Tag Archives: SLAC

Keeping it together—new glue for lithium-ion batteries

Glue isn’t the first component that comes to my mind when discussing ways to make lithium-ion (Li-ion) batteries more efficient but researchers at SLAC National Accelerator Laboratory at Stanford University have proved that the glue used to bind a Li-ion battery together can make a difference to its efficiency (from the Aug. 20, 2013 news item on phys.org),

When it comes to improving the performance of lithium-ion batteries, no part should be overlooked – not even the glue that binds materials together in the cathode, researchers at SLAC and Stanford have found.

Tweaking that material, which binds lithium sulfide and carbon particles together, created a cathode that lasted five times longer than earlier designs, according to a report published last month in Chemical Science. The research results are some of the earliest supported by the Department of Energy’s Joint Center for Energy Storage Research.

“We were very impressed with how important this binder was in improving the lifetime of our experimental battery,” said Yi Cui, an associate professor at SLAC and Stanford who led the research.

The Aug. 19, 2013 SLAC news release by Mike Ross, which originated the news item, provides context for this accidental finding about glue and Li-ion batteries,

Researchers worldwide have been racing to improve lithium-ion batteries, which are one of the most promising technologies for powering increasingly popular devices such as mobile electronics and electric vehicles. In theory, using silicon and sulfur as the active elements in the batteries’ terminals, called the anode and cathode, could allow lithium-ion batteries to store up to five times more energy than today’s best versions. But finding specific forms and formulations of silicon and sulfur that will last for several thousand charge-discharge cycles during real-life use has been difficult.

Cui’s group was exploring how to create a better cathode by using lithium sulfide rather than sulfur. The lithium atoms it contains can provide the ions that shuttle between anode and cathode during the battery’s charge/discharge cycle; this in turn means the battery’s other electrode can be made from a non-lithium material, such as silicon. Unfortunately, lithium sulfide is also electrically insulating, which greatly reduces any battery’s performance. To overcome this, electrically conducting carbon particles can be mixed with the sulfide; a glue-like material – the binder – holds it all together.

Scientists in Cui’s [Yi Cui, an associate professor at SLAC and Stanford who led the research] group devised a new binder that is particularly well-suited for use with a lithium sulfide cathode ­– and that also binds strongly with intermediate polysulfide molecules that dissolve out of the cathode and diminish the battery’s storage capacity and useful lifetime.

The experimental battery using the new binder, known by the initials PVP, retained 94 percent of its original energy-storage capacity after 100 charge/discharge cycles, compared with 72 percent for cells using a conventionally-used binder, known as PVDF. After 500 cycles, the PVP battery still had 69 percent of its initial capacity.

Cui said the improvement was due to PVP’s much stronger affinity for lithium sulfide; together they formed a fine-grained lithium sulfide/carbon composite that made it easier for lithium ions to penetrate and reach all of the active material within the cathode. In contrast, the previous binder, PVDF, caused the composite to grow into large clumps, which hindered the lithium ions’ penetration and ruined the battery within 100 cycles

Even the best batteries lose some energy-storage capacity with each charge/discharge cycle. Researchers aim to reduce such losses as much as possible. Further enhancements to the PVP/lithium sulfide cathode combination will be needed to extend its lifetime to more than 1,000 cycles, but Cui said he finds it encouraging that improving the usually overlooked binder material produced such dramatic benefits.

Here’s a link to and a citation for the published paper,

Stable cycling of lithium sulfide cathodes through strong affinity with a bifunctional binder by Zhi Wei Seh, Qianfan Zhang, Weiyang Li, Guangyuan Zheng, Hongbin Yaoa, and Yi Cui. Chem. Sci., 2013,4, 3673-3677 DOI: 10.1039/C3SC51476E First published online 11 Jul 2013

There’s a note on the website stating the article is free but the instructions for accessing the article are confusing seeming to suggest you need a subscription of some sort or you need to register for the site.

I have written about Yi Cui’s work with lithium-ion batteries before including this Jan. 9, 2013 posting, How is an eggshell like a lithium-ion battery?, which also features a news release by Mike Ross.

Only for the truly obsessed: a movie featuring gold nanocrystal vibrations

Folks at the London Centre for Nanotechnology (at the University College of London) have released a film made with a pioneering 3D imaging technique that shows how gold nanocrystals vibrate. From the May 23, 2013 news release on EurekAlert,

A billon-frames-per-second film has captured the vibrations of gold nanocrystals in stunning detail for the first time.

The film, which was made using 3D imaging pioneered at the London Centre for Nanotechnology (LCN) at UCL [University College of London], reveals important information about the composition of gold. The findings are published in the journal Science.

Jesse Clark, from the LCN and lead author of the paper said: “Just as the sound quality of a musical instrument can provide great detail about its construction, so too can the vibrations seen in materials provide important information about their composition and functions.”

“It is absolutely amazing that we are able to capture snapshots of these nanoscale motions and create movies of these processes. This information is crucial to understanding the response of materials after perturbation. “

Caption: The acoustic phonons can be visualized on the surface as regions of contraction (blue) and expansion (red). Also shown are two-dimensional images comparing the experimental results with theory and molecular dynamics simulation. The scale bar is 100 nanometers. Credit: Jesse Clark/UCL

Caption: The acoustic phonons can be visualized on the surface as regions of contraction (blue) and expansion (red). Also shown are two-dimensional images comparing the experimental results with theory and molecular dynamics simulation. The scale bar is 100 nanometers. Credit: Jesse Clark/UCL

Here are more details from the news release,

Scientists found that the vibrations were unusual because they start off at exactly the same moment everywhere inside the crystal. It was previously expected that the effects of the excitation would travel across the gold nanocrystal at the speed of sound, but they were found to be much faster, i.e., supersonic.

The new images support theoretical models for light interaction with metals, where energy is first transferred to electrons, which are able to short-circuit the much slower motion of the atoms.

The team carried out the experiments at the SLAC National Accelerator Laboratory using a revolutionary X-ray laser called the “Linac Coherent Light Source”. The pulses of X-rays are extremely short (measured in femtoseconds, or quadrillionths of a second), meaning they are able to freeze all motion of the atoms in any sample, leaving only the electrons still moving.

However, the X-ray pulses are intense enough that the team was able to take single snapshots of the vibrations of the gold nanocrystals they were examining. The vibration was started with a short pulse of infrared light.

The real keeners can watch the movie if they click on the link to the May 23, 2013 news release on EurekAlert.

The team developing this movie was international in scope (from the news release),

The research team included contributors from UCL, University of Oxford, SLAC, Argonne National Laboratory [US] and LaTrobe University, Australia.

How is an eggshell like a lithium-ion battery?

How is an eggshell like a lithium-ion battery? It’s all about the yolk. Some days I can’t resist the urge for some wordplay, even if it isn’t the best fit, and the Jan. 9, 2013 news item by Mike Ross on phys.org proved irresistible,

SLAC [Stanford National Accelerator Laboratory] and Stanford [University] scientists have set a world record for energy storage, using a clever “yolk-shell” design to store five times more energy in the sulfur cathode of a rechargeable lithium-ion battery than is possible with today’s commercial technology. The cathode also maintained a high level of performance after 1,000 charge/discharge cycles, paving the way for new generations of lighter, longer-lasting batteries for use in portable electronics and electric vehicles.

The study has been published in Nature Communications where this explanatory image amongst others can be viewed,

[downloaded from Nature Communications: http://www.nature.com/ncomms/journal/v4/n1/full/ncomms2327.html]

[downloaded from Nature Communications: http://www.nature.com/ncomms/journal/v4/n1/full/ncomms2327.html]

You can find out more about the research here,

Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries by Zhi Wei Seh, Weiyang Li, Judy J. Cha,    Guangyuan Zheng, Yuan Yang, Matthew T. McDowell, Po-Chun Hsu & Yi Cui in Nature Communications 4, Article number: 1331 doi:10.1038/ncomms2327

The Jan. 8, 2013 SLAC news release, which originated the news item, provides more details about the lithium-ion batteries in general and this attempt to improve their energy storage capacity,

Lithium-ion batteries work by moving lithium ions back and forth between two electrodes, the cathode and anode. Charging the battery forces the ions and electrons into the anode, creating an electrical potential that can power a wide range of devices. Discharging the battery – using it to do work – moves the ions and electrons to the cathode.

Today’s lithium-ion batteries typically retain about 80 percent of their initial capacity after 500 charge/discharge cycles.

For some 20 years, researchers have known that sulfur could theoretically store more lithium ions, and thus much more energy, than today’s cathode materials…

Cui’s innovation is a cathode made of nanoparticles, each a tiny sulfur nugget surrounded by a hard shell of porous titanium-oxide, like an egg yolk in an eggshell. Between the yolk and shell, where the egg white would be, is an empty space into which the sulfur can expand. During discharging, lithium ions pass through the shell and bind to the sulfur, which expands to fill the void but not so much as to break the shell. The shell, meanwhile, protects the sulfur-lithium intermediate compound from electrolyte solvent that would dissolve it.

Each cathode particle is only 800 nanometers (billionths of a meter) in diameter, about one-hundredth the diameter of a human hair.

“After 1,000 charge/discharge cycles, our yolk-shell sulfur cathode had retained about 70 percent of its energy-storage capacity. This is the highest performing sulfur cathode in the world, as far as we know,” he [Cui] said. “Even without optimizing the design, this cathode cycle life is already on par with commercial performance. This is a very important achievement for the future of rechargeable batteries.”

Over the past seven years, Cui’s group has demonstrated a succession of increasingly capable anodes that use silicon rather than carbon because it can store up to 10 times more charge per weight. Their most recent anode also has a yolk-shell design that retains its energy-storage capacity over 1,000 charge/discharge cycles.

The group’s next step is to combine the yolk-shell sulfur cathode with a yolk-shell silicon anode to see if together they produce a high-energy, long-lasting battery.

I have posted a number of recent pieces about lithium-ion (li-ion) batteries including a Dec. 12, 2012 piece about using the Madder plant to develop a greener li-ion battery, a Dec. 10, 2012 piece about the break-up of 123 Systems, a manufacturer of li-ion batteries, and a Nov. 27, 2012 piece about a project in Québec to combine lithium iron phospate with graphene for improved li-ion batteries.