion batteries and transparent conductive films.

And so OCSiAl loses its claim to being the world’s largest nanotechnology company. These are interesting times.

*’a’ added on Dec. 30, 2015.

Following the sound of a nanoparticle through the body

I was hoping for some actual sound files of nanoparticles in the body but for some rason the researchers don’t seem to have made them freely available. However, there is this textual description in a Sept. 5, 2014 news item on Nanowerk,

Nanoparticles have become interesting means for biomedical applications. Thanks to their minute dimensions and large surface areas, they can often penetrate cellular membranes and deliver high payloads of targeting agents and drugs to achieve better specificity and therapeutic effects than non-targeted treatments. Yet, quantitative in vivo measurements of nanoparticle concentrations are essential for nanotechnology-based preclinical research.

To date, tedious ex vivo analysis of nanoparticle concentrations in organs of test animals remains a standard approach in such biodistribution studies. Most current imaging methods remain limited due to several disadvantages and/or high costs. Optoacoustic tomography (OAT), a method that utilizes ultrasound generated by absorption of nanosecond-scale laser pulses to recreate an image of the absorbing volume based on the spatial variation of optical absorption coefficients, is a potential alternative.

Usually, due to the unknown light distribution in a complex optical scattering environment, tomographic images of live animals contain only qualitative information and are not suitable for quantitative biodistribution analysis. …

A Sept. 3, 2014 Wiley-VCH publishers press release by K. Maedefessel-Herrmann, which originated the news item, provides more details about the work,

… A team of researchers from TomoWave Laboratories, Inc., Rice University, and the University of Houston now developed a methodology to correlate changes in optoacoustic signal intensity from organs of live animals detected with OAT in relation to changes of optical absorption coefficient in those organs caused by nanoparticle accumulation.

The researchers quantified localized OAT brightness changes induced by accumulation of single-walled carbon nanotubes (SWCNTs) in liver, kidney and spleen of nude mice. Using the intrinsic fluorescence properties of disaggregated nanotubes, they measured SWCNT concentrations in the parts-per-million range in the harvested organs and defined the corresponding changes in optical absorption coefficient. The observed increases in optoacoustic signal brightness in tissues were compared with the increases in optical absorption coefficients caused by SWCNT accumulation.
The combination of these methods allows one to perform sensitivity calibration of an OAT system for a selected type of animal and for a range of optical absorption coefficient values of their organs to enable non-invasive concentration measurements of optically absorbing nanoparticles and dyes in vivo.

Here’s a link to and a citation for the paper,

Enabling in vivo measurements of nanoparticle concentrations with three-dimensional optoacoustic tomography by Dmitri A. Tsyboulski, Anton V. Liopo, Richard Su, Sergey A. Ermilov, Sergei M. Bachilo, R. Bruce Weisman, and Alexander A. Oraevsky. Journal of Biophotonics, Volume 7, Issue 8, pages 581–588, August 2014. DOI: 10.1002/jbio.201200233  Article first published online: 2 APR 2013

This is an open access article.

Bespoke (custom made) carbon nanotubes

Researchers have found a way to create single-walled carbon nanotubes (SWCNTs) that  are consistent and, hopefully, designed for specific applications if I’m reading the research rightly, (I have an embedded video in a March 15, 2013 posting which illustrates some of the issues with producing carbon nanotubes.) Getting back to this latest research, it suggests that we could order SWCNTs-on-demand. An Aug. 14, 2014 news item on Azonano provides more insight,

In future, it will be possible to specifically equip carbon nanotubes with properties which they need for electronic applications, for example. Researchers at Empa in Dübendorf/Switzerland and the Max Planck Institute for Solid State Research in Stuttgart [Germany] have succeeded for the first time in growing single-walled carbon nanotubes (CNTs) with only a single, prespecified structure.

The nanotubes thereby have identical electronic properties. The decisive trick here: The team has taken up an idea which originated from the Stuttgart-based Max Planck researchers and produced the CNT from custom-made organic precursor molecules. The researchers started with these precursor molecules and have built up the nanotubes on a platinum surface, as they report in the latest issue of the scientific journal Nature. Such CNTs could be used in future, for instance, in ultra-sensitive light detectors and very tiny transistors.

An Aug. 13, 2014 Max Planck Institute press release, which originated the news item, provides more detail,

For 20 years, material scientists working on the development of carbon nanotubes for a range of applications have been battling a problem – now an elegant solution is at hand. With their unusual mechanical, thermal and electronic properties, the tiny tubes with their honeycomb lattice of graphitic carbon have become the embodiment of nanomaterials. They could be used to manufacture the next generation of electronic and electro-optical components so that they are even smaller and with even faster switching times than before. But to achieve this, the material scientists must specifically equip the nanotubes with desired properties, and these depend on their structure. The production methods used to date, however, always result in a mixture of different CNTs. The team from Empa  and the Max Planck Institute for Solid State Research has now remedied the situation with a new production path for single-walled nanotubes.

Carbon nanotubes with the best possible varietal purity are in demand

With a diameter of around one nanometre, single-walled CNTs (SWCNTs) are deemed to be quantum structures; very tiny structural differences, in the diameter, for example, or in the orientation of the atomic lattice, can dramatically change the electronic properties: one SWCNT can be a metal, while one with a slightly different structure is semi-conducting. Correspondingly great is the interest in reliable methods for producing SWCNTs with the best possible varietal purity. Researchers working with Martin Jansen, Director Emeritus at the Max Planck Institute for Solid State Research, have been pursuing suitable concepts for the synthesis for ten years. But it is only now that the surface physicists at Empa and the chemists at the Stuttgart-based Max Planck Institute have succeeded in implementing one of these ideas in the laboratory. The researchers allowed structurally identical SWCNTs to grow on a platinum surface in a self-organised process and were able to unambiguously define their electronic properties.

The Max Planck research team headed by Martin Jansen had the idea of starting with small precursor molecules to synthesise carbon nanotubes. They felt it should be possible to achieve controlled conversion of the precursor molecules into a cap which acts as the seed for a SWCNT and thus unambiguously specify the structure of the nanotube. With this concept, they approached the Empa team working with Roman Fasel, head of Empa’s «nanotech@surfaces» department and titular professor at the Department of Chemistry and Biochemistry of the University of Bern. This group has already been working for some time on how molecules on a surface can be converted or combined into complex nanostructures according to the principle of molecular self-organisation. “The challenge now consists in finding the right precursor molecule which would actually grow on a smooth surface,” says Roman Fasel. This was ultimately achieved by Andreas Mueller and Konstantin Amsharov from the Max Planck Institute in Stuttgart with the synthesis of a hydrocarbon molecule from a not-inconsiderable 150 atoms.

Molecular origami on the platinum surface

What exactly is the process in which the carbon nanotube forms? In the first step, the flat precursor molecule must – as is the case in origami – convert into a three-dimensional object, the seed. This takes place on a hot platinum surface with the aid of a catalytic reaction, whereby hydrogen atoms split off from the precursor molecule and form new carbon-carbon bonds at very specific positions. The seed folds up from the flat molecule: a tiny, domed shape with open rim, which sits on the platinum surface. This so-called end cap forms the top of the growing SWCNT.

In a second chemical process, further carbon atoms, which are formed during the catalytic decomposition of ethanol on the platinum surface, are taken up. They deposit on the open rim between end cap and platinum surface and lift the cap higher and higher; the tube slowly grows upwards. The atomic structure of the nanotube is determined solely by the shape of the seed. The researchers proved this by analysing the vibrational modes of the SWCNTs and taking measurements with the scanning tunnelling microscope. Further investigations at Empa showed that the SWCNTs produced were over 300 nanometres in length.

Different nanotubes are formed from suitable precursor molecules

The researchers have thus proved that they can unambiguously specify the growth and thus the structure of long SWCNTs using custom-made molecular seeds. The SWCNTs synthesised in this study can exist in two forms, which correspond to an object and its mirror image. By choosing the precursor molecule appropriately, the researchers were able to influence which of the two variants forms. Depending on how the honeycomb atomic lattice is derived from the original molecule – straight or oblique with respect to the CNT axis – it is also possible for helically wound tubes, i.e. with right- or left-handed rotation, and with non-mirror symmetry to form. And it is precisely this structure that then determines which electronic, thermo-electric and optical properties of the material. In principle, the researchers can therefore specifically produce materials with different properties through their choice of precursor molecule.

In further steps, Roman Fasel and his colleagues want to gain an even better understanding of how SWCNTs establish themselves on a surface. Even if well in excess of 100 million nanotubes per square centimetre already grow on the platinum surface, only a relatively small fraction of the seeds actually develop into «mature» nanotubes. The question remains as to which processes are responsible for this, and how the yield can be increased.

Here’s a link to and a citation for the paper,

Controlled synthesis of single-chirality carbon nanotubes by Juan Ramon Sanchez-Valencia, Thomas Dienel, Oliver Gröning, Ivan Shorubalko, Andreas Mueller, Martin Jansen, Konstantin Amsharov, Pascal Ruffieux, & Roman Fasel. Nature 512, 61–64 (07 August 2014) doi:10.1038/nature13607

Published online 06 August 2014

This paper is behind a paywall.

Carbon nanotubes: OCSiAl’s deal in Korea and their effect on the body after one year

I have two news items related only by their focus on carbon nanotubes. First, there’s a July 3, 2014 news item on Azonano featuring OCSiAl’s deal with a Korean company announced at NANO KOREA 2014,

At NANO KOREA 2014 OCSiAl announced an unprecedentedly large-scale deal with Korean company Applied Carbon Nano Technology [ACN] Co., Ltd. – one of the key industry players.

OCSiAl, the dominating graphene tubes manufacturer, that successfully presented its products and technology in Europe and USA, now to enter Asian nanotech markets. At NANO KOREA 2014 the company introduced TUBALL, the universal nanomodifier of materials featuring >75% of single wall carbon nanotubes, and announced signing of supply agreement with Applied Carbon Nano Technology Co., Ltd. (hereinafter referred to as ACN), a recognized future-oriented innovative company.

A July 3, 2014 OCSiAl news release, which originated the news item, describes the memorandum of understanding (MOU) in greater detail,

Under this MoU ACN would buy 100 kg of TUBALL. The upcoming deal is the first of OCSiAl’s Korean contracts to be performed in 2015 and it turns up the largest throughout SWCNT market, which annual turnover recently hardly reached 500 kg. The agreement is exceptionally significant as it opens fundamental opportunities for manufacturing of new nanomaterial-based product with the unique properties that were not even possible before.

“OCSiAl’s entry to Korean market required thorough preparation. We invested time and efforts to prove that our company, our technology and our products worth credibility, – says Viktor Kim, OCSiAl Vice President, – we urged major playmakers to take TUBALL for testing to verify the quality and effectiveness. We believe that ACN is more than an appropriate partner to start – they are experts at the market and they understand its future perspectives very clearly. We believe that mutually beneficial partnership with ACN will path the way for future contracts, since it will become indicative to other companies in Asia and all over the world”.

“It comes as no surprise that OCSiAl’s products here in Korea will be in a great demand soon. The country strives to become world’s leader in advanced technology, and we do realize the benefits of nanomaterial’s exploitation. TUBALL is a truly versatile additive which may be used across many market sectors, where adoption of new materials with top-class performance is essential”, – says Mr. Dae-Yeol Lee, CEO of ACN.

OCSiAl’s entering to Korean market will undoubtedly have a high-reaching impact on the industry. The recent merger with American Zyvex Technologies made OCSiAl the not only the world’s largest nanomaterial producer but a first-rate developer of modifiers of different materials based on carbon nanotubes. To its Korean partners OCSiAl offers TUBALL, the raw ‘as produced’ SWCNT material and masterbatches, which can be either custom-made or ready-to-use mixtures for different applications, including li-ion batteries, car tires, transparent conductive coatings and many others. “Since Korea is increasingly dynamic, our success here will build on continuous development of our product, – adds Viktor Kim, – And we are constantly working on new applications of graphene tubes to meet sophisticated demands of nanotech-savvy Korean consumers”.

OCSiAl’s Zyvex acquisition was mentioned in a June 23, 2014 posting here.

My second tidbit concerns a July 4, 2014 news item on Nanowerk about carbon nanotubes and their effect on the body (Note: A link has been removed),

Having perfected an isotope labeling method allowing extremely sensitive detection of carbon nanotubes in living organisms, CEA and CNRS researchers have looked at what happens to nanotubes after one year inside an animal. Studies in mice revealed that a very small percentage (0.75%) of the initial quantity of nanotubes inhaled crossed the pulmonary epithelial barrier and translocated to the liver, spleen, and bone marrow. Although these results cannot be extrapolated to humans, this work highlights the importance of developing ultrasensitive methods for assessing the behavior of nanoparticles in animals. It has been published in the journal ACS Nano (“Carbon Nanotube Translocation to Distant Organs after Pulmonary Exposure: Insights from in Situ 14C-Radiolabeling and Tissue Radioimaging”).

A July 1, 2014 CNRS [France Centre national de la recherche scientifique] press release, which originated the news item, describes both applications for carbon nanotubes and the experiment in greater detail,

Carbon nanotubes are highly specific nanoparticles with outstanding mechanical and electronic properties that make them suitable for use in a wide range of applications, from structural materials to certain electronic components. Their many present and future uses explain why research teams around the world are now focusing on their impact on human health and the environment.

Researchers from CEA and the CNRS joined forces to study the distribution over time of these nanoparticles in mice, following contamination by inhalation. They combined radiolabeling with radio imaging tools for optimum detection sensitivity. When making the carbon nanotubes, stable carbon (12C) atoms were replaced directly by radioactive carbon (14C) atoms in the very structure of the tubes. This method allows the use of carbon nanotubes similar to those produced in industry, but labeled with 14C. Radio imaging tools make it possible to detect up to twenty or so carbon nanotubes on an animal tissue sample.

A single dose of 20 µg [micrograms] of labeled nanotubes was administered at the start of the protocol, then monitored for one year. The carbon nanotubes were observed to translocate from the lungs to other organs, especially the liver, spleen, and bone marrow. The study demonstrates that these nanoparticles are capable of crossing the pulmonary epithelial barrier, or air-blood barrier. It was also observed that the quantity of carbon nanotubes in these organs rose steadily over time, thus demonstrating that these particles are not eliminated on this timescale. Further studies will have to determine whether this observation remains true beyond a year.

The CEA [French Alternative Energies and Atomic Energy Commission {Commissariat à l’énergie atomique et aux énergies alternatives}] and CNRS teams have developed highly specific skills that enable them to study the health and environmental impact of nanoparticles from various angles. Nanotoxicology and nanoecotoxicology research such as this is both a priority for society and a scientific challenge, involving experimental approaches and still emerging concepts.

This work is conducted as part of CEA’s interdisciplinary Toxicology and Nanosciences programs. These are management, coordination and support structures set up to promote multidisciplinary approaches for studying the potential impact on living organisms of various components of industrial interest, including heavy metals, radionuclides, and new products.

At the CNRS, these concerns are reflected in particular in major initiatives such as the International Consortium for the Environmental Implications of Nano Technology (i-CEINT), a CNRS-led international initiative focusing on the ecotoxicology of nanoparticles. CNRS teams also have a long tradition of close involvement in matters relating to standards and regulations. Examples of this include the ANR NanoNORMA program, led by the CNRS, or ongoing work within the French C’Nano network.

For those who would either prefer or like to check out  the French language version of the July 1, 2014 CNRS press release (La biodistribution des nanotubes de carbone dans l’organisme), it can be found here.

Here’s a link to and a citation for the paper,

Carbon Nanotube Translocation to Distant Organs after Pulmonary Exposure: Insights from in Situ 14C-Radiolabeling and Tissue Radioimaging by Bertrand Czarny, Dominique Georgin, Fannely Berthon, Gael Plastow, Mathieu Pinault, Gilles Patriarche, Aurélie Thuleau, Martine Mayne L’Hermite, Frédéric Taran, and Vincent Dive. ACS Nano, 2014, 8 (6), pp 5715–5724 DOI: 10.1021/nn500475u Publication Date (Web): May 22, 2014

Copyright © 2014 American Chemical Society

This paper is behind a paywall.

Quality carbon nanotubes

Before launching into this latest item about carbon nanotubes (CNTs), I have an April 11, 2013 posting which offers a brief overview of the topic and a link to my Mar. 14, 2013 posting titled: The long, the short, the straight, and the curved of them: all about carbon nanotubes, which holds an embedded video by Dr. Andrew Maynard where he describes their somewhat ‘unruly’ nature.

These postings will help those unfamiliar with carbon nanotubes to better understand the importance of a June 14, 2014 news item on Nanowerk announcing a new CNT characterization and certification service for single-walled CNTs,

Intertek, a leading quality solutions provider to industries worldwide, today announced a comprehensive facility for characterising key structural and quality parameters of single-walled carbon nanotubes (SWNTs).

A June 12, 2014 Intertek press release, which originated the news item, describes the company’s reasons for adding this to their suite of services,

Carbon nanotubes are very thin tubes of elemental carbon with exceptional mechanical, optical and electrical properties that have the potential to significantly improve the performance of a wide range of materials by altering their fundamental properties. Recent advancements in manufacturing processes mean that SWNTs are now becoming available in sufficient quantity for industrial-scale evaluation and application and so it is increasingly important to be able to verify their quality though robust analytical testing. Applications currently being explored include additives for batteries, composites for the automotive and aerospace industry, electrodes and semiconductor devices such as transistors.

With dimensions of approximately 1/100000th the thickness of a single human hair, SWNTs can present analytical challenges for assessing their quality and structure. No single technique can adequately characterise a nanotube product, and so a diverse set of complementary analytical techniques which have exquisite precision and sensitivity are required. This comprehensive analytical service is commercially available to both manufacturers of nanotubes and to developers who wish to incorporate nanotubes into their products.

It seems to me this is a necessary step on the road to commercializing products utilizing single-walled CNTs.

Nanomaterials and safety: Europe’s non-governmental agencies make recommendations; (US) Arizona State University initiative; and Japan’s voluntary carbon nanotube management

I have three news items which have one thing in common, they concern nanomaterials and safety. Two of these of items are fairly recent; the one about Japan has been sitting in my drafts folder for months and I’m including it here because if I don’t do it now, I never will.

First, there’s an April 7, 2014 news item on Nanowerk (h/t) about European non-governmental agencies (CIEL; the Center for International Environmental Law and its partners) and their recommendations regarding nanomaterials and safety. From the CIEL April 2014 news release,

CIEL and European partners* publish position paper on the regulation of nanomaterials at a meeting of EU competent authorities

*ClientEarth, The European Environmental Bureau, European citizen’s Organization for Standardisation, The European consumer voice in Standardisation –ANEC, and Health Care Without Harm, Bureau of European Consumers

… Current EU legislation does not guarantee that all nanomaterials on the market are safe by being assessed separately from the bulk form of the substance. Therefore, we ask the European Commission to come forward with concrete proposals for a comprehensive revision of the existing legal framework addressing the potential risks of nanomaterials.

1. Nanomaterials are different from other substances.

We are concerned that EU law does not take account of the fact that nano forms of a substance are different and have different intrinsic properties from their bulk counterpart. Therefore, we call for this principle to be explicitly established in the REACH, and Classification Labeling and Packaging (CLP) regulations, as well as in all other relevant legislation. To ensure adequate consideration, the submission of comprehensive substance identity and characterization data for all nanomaterials on the market, as defined by the Commission’s proposal for a nanomaterial definition, should be required.

Similarly, we call on the European Commission and EU Member States to ensure that nanomaterials do not benefit from the delays granted under REACH to phase-in substances, on the basis of information collected on their bulk form.

Further, nanomaterials, due to their properties, are generally much more reactive than their bulk counterpart, thereby increasing the risk of harmful impact of nanomaterials compared to an equivalent mass of bulk material. Therefore, the present REACH thresholds for the registration of nanomaterials should be lowered.

Before 2018, all nanomaterials on the market produced in amounts of over 10kg/year must be registered with ECHA on the basis of a full registration dossier specific to the nanoform.

2. Risk from nanomaterials must be assessed

Six years after the entry into force of the REACH registration requirements, only nine substances have been registered as nanomaterials despite the much wider number of substances already on the EU market, as demonstrated by existing inventories. Furthermore, the poor quality of those few nano registration dossiers does not enable their risks to be properly assessed. To confirm the conclusions of the Commission’s nano regulatory review assuming that not all nanomaterials are toxic, relevant EU legislation should be amended to ensure that all nanomaterials are adequately assessed for their hazardous properties.

Given the concerns about novel properties of nanomaterials, under REACH, all registration dossiers of nanomaterials must include a chemical safety assessment and must comply with the same information submission requirements currently required for substances classified as Carcinogenic, Mutagenic or Reprotoxic (CMRs).

3. Nanomaterials should be thoroughly evaluated

Pending the thorough risk assessment of nanomaterials demonstrated by comprehensive and up-to-date registration dossiers for all nanoforms on the market, we call on ECHA to systematically check compliance for all nanoforms, as well as check the compliance of all dossiers which, due to uncertainties in the description of their identity and characterization, are suspected of including substances in the nanoform. Further, the Community Roling Action Plan (CoRAP) list should include all identified substances in the nanoform and evaluation should be carried out without delay.

4. Information on nanomaterials must be collected and disseminated

All EU citizens have the right to know which products contain nanomaterials as well as the right to know about their risks to health and environment and overall level of exposure. Given the uncertainties surrounding nanomaterials, the Commission must guarantee that members of the public are in a position to exercise their right to know and to make informed choices pending thorough risk assessments of nanomaterials on the market.

Therefore, a publicly accessible inventory of nanomaterials and consumer products containing nanomaterials must be established at European level. Moreover, specific nano-labelling or declaration requirements must be established for all nano-containing products (detergents, aerosols, sprays, paints, medical devices, etc.) in addition to those applicable to food, cosmetics and biocides which are required under existing obligations.

5. REACH enforcement activities should tackle nanomaterials

REACH’s fundamental principle of “no data, no market” should be thoroughly implemented. Therefore, nanomaterials that are on the market without a meaningful minimum set of data to allow the assessment of their hazards and risks should be denied market access through enforcement activities. In the meantime, we ask the EU Member States and manufacturers to use a precautionary approach in the assessment, production, use and disposal of nanomaterials

This comes on the heels of CIEL’s March 2014 news release announcing a new three-year joint project concerning nanomaterials and safety and responsible development,

Supported by the VELUX foundations, CIEL and ECOS (the European Citizen’s Organization for Standardization) are launching a three-year project aiming to ensure that risk assessment methodologies and risk management tools help guide regulators towards the adoption of a precaution-based regulatory framework for the responsible development of nanomaterials in the EU and beyond.

Together with our project partner the German Öko-Institut, CIEL and ECOS will participate in the work of the standardization organizations Comité Européen de Normalisation and International Standards Organization, and this work of the OECD [Organization for Economic Cooperation and Development], especially related to health, environmental and safety aspects of nanomaterials and exposure and risk assessment. We will translate progress into understandable information and issue policy recommendations to guide regulators and support environmental NGOs in their campaigns for the safe and sustainable production and use of nanomaterials.

The VILLUM FOUNDATION and the VELUX FOUNDATION are non-profit foundations created by Villum Kann Rasmussen, the founder of the VELUX Group and other entities in the VKR Group, whose mission it is to bring daylight, fresh air and a better environment into people’s everyday lives.

Meanwhile in the US, an April 6, 2014 news item on Nanowerk announces a new research network, based at Arizona State University (ASU), devoted to studying health and environmental risks of nanomaterials,

Arizona State University researchers will lead a multi-university project to aid industry in understanding and predicting the potential health and environmental risks from nanomaterials.

Nanoparticles, which are approximately 1 to 100 nanometers in size, are used in an increasing number of consumer products to provide texture, resiliency and, in some cases, antibacterial protection.

The U.S. Environmental Protection Agency (EPA) has awarded a grant of $5 million over the next four years to support the LCnano Network as part of the Life Cycle of Nanomaterials project, which will focus on helping to ensure the safety of nanomaterials throughout their life cycles – from the manufacture to the use and disposal of the products that contain these engineered materials.

An April 1, 2014 ASU news release, which originated the news item, provides more details and includes information about project partners which I’m happy to note include nanoHUB and the Nanoscale Informal Science Education Network (NISENet) in addition to the other universities,

Paul Westerhoff is the LCnano Network director, as well as the associate dean of research for ASU’s Ira A. Fulton Schools of Engineering and a professor in the School of Sustainable Engineering and the Built Environment.

The project will team engineers, chemists, toxicologists and social scientists from ASU, Johns Hopkins, Duke, Carnegie Mellon, Purdue, Yale, Oregon’s state universities, the Colorado School of Mines and the University of Illinois-Chicago.

Engineered nanomaterials of silver, titanium, silica and carbon are among the most commonly used. They are dispersed in common liquids and food products, embedded in the polymers from which many products are made and attached to textiles, including clothing.

Nanomaterials provide clear benefits for many products, Westerhoff says, but there remains “a big knowledge gap” about how, or if, nanomaterials are released from consumer products into the environment as they move through their life cycles, eventually ending up in soils and water systems.

“We hope to help industry make sure that the kinds of products that engineered nanomaterials enable them to create are safe for the environment,” Westerhoff says.

“We will develop molecular-level fundamental theories to ensure the manufacturing processes for these products is safer,” he explains, “and provide databases of measurements of the properties and behavior of nanomaterials before, during and after their use in consumer products.”

Among the bigger questions the LCnano Network will investigate are whether nanomaterials can become toxic through exposure to other materials or the biological environs they come in contact with over the course of their life cycles, Westerhoff says.

The researchers will collaborate with industry – both large and small companies – and government laboratories to find ways of reducing such uncertainties.

Among the objectives is to provide a framework for product design and manufacturing that preserves the commercial value of the products using nanomaterials, but minimizes potentially adverse environmental and health hazards.

In pursuing that goal, the network team will also be developing technologies to better detect and predict potential nanomaterial impacts.

Beyond that, the LCnano Network also plans to increase awareness about efforts to protect public safety as engineered nanomaterials in products become more prevalent.

The grant will enable the project team to develop educational programs, including a museum exhibit about nanomaterials based on the LCnano Network project. The exhibit will be deployed through a partnership with the Arizona Science Center and researchers who have worked with the Nanoscale Informal Science Education Network.

The team also plans to make information about its research progress available on the nanotechnology industry website Nanohub.org.

“We hope to use Nanohub both as an internal virtual networking tool for the research team, and as a portal to post the outcomes and products of our research for public access,” Westerhoff says.

The grant will also support the participation of graduate students in the Science Outside the Lab program, which educates students on how science and engineering research can help shape public policy.

Other ASU faculty members involved in the LCnano Network project are:

• Pierre Herckes, associate professor, Department of Chemistry and Biochemistry, College of Liberal Arts and Sciences
• Kiril Hristovski, assistant professor, Department of Engineering, College of Technology and Innovation
• Thomas Seager, associate professor, School of Sustainable Engineering and the Built Environment
• David Guston, professor and director, Consortium for Science, Policy and Outcomes
• Ira Bennett, assistant research professor, Consortium for Science, Policy and Outcomes
• Jameson Wetmore, associate professor, Consortium for Science, Policy and Outcomes, and School of Human Evolution and Social Change

I hope to hear more about the LCnano Network as it progresses.

Finally, there was this Nov. 12, 2013 news item on Nanowerk about instituting  voluntary safety protocols for carbon nanotubes in Japan,

Technology Research Association for Single Wall Carbon Nanotubes (TASC)—a consortium of nine companies and the National Institute of Advanced Industrial Science and Technology (AIST) — is developing voluntary safety management techniques for carbon nanotubes (CNTs) under the project (no. P10024) “Innovative carbon nanotubes composite materials project toward achieving a low-carbon society,” which is sponsored by the New Energy and Industrial Technology Development Organization (NEDO).

Lynn Bergeson’s Nov. 15, 2013 posting on nanotech.lawbc.com provides a few more details abut the TASC/AIST carbon nanotube project (Note: A link has been removed),

Japan’s National Institute of Advanced Industrial Science and Technology (AIST) announced in October 2013 a voluntary guidance document on measuring airborne carbon nanotubes (CNT) in workplaces. … The guidance summarizes the available practical methods for measuring airborne CNTs:  (1) on-line aerosol measurement; (2) off-line quantitative analysis (e.g., thermal carbon analysis); and (3) sample collection for electron microscope observation. …

You can  download two protocol documents (Guide to measuring airborne carbon nanotubes in workplaces and/or The protocols of preparation, characterization and in vitro cell based assays for safety testing of carbon nanotubes), another has been published since Nov. 2013, from the AIST’s Developing voluntary safety management techniques for carbon nanotubes (CNTs): Protocol and Guide webpage., Both documents are also available in Japanese and you can link to the Japanese language version of the site from the webpage.

Control the chirality, control your carbon nanotube

A Feb. 18, 2014 news item on ScienceDaily features a story not about a breakthrough but about a discovery that* could lead to one,

A single-walled carbon nanotube grows from the round cap down, so it’s logical to think the cap’s formation determines what follows. But according to researchers at Rice University, that’s not entirely so.

Theoretical physicist Boris Yakobson and his Rice colleagues found through exhaustive analysis that those who wish to control the chirality of nanotubes — the characteristic that determines their electrical properties — would be wise to look at other aspects of their growth.

The scientists have provided this image to illustrate chirality (‘twisting’) in carbon nanotubes,

Carbon nanotube caps are forced into shape by six pentagons among the array of hexagons in the single-atom-thick tube. Rice University researchers took a census of thousands of possible caps and found the energies dedicated to their formation have no bearing on the tube's ultimate chirality. Credit: Evgeni Penev/Rice University

Carbon nanotube caps are forced into shape by six pentagons among the array of hexagons in the single-atom-thick tube. Rice University researchers took a census of thousands of possible caps and found the energies dedicated to their formation have no bearing on the tube’s ultimate chirality.
Credit: Evgeni Penev/Rice University

The Feb. 17, 2014 Rice University news release (also on EurekAlert), which originated the news item, describe the process the scientists used to research chirality in carbon nanotubes,

To get a clear picture of how caps are related to nanotube chirality, the Rice group embarked upon a detailed, two-year census of the 4,500 possible cap formations for nanotubes of just two diameters, 0.8 and 1 nanometer, across 21 chiralities.

The cap of every nanotube has six pentagons – none of which may touch each other — among an array of hexagons, Penev said. They pull the cap and force it to curve, but their positions are not always the same from cap to cap.

But because a given chirality can have hundreds of possible caps, the determining factor for chirality must lie elsewhere, the researchers found. “The contribution of the cap is the elastic curvature energy, and then you just forget it,” Penev said.

“There are different factors that may be in play,” Yakobson said. “One is the energy portion dictated by the catalyst; another one may be the energy of the caps per se. So to get the big picture, we address the energy of the caps and basically rule it out as a factor in determining chirality.”

A nanotube is an atom-thick sheet of carbon atoms arranged in hexagons and rolled into a tube. Chirality refers to the hexagons’ orientation, and that angle controls how well the nanotube will conduct electricity.

A perfect conducting metallic nanotube would have the atoms arranged in “armchairs,” so-called because cutting the nanotube in half would make the top look like a series of wells with atoms for armrests. Turn the hexagons 30 degrees, though, will make a semiconducting “zigzag” nanotube.  Nanotubes can be one or the other, or the chiral angle can be anything in between, with a shifting range of electrical properties.

Getting control of these properties has been a struggle. Ideally, scientists could grow the specific kinds of nanotubes they need for an application, but in reality, they grow as a random assortment that must then be separated with a centrifuge or by other means.

Yakobson suspects the answer lies in tuning the interaction between the catalyst and the nanotube edge. “This study showed the energy involved in configuring the cap is reasonably flat,” he said. “That’s important to know because it allows us to continue to work on other factors.

Here’s a  link to and a citation for the paper,

Extensive Energy Landscape Sampling of Nanotube End-Caps Reveals No Chiral-Angle Bias for Their Nucleation by Evgeni S. Penev, Vasilii I. Artyukhov, and Boris I. Yakobson. ACS Nano, Article ASAP DOI: 10.1021/nn406462e Publication Date (Web): January 23, 2014
Copyright © 2014 American Chemical Society

This article is behind a paywall.

One final comment, it took these scientists two years of painstaking work to establish that caps are not the determining factor for chirality. It’s this type of story I find as fascinating, if not more so, as the big breakthroughs because it illustrates the  extraordinary drive it takes to extract even the smallest piece of information. I wish more attention was given to these incremental efforts.

* March 7, 2014 changed ‘while’ to ‘that’.

Life-cycle assessment for electric vehicle lithium-ion batteries and nanotechnology is a risk analysis

A May 29, 2013 news item on Azonano features a new study for the US Environmental Protection Agency (EPA) on nanoscale technology and lithium-ion (li-ion) batteries for electric vehicles,

Lithium (Li-ion) batteries used to power plug-in hybrid and electric vehicles show overall promise to “fuel” these vehicles and reduce greenhouse gas emissions, but there are areas for improvement to reduce possible environmental and public health impacts, according to a “cradle to grave” study of advanced Li-ion batteries recently completed by Abt Associates for the U.S. Environmental Protection Agency (EPA).

“While Li-ion batteries for electric vehicles are definitely a step in the right direction from traditional gasoline-fueled vehicles and nickel metal-hydride automotive batteries, some of the materials and methods used to manufacture them could be improved,” said Jay Smith, an Abt senior analyst and co-lead of the life-cycle assessment.

Smith said, for example, the study showed that the batteries that use cathodes with nickel and cobalt, as well as solvent-based electrode processing, show the highest potential for certain environmental and human health impacts. The environmental impacts, Smith explained, include resource depletion, global warming, and ecological toxicity—primarily resulting from the production, processing and use of cobalt and nickel metal compounds, which can cause adverse respiratory, pulmonary and neurological effects in those exposed.

There are viable ways to reduce these impacts, he said, including cathode material substitution, solvent-less electrode processing and recycling of metals from the batteries.

The May 28, 2013 Abt Associates news release, which originated the news item, describes some of the findings,

Among other findings, Shanika Amarakoon, an Abt associate who co-led the life-cycle assessment with Smith, said global warming and other environmental and health impacts were shown to be influenced by the electricity grids used to charge the batteries when driving the vehicles.
“These impacts are sensitive to local and regional grid mixes,” Amarakoon said.  “If the batteries in use are drawing power from the grids in the Midwest or South, much of the electricity will be coming from coal-fired plants.  If it’s in New England or California, the grids rely more on renewables and natural gas, which emit less greenhouse gases and other toxic pollutants.” However,” she added, “impacts from the processing and manufacture of these batteries should not be overlooked.”
In terms of battery performance, Smith said that “the nanotechnology applications that Abt assessed were single-walled carbon nanotubes (SWCNTs), which are currently being researched for use as anodes as they show promise for improving the energy density and ultimate performance of the Li-ion batteries in vehicles.  What we found, however, is that the energy needed to produce the SWCNT anodes in these early stages of development is prohibitive. Over time, if researchers focus on reducing the energy intensity of the manufacturing process before commercialization, the environmental profile of the technology has the potential to improve dramatically.”

Abt’s Application of Life-Cycle Assessment to Nanoscale Technology: Lithium-ion Batteries for Electric Vehicles can be found here, all 126 pp.

This assessment was performed under the auspices of an interesting assortment of agencies (from the news release),

The research for the life-cycle assessment was undertaken through the Lithium-ion Batteries and Nanotechnology for Electric Vehicles Partnership, which was led by EPA’s Design for the Environment Program in the Office of Chemical Safety and Pollution Prevention and Toxics, and EPA’s National Risk Management Research Laboratory in the Office of Research and Development.  [emphasis mine] The Partnership also included industry partners (i.e., battery manufacturers, recyclers, and suppliers, and other industry groups), the Department of Energy’s Argonne National Lab, Arizona State University, and the Rochester Institute of Technology

I highlighted the National Risk Management Research Laboratory as it reminded me of the lithium-ion battery fires in airplanes reported in January 2013. I realize that cars and planes are not the same thing but lithium-ion batteries have some well defined problems especially since the summer of 2006 when there was a series of li-ion battery laptop fires. From Tracy V. Wilson’s What causes laptop batteries to overheat? article for How stuff works.com (Note: A link has been removed),

In conjunction with the United States Consumer Product Safety Commission (CPSC), Dell and Apple Computer announced large recalls of laptop batteries in the summer of 2006, followed by Toshiba and Lenovo. Sony manufactured all of the recalled batteries, and in October 2006, the company announced its own large-scale recall. Under the right circumstances, these batteries could overheat, potentially causing burns, an explosion or a fire.

Larry Greenemeier in a Jan. 17, 2013 article for Scientific American offers some details about the lithium-ion battery fires in airplanes and elsewhere,

Boeing’s Dreamliner has likely become a nightmare for the company, its airline customers and regulators worldwide. An inflight lithium-ion battery fire broke out Wednesday [Jan. 16, 2013] on an All Nippon Airways 787 over Japan, forcing an emergency landing. And another battery fire occurred last week aboard a Japan Airlines 787 at Boston’s Logan International Airport. Both battery failures resulted in release of flammable electrolytes, heat damage and smoke on the aircraft, according to the U.S. Federal Aviation Administration (FAA).

Lithium-ion batteries—used to power mobile phones, laptops and electric vehicles—have summoned plenty of controversy during their relatively brief existence. Introduced commercially in 1991, by the mid 2000s they had become infamous for causing fires in laptop computers.

More recently, the plug-in hybrid electric Chevy Volt’s lithium-ion battery packs burst into flames following several National Highway Traffic Safety Administration (NHTSA) tests to measure the vehicle’s ability to protect occupants from injury in a side collision. The NHTSA investigated and concluded in January 2012 that Chevy Volts and other electric vehicles do not pose a greater risk of fire than gasoline-powered vehicles.

Philip E. Ross in his Jan. 18, 2013 article about the airplane fires for IEEE’s (Institute of Electrical and Electronics Engineers) Spectrum provides some insight into the fires,

It seems that the batteries heated up in a self-accelerating pattern called thermal runaway. Heat from the production of electricity speeds up the production of electricity, and… you’re off. This sort of things happens in a variety of reactions, not just in batteries, let alone the Li-ion kind. But thermal runaway is particularly grave in Li-ion batteries because they pack a lot more power than the tried-and-true metal-hydride ones, not to speak of Ye Olde lead-acid.

It’s because of this very quality that Li-ion batteries found their first application in small mobile devices, where power is critical and fires won’t cost anyone his life. It’s also why it took so long for the new tech to find its way into electric and hybrid-electric cars.

Perhaps it would have been wiser of Boeing to go for the safest possible Li-ion design, even if it didn’t have quite as much oomph as possible. That’s what today’s main-line electric-drive cars do, as our colleague, John Voelcker, points out.

“The cells in the 787 [Dreamliner], from Japanese company GS Yuasa, use a cobalt oxide (CoO2) chemistry, just as mobile-phone and laptop batteries do,” he writes in greencarreports.com. “That chemistry has the highest energy content, but it is also the most susceptible to overheating that can produce “thermal events” (which is to say, fires). Only one electric car has been built in volume using CoO2 cells, and that’s the Tesla Roadster. Only 2,500 of those cars will ever exist.” Most of today’s electric cars, Voelcker adds, use chemistries that trade some energy density for safety.

The Dreamliner (Boeing 787) is designed to be the lightest of airplanes and using a more energy dense but safer lithium-ion battery seems not to have been an acceptable trade-off.  Interestingly, Boeing according to Ross still had a backlog of orders after the fires.

I find that some of the discussion about risk and nanotechnology-enabled products oddly disconnected. There are the concerns about what happens at the nanoscale (environmental implications, etc.) but that discussion is divorced from some macroscale issues such as battery fires. Taken to absurd lengths, technology at the nanoscale could be considered safe while macroscale issues are completely ignored. It’s as if our institutions are not yet capable of managing multiple scales at once.

For more about an emphasis on scale and other minutiae (pun intended), there’s my May 28, 2013 posting about Steffen Foss Hansen’s plea to revise current European Union legislation to create more categories for nanotechnology regulation, amongst other things.

For more about airplanes and their efforts to get more energy efficient, there’s my May 27, 2013 posting about a biofuel study in Australia.

US Environmental Protection Agency (EPA) releases Application of Life-Cycle Assessment to Nanoscale Technology: Lithium-ion Batteries for Electric Vehicles

There’s more about the Application of Life-Cycle Assessment to Nanoscale Technology: Lithium-ion Batteries for Electric Vehicles (final report) in the Apr. 30, 2013 news item on Nanowerk (Note: Links were removed),

The final report for the life-cycle assessment (LCA) of current and emerging energy systems used in plug-in hybrid and electric vehicles conducted by the DfE [Design for the Environment]/ORD [Office of Research and Development] Li-ion Batteries and Nanotechnology Partnership is now available. The LCA results will help to promote the responsible development of these emerging energy systems, including nanotechnology innovations in advanced batteries, leading to reduced overall environmental impacts and the reduced use and release of more toxic materials.

This partnership was led by EPA’s Design for the Environment (DfE) Program, in the Office of Pollution Prevention and Toxics, and the National Risk Management Research Laboratory, in EPA’s Office of Research and Development.

US EPA’s Partnership for “Application of Life-Cycle Assessment to Nanoscale Technology: Lithium-ion Batteries for Electric Vehicles” webspace describes the project and the report,

The partnership conducted a screening-level life-cycle assessment (LCA) of currently manufactured lithium-ion (Li-ion) battery technologies for electric vehicles, and a next generation battery component (anode) that uses single-walled carbon nanotube (SWCNT) technology.

A quantitative environmental LCA of Li-ion batteries was conducted using primary data from both battery manufacturers and recyclers–and the nanotechnology anode currently being researched for next-generation batteries.

This type of study had not been previously conducted, and was needed to help grow the advanced-vehicle battery industry in a more environmentally responsible and efficient way. The LCA results are expected to mitigate current and future impacts and risks by helping battery manufacturers and suppliers identify which materials and processes are likely to pose the greatest impacts or potential risks to public health or the environment throughout the life cycle of their products. The study identifies opportunities for environmental improvement, and can inform design changes that will result in the use of less toxic materials and reduced overall environmental impacts, and increased energy efficiency.

The opportunities for improving the environmental profile of Li-ion batteries for plug-in and electric vehicles identified in the draft LCA study have the potential to drive a significant reduction of potential environmental impacts and risks, given that advanced batteries are an emerging and growing technology.

The study also demonstrates how the life-cycle impacts of an emerging technology and novel application of nanomaterials (i.e., the SWCNT anode) can be assessed before the technology is mature, and provides a benchmark for future life-cycle assessments of this technology.

For anyone who’s interested the final report (all 126 pp) of the LCA is available here.