Tag Archives: Slovenia

Nanoparticles and the gut health of major living species of animals

A July 27, 2020 news item on Nanowerk announces research into gut health described as seminal (Note: A link has been removed),

An international team of scientists has completed the first ever study into the potential impact of naturally occurring and man-made nanoparticles on the health of all types of the major living species of animals.

Conceived by researchers at the University of Plymouth, as part of the EU [European Union] Nanofase project, the study assessed how the guts of species from honey bees to humans could protect against the bioaccumulation and toxicological effects of engineered nanomaterials (ENMs) found within the environment.

A July 27, 2020 University of Plymouth press release, which originated the news item, provides more detail,

It showed that the digestive systems of many species have evolved to act as a barrier guarding against the absorption of potentially damaging particles.

However, invertebrates such as earthworms also have roving cells within their guts, which can take up ENMs and transfer them to the gut wall.

This represents an additional risk for many invertebrate species where the particles can be absorbed via these roving cells, with consequent effects on internal organs having the potential to cause lasting damage.

Fortunately, this process is not replicated in humans and other vertebrate animals, however there is still the potential for nanomaterials to have a negative impact through the food chain.

The study, published in the July [2020] edition of Environmental Science: Nano, involved scientists from the UK, the Netherlands, Slovenia and Portugal and focused on particles measuring up to 100 nanometres (around 1/10 millionth of a metre).

It combined existing and new research into species including insects and other invertebrates, fish, birds, and mammals, as well as identifying knowledge gaps on reptiles and amphibians. The study provides the first comprehensive overview of how differences in gut structure can affect the impact of ENMs across the animal kingdom.

Richard Handy, Professor of Environmental Toxicology at the University of Plymouth and the study’s senior author, said:

“This is a seminal piece work that combines nearly 100 years of zoology research with our current understanding of nanotechnology.

“The threats posed by engineered nanomaterials are becoming better known, but this study provides the first comprehensive and species-level assessment of how they might pose current and future threats. It should set the foundations for understanding the dietary hazard in the animal kingdom.”

Nanomaterials come in three forms – naturally occurring, incidentally occurring from human activities, and deliberately manufactured – and their use has increased exponentially in the last decade.

They have consistently found new applications in a wide variety of industrial sectors, including electrical appliances, medicines, cleaning products and textiles.

Professor Handy, who has advised organisations including the Organisation for Economic Co-operation and Development and the United States National Nanotechnology Initiative, added:

“Nanoparticles are far too small for the human eye to see but that doesn’t mean they cannot cause harm to living species. The review element of this study has shown they have actually been written about for many decades, but it is only recently that we have begun to understand the various ways they occur and now the extent to which they can be taken up. Our new EU project, NanoHarmony, looks to build on that knowledge and we are currently working with Public Health England and others to expand our method for detecting nanomaterials in tissues for food safety and other public health matters.”

Here’s a link to and a citation for the paper,

The gut barrier and the fate of engineered nanomaterials: a view from comparative physiology by Meike van der Zande, Anita Jemec Kokalj, David J. Spurgeon, Susana Loureiro, Patrícia V. Silva, Zahra Khodaparast, Damjana Drobne, Nathaniel J. Clark, Nico W. van den Brink, Marta Baccaro, Cornelis A. M. van Gestel, Hans Bouwmeester and Richard D. Handy. Environmental Science: Nano, Issue 7 (July 2020) DOI: 10.1039/D0EN00174K First published 27 Apr 2020

This article is open access.

If you’re curious about Nanofase (Nanomaterial FAte and Speciation in the Environment), there’s more here and there’s more about NanoHarmony here.

A biotech talk: Re – [Generating, Creating, Interpreting] on Tuesday, April 30, 2019 at 5:30 pm in Toronto, Ontario (Canada)

[downloaded from https://artscisalon.com/re-generating-creating-interpreting-tuesday-april-30-530-pm-ocadu/]

This image is intriguing as it’s being used to illustrate an ArtSci Salon April 30, 2019 event about biotechnology (from the Re – [Generating, Creating, Interpreting] event webpage),

Re – [Generating, Creating, Interpreting]

Conversations about Life

We live in strange times. We mourn for the countless lives we are losing to extinction, famine, severe weather and disease; we celebrate the possibility that science may assist us in preserving what we have and in regenerating what is no more. We aspire to re-create long gone species and proceed to create new one. Biotechnologies both terrify and invigorate us. We are torn between creating risk free futures and taking exciting Promethean risks. We claim that biotech can create a more democratic society; yet, we are increasingly racist, sexist and classist.

What’s at stake? How can life unfold from here? How do we reinterpret and re-imagine it? Join us for a series of brief presentations and a following juicy discussion. There will be refreshments. …And juice

With:

Joana Magalhães
Institute of Biomedical Research, A Coruña (INIBIC)

Polona Tratnik
Research Institute for Humanities, Alma Mater Europaea, Ljubljana

Roberta Buiani
Centre for Feminist Research, York University, Toronto

Moderated by:

Dolores Steinman
Biomedical Simulation Lab (BSL)

Tuesday, April 30
5.30 pm

OCADU (Ontario College of Art and Design University)
DF Salon, Room 701K  (7th floor)
205 Richmond St W

RSVP  https://www.facebook.com/events/811144362603498/

For the curious, here are the bios (also from the Re – [Generating, Creating, Interpreting] event webpage),

Roberta Buiani (PhD Communication and Culture, YorkU) is an interdisciplinary artist, media scholar and curator based in Toronto. She is the co-founder of the ArtSci Salon at the Fields Institute for Research in Mathematical Sciences (Toronto) and co-organizer of LASER Toronto. Her recent SSHRC-funded research creation project draws on feminist technoscience and on collaborative encounters across the sciences and the arts to investigate emerging life forms exceeding the categories defined by traditional methods of classification. Her artistic work has travelled to art festivals (Transmediale; Hemispheric Institute Encuentro; Brazil), community centres and galleries (the Free Gallery Toronto; Immigrant Movement International, Queens, Myseum of Toronto), and science institutions (RPI; the Fields Institute). Her writing has appeared on Space and Culture, Cultural Studies and The Canadian Journal of Communication among others. With the ArtSci Salon she has launched a series of experiments in “squatting academia”, by re-populating abandoned spaces and cabinets across university campuses with SciArt installations. Currently, she is a research associate at the Centre for Feminist Research at York University. ArtSci Salon website: https://artscisalon.com Personal http://atomarborea.net

Joana Magalhães holds a B.Sc. in Biology and a Ph.D. in Biochemistry and Molecular Biology. She is a Postdoctoral Researcher at the Institute of Biomedical Research of A Coruña, Spain, working in the field of regenerative medicine strategies for osteoarthritis. Previous positions include a Postdoctoral Fellowship at the Spanish Networking Biomedical Center and a Marie Curie PhD Fellowship at the Spanish Council for Scientific Research. In parallel with her scientific career, she develops STEAM-for-health media strategies from a gender perspective that received several national and international awards (Science on Stage 2017 for Radio, Press and TV or SCI-DOC Festival Mention of honour Women in Science Category 2018). Currently, she is Correspondent for “Women in Science” at Efervesciencia Radio Program. Moreover, she was a scientist-in-residence at Fundación Luis Seoane and Artesacía Theatrical Company for “TRANSCÉNICA” – I Transmedia Creators Meeting (2015). She is the Spanish Representative at the Young Scientist Forum – European Society of Biomaterials and Board Member of the Association of Women in Science and Technology (AMIT) – Galician Node. http://jomagellan.tumblr.com

Dolores Steinman Biomedical Simulation Lab, University of Toronto.

Dr. Steinman’s involvement with the Biomedical Simulation Laboratory (BSL), at the University of Toronto, is based on her experience as an MD (Romania) and PhD in Cell Biology (Canada) that led her to contribute in situating the BSL’s “patient-specific” computer-based simulations in the socio-historical, ethical and aesthetic context of medical imaging and imagery.

Polona Tratnik, Ph.D., is Dean of Alma Mater Europaea – Institutum Studiorum Humanitatis, Faculty and Research Institute for Humanities, Ljubljana [Slovenia], where she is a Professor and Head of Research as well. She also teaches courses at the Faculty for Media and Communication at Singidunum University in Serbia, at the Academy of Fine Arts and Design of the University of Ljubljana, at the Faculty of Education of the University of Maribor and at the Faculty for Design of the University of Primorska. She used to be the Head of the Department for Cultural Studies at the Faculty for Humanities of the University of Primorska. In 2012 she was a Fulbright Visiting Scholar, as well as a Guest Professor at the University of California Santa Cruz. She was a Guest Professor also at the Capital Normal University Bejing (China), at the Faculty for Art and Design Helsinki TAIK (Finland), and at the Universidad Nacional Autónoma de México(Mexico City). She is president of the Slovenian Society of Aesthetics (since 2011) and an Executive Committee Member of the International Association of Aesthetics. She has authored seven monographs and one proceeding as single author, including the Hacer-vivir más allá del cuerpo y del medio (Mexico City: Herder, 2013), Art as Intervention(Sophia, 2017) and Conquest of Body. Biopower with Biotechnology (Springer, 2017). Polona Tratnik is a pioneer bio artist exhibiting worldwide at shows such as Ars Electronica festival and BEAP festival in Perth .http://www.polona-tratnik.si

It should be a stimulating discussion although I am curious as to about omission from this list: “… biotech can create a more democratic society; yet, we are increasingly racist, sexist and classist. ” What about age or, more specifically, ageism? Maybe next time, eh?

When based on plastic materials, contemporary art can degrade quickly

There’s an intriguing April 1, 2016 article by Josh Fischman for Scientific American about a problem with artworks from the 20th century and later—plastic-based materials (Note: A link has been removed),

Conservators at museums and art galleries have a big worry. They believe there is a good chance the art they showcase now will not be fit to be seen in one hundred years, according to researchers in a project  called Nanorestart. Why? After 1940, artists began using plastic-based material that was a far cry from the oil-based paints used by classical painters. Plastic is also far more fragile, it turns out. Its chemical bonds readily break. And they cannot be restored using techniques historically relied upon by conservators.

So art conservation scientists have turned to nanotechnology for help.

Sadly, there isn’t any detail in Fischman’s article (*ETA June 17, 2016 article [for Fast Company] by Charlie Sorrel, which features some good pictures, a succinct summary of Fischman’s article and a literary reference [Kurt Vonnegut’s Bluebeard]I*) about how nanotechnology is playing or might play a role in this conservation effort. Further investigation into the two projects (NanoRestART and POPART) mentioned by Fischman didn’t provide much more detail about NanoRestART’s science aspect but POPART does provide some details.

NanoRestART

It’s probably too soon (this project isn’t even a year-old) to be getting much in the way of the nanoscience details but NanoRestART has big plans according to its website homepage,

The conservation of this diverse cultural heritage requires advanced solutions at the cutting edge of modern chemistry and material science in an entirely new scientific framework that will be developed within NANORESTART project.

The NANORESTART project will focus on the synthesis of novel poly-functional nanomaterials and on the development of highly innovative restoration techniques to address the conservation of a wide variety of materials mainly used by modern and contemporary artists.

In NANORESTART, enterprises and academic centers of excellence in the field of synthesis and characterization of nano- and advanced materials have joined forces with complementary conservation institutions and freelance restorers. This multidisciplinary approach will cover the development of different materials in response to real conservation needs, the testing of such materials, the assessment of their environmental impact, and their industrial scalability.

NanoRestART’s (NANOmaterials for the REStoration of works of ART) project page spells out their goals in the order in which they are being approached,

The ground-breaking nature of our research can be more easily outlined by focussing on specific issues. The main conservation challenges that will be addressed in the project are:

 

Conservation challenge 1Cleaning of contemporary painted and plastic surfaces (CC1)

Conservation challenge 2Stabilization of canvases and painted layers in contemporary art (CC2)

Conservation challenge 3Removal of unwanted modern materials (CC3)

Conservation challenge 4Enhanced protection of artworks in museums and outdoors (CC4)

The European Commission provides more information about the project on its CORDIS website’s NanoRestART webpage including the start and end dates for the project and the consortium members,

From 2015-06-01 to 2018-12-01, ongoing project

CHALMERS TEKNISKA HOEGSKOLA AB
Sweden
MIRABILE ANTONIO
France
NATIONALMUSEET
Denmark
CONSIGLIO NAZIONALE DELLE RICERCHE
Italy
UNIVERSITY COLLEGE CORK, NATIONAL UNIVERSITY OF IRELAND, CORK
Ireland
MBN NANOMATERIALIA SPA
Italy
KEMIJSKI INSTITUT
Slovenia
CHEVALIER AURELIA
France
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Brazil
UNIVERSITA CA’ FOSCARI VENEZIA
Italy
AKZO NOBEL PULP AND PERFORMANCE CHEMICALS AB
Sweden
COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
France
ARKEMA FRANCE SA
France
UNIVERSIDAD DE SANTIAGO DE COMPOSTELA
Spain
UNIVERSITY COLLEGE LONDON
United Kingdom
ZFB ZENTRUM FUR BUCHERHALTUNG GMBH
Germany
UNIVERSITAT DE BARCELONA
Spain
THE BOARD OF TRUSTEES OF THE TATE GALLERY
United Kingdom
ASSOCIAZIONE ITALIANA PER LA RICERCA INDUSTRIALE – AIRI
Italy
THE ART INSTITUTE OF CHICAGO
United States
MINISTERIO DE EDUCACION, CULTURA Y DEPORTE
Spain
STICHTING HET RIJKSMUSEUM
Netherlands
UNIVERSITEIT VAN AMSTERDAM
Netherlands
UNIVERSIDADE FEDERAL DO RIO DE JANEIRO
Brazil
ACCADEMIA DI BELLE ARTI DI BRERA
Italy

It was a bit surprising to see Brazil and the US as participants but The Art Institute of Chicago has done nanotechnology-enabled conservation in the past as per my March 24, 2014 posting about a Renoir painting. I’m not familiar with the Brazilian organization.

POPART

POPART (Preservation of Plastic Artefacts in museum collections) mentioned by Fischman was a European Commission project which ran from 2008 – 2012. Reports can be found on the CORDIS Popart webpage. The final report has some interesting bits (Note: I have added subheads in the [] square brackets),

To achieve a valid comparison of the various invasive and non-invasive techniques proposed for the identification and characterisation of plastics, a sample collection (SamCo) of plastics artefacts of about 100 standard and reference plastic objects was gathered. SamCo was made up of two kinds of reference materials: standards and objects. Each standard represents the reference material of a ‘pure’ plastic; while each object represents the reference of the same plastic as in the standards, but compounded with pigments, dyestuffs, fillers, anti oxidants, plasticizers etc.  Three partners ICN [Instituut Collectie Nederland], V&A [Victoria and Albert Museum] and Natmus [National Museet] collected different natural and synthetic plastics from the ICN reference collections of plastic objects, from flea markets, antique shops and from private collections and from their own collection to contribute to SamCo, the sample collection for identification by POPART partners. …

As a successive step, the collections of the following museums were surveyed:

-Victoria & Albert Museum (V&A), London, U.K.
-Stedelijk Museum, Amsterdam, The Netherlands
-Musée d’Art Moderne et d’Art Contemporaine (MAMAC) Nice, France
-Musée d’Art moderne, St. Etienne, France
-Musée Galliera, Paris, France

At the V&A approximately 200 objects were surveyed. Good or fair conservation conditions were found for about 85% of the objects, whereas the remaining 15% was in poor or even in unacceptable (3%) conditions. In particular, crazing and delamination of polyurethane faux leather and surface stickiness and darkening of plasticized PVC were observed. The situation at the Stedelijk Museum in Amsterdam was particularly favourable because a previous survey had been done in 1995 so that it was possible to make a comparison with the Popart survey in 2010. A total number of 40 objects, which comprised plastics early dating from the 1930’s until the newer plastics from the 1980’s, were considered and their actual conservation state compared with the 1995 records. Of the objects surveyed in 2010, it can be concluded that 21 remained in the same condition. 13 objects containing PA, PUR, PVC, PP or natural rubber changed due to chemical and physical degradation while works of art containing either PMMA or PS changed due to mechanical damages and incorrect artist’s technique (inappropriate adhesive) into a lesser condition. 6 works of art (containing either PA or PMMA or both) changed into a better condition due to restoration or replacements.  More than 230 objects have been examined in the 3 museums in France. A particular effort was devoted to the identification of the constituting plastics materials. Surveys have been undertaken without any sophisticated equipment, in order to work in museums everyday conditions. Plastics hidden by other materials or by paint layers were not or hardly accessible, it is why the final count of some plastics may be under estimated in the final results. Another outcome is that plastic identification has been made at a general level only, by trying to identify the polymer family each plastic belongs to. Lastly, evidence of chemical degradation processes that do not cause visible or perceptible damage have not been detected and could not be taken in account in the final results.

… The most damaged artefacts resulted constituted by cellulose acetate, cellulose nitrate and PVC.

[Polly (the doll)]

One of the main issues that is of interest for conservators and curators is to assess which kinds of plastics are most vulnerable to deterioration and to what extent they can deteriorate under the environmental conditions normally encountered in museums. Although one might expect that real time deterioration could be ascertained by a careful investigation of museum objects on display or in storage, real objects or artworks may not sampled due to ethical considerations. Therefore, reference objects were prepared by Natmus in the form of a doll (Polly) for simultaneous exposures in different environmental conditions. The doll comprised of 11 different plastics representative of types typically found in modern museum collections. The 16 identical dolls realized were exposed in different places, not only in normal exhibit conditions, but also in some selected extreme conditions to ascertain possible acceleration of the deterioration process. In most cases the environmental parameters were also measured. The dolls were periodically evaluated by visual inspection and in selected cases by instrumental analyses. 

In conclusion the experimental campaign carried out with Polly dolls can be viewed as a pilot study aimed at tackling the practical issues related to the monitoring of real three dimensional plastic artworks and the surrounding environment.

The overall exposure period (one year and half) was sufficient to observe initial changes in the more susceptible polymers, such as polyurethane ethers and esters, and polyamide, with detectable chromatic changes and surface effects. Conversely the other polymers were shown to be stable in the same conditions over this time period.

[Polly as an awareness raising tool]

Last but not least, the educational and communication benefits of an object like Polly facilitated the dissemination of the Popart Project to the public, and increased the awareness of issues associated with plastics in museum collections.

[Cleaning issues]

Mechanical cleaning has long been perceived as the least damaging technique to remove soiling from plastics. The results obtained from POPART suggest that the risks of introducing scratches or residues by mechanical cleaning are measurable. Some plastics were clearly more sensitive to mechanical damage than others. From the model plastics evaluated, HIPS was the most sensitive followed by HDPE, PVC, PMMA and CA. Scratches could not be measured on XPS due to its inhomogeneous surfaces. Plasticised PVC scratched easily, but appeared to repair itself because plasticiser migrated to surfaces and filled scratches.

Photo micrographs revealed that although all 22 cleaning materials evaluated in POPART scratched test plastics, some scratches were sufficiently shallow to be invisible to the naked eye. Duzzit and Scotch Brite sponges as well as all paper based products caused more scratching of surfaces than brushes and cloths. Some cleaning materials, notably Akapad yellow and white sponges, compressed air, latex and synthetic rubber sponges and goat hair brushes left residues on surfaces. These residues were only visible on glass-clear, transparent test plastics such as PMMA. HDPE and HIPS surfaces both had matte and roughened appearances after cleaning with dry-ice. XPS was completely destroyed by the treatment. No visible changes were present on PMMA and PVC.

Of the cleaning methods evaluated, only canned air, natural and synthetic feather duster left surfaces unchanged. Natural and synthetic feather duster, microfiber-, spectacle – and cotton cloths, cotton bud, sable hair brush and leather chamois showed good results when applied to clean model plastics.

Most mechanical cleaning materials induced static electricity after cleaning, causing immediate attraction of dust. It was also noticed that generally when adding an aqueous cleaning agent to a cleaning material, the area scratched was reduced. This implied that cleaning agents also functioned as lubricants. A similar effect was exhibited by white spirit and isopropanol.
Based on cleaning vectors, Judith Hofenk de Graaff detergent, distilled water and Dehypon LS45 were the least damaging cleaning agents for all model plastics evaluated. None of the aqueous cleaning agents caused visible changes when used in combination with the least damaging cleaning materials. Sable hair brush, synthetic feather duster and yellow Akapad sponge were unsuitable for applying aqueous cleaning agents. Polyvinyl acetate sponge swelled in contact with solvents and was only suitable for aqueous cleaning processes.

Based on cleaning vectors, white spirit was the least damaging solvent. Acetone and Surfynol 61 were the most damaging for all model plastics and cannot be recommended for cleaning plastics. Surfynol 61 dissolved polyvinyl acetate sponge and left a milky residue on surfaces, which was particularly apparent on clear PMMA surfaces. Surfynol 61 left residues on surfaces on evaporating and acetone evaporated too rapidly to lubricate cleaning materials thereby increasing scratching of surfaces.

Supercritical carbon dioxide induced discolouration and mechanical damage to the model plastics, particularly to XPS, CA and PMMA and should not be used for conservation cleaning of plastics.

Potential Impact:
Cultural heritage is recognised as an economical factor, the cost of decay of cultural heritage and the risk associated to some material in collection may be high. It is generally estimated that plastics, developed at great numbers since the 20th century’s interbellum, will not survive that long. This means that fewer generations will have access to lasting plastic art for study, contemplation and enjoyment. On the other hand will it normally be easier to reveal a contemporary object’s technological secrets because of better documentation and easier access to artists’ working methods, ideas and intentions. A first more or less world encompassing recognition of the problems involved with museum objects made wholly or in part of plastics was through the conference ‘Saving the twentieth century” held in Ottawa, Canada in 1991. This was followed later by ‘Modern Art, who cares’ in Amsterdam, The Netherlands in 1997, ‘Mortality Immortality? The Legacy of Modern Art’ in Los Angeles, USA in 1998 and, for example much more recent, ‘Plastics –Looking at the future and learning from the Past’ in London, UK in 2007. A growing professional interest in the care of plastics was clearly reflected in the creation of an ICOM-CC working group dedicated to modern materials in 1996, its name change to Modern Materials and Contemporary Art in 2002, and its growing membership from 60 at inception to over 200 at the 16th triennial conference in Lisbon, Portugal in 2011 and tentatively to over 300 as one of the aims put forward in the 2011-2014 programme of that ICOM-CC working group. …

[Intellectual property]

Another element pertaining to conservation of modern art is the copyright of artists that extends at least 50 years beyond their death. Both, damage, value and copyright may influence the way by which damage is measured through scientific analysis, more specifically through the application of invasive or non invasive techniques. Any selection of those will not only have an influence on the extent of observable damage, but also on the detail of information gathered and necessary to explain damage and to suggest conservation measures.

[How much is deteriorating?]

… it is obvious from surveys carried out in several museums in France, the UK and The Netherlands that from 15 to 35 % of what I would then call an average plastic material based collection is in a poor to unacceptable condition. However, some 75 % would require cleaning,

I hope to find out more about how nanotechnology is expected to be implemented in the conservation and preservation of plastic-based art. The NanoRestART project started in June 2015 and hopefully more information will be disseminated in the next year or so.

While it’s not directly related, there was some work with conservation of daguerreotypes (19th century photographic technique) and nanotechnology mentioned in my Nov. 17, 2015 posting which was a followup to my Jan. 10, 2015 posting about the project and the crisis precipitating it.

*ETA June 30, 2016: Here’s clip from a BBC programme, Science in Action broadcast on June 30, 2016 featuring a chat with some of the scientists involved in the NanoRestArt project (Note: This excerpt is from a longer programme and seemingly starts in the middle of a conversation,)

Dimpling can be more than cute, morphable surfaces (smorphs) from MIT (Massachusetts Institute of Technology)

A morphable surface developed by an MIT team can change surface texture — from smooth to dimply, and back again — through changes in pressure. When the inside pressure is reduced, the flexible material shrinks, and the stiffer outer layer wrinkles. Increasing pressure returns the surface to a smooth state.

A June 24, 2014 news item on Nanowerk features a story about the origins of the dimpled golf ball, aerodynamics, and some very pink material (Note: A link has been removed),

There is a story about how the modern golf ball, with its dimpled surface, came to be: In the mid-1800s, it is said, new golf balls were smooth, but became dimpled over time as impacts left permanent dents. Smooth new balls were typically used for tournament play, but in one match, a player ran short, had to use an old, dented one, and realized that he could drive this dimpled ball much further than a smooth one.

Whether that story is true or not, testing over the years has proved that a golf ball’s irregular surface really does dramatically increase the distance it travels, because it can cut the drag caused by air resistance in half. Now researchers at MIT are aiming to harness that same effect to reduce drag on a variety of surfaces — including domes that sometimes crumple in high winds, or perhaps even vehicles.

Detailed studies of aerodynamics have shown that while a ball with a dimpled surface has half the drag of a smooth one at lower speeds, at higher speeds that advantage reverses. So the ideal would be a surface whose smoothness can be altered, literally, on the fly — and that’s what the MIT team has developed.

The new work is described in a paper in the journal Advanced Materials (“Smart Morphable Surfaces for Aerodynamic Drag Control”) by MIT’s Pedro Reis and former MIT postdocs Denis Terwagne (now at the Université Libre de Bruxelles in Belgium) and Miha Brojan (now at the University of Ljubljana in Slovenia).

esearchers made this sphere to test their concept of morphable surfaces. Made of soft polymer with a hollow center, and a thin coating of a stiffer polymer, the sphere becomes dimpled when the air is pumped out of the hollow center, causing it to shrink. (Photo courtesy of the MIT researchers)

Researchers made this sphere to test their concept of morphable surfaces. Made of soft polymer with a hollow center, and a thin coating of a stiffer polymer, the sphere becomes dimpled when the air is pumped out of the hollow center, causing it to shrink. (Photo courtesy of the MIT researchers)

A June 24, 2014 MIT (Massachusetts Institute of Technology) news release (also on EurekAlert) by David Chandler, which originated the news item, provides more detail about the work,

The ability to change the surface in real time comes from the use of a multilayer material with a stiff skin and a soft interior — the same basic configuration that causes smooth plums to dry into wrinkly prunes. To mimic that process, Reis and his team made a hollow ball of soft material with a stiff skin — with both layers made of rubberlike materials — then extracted air from the hollow interior to make the ball shrink and its surface wrinkle.

“Numerous studies of wrinkling have been done on flat surfaces,” says Reis, an assistant professor of mechanical engineering and civil and environmental engineering. “Less is known about what happens when you curve the surface. How does that affect the whole wrinkling process?”

The answer, it turns out, is that at a certain degree of shrinkage, the surface can produce a dimpled pattern that’s very similar to that of a golf ball — and with the same aerodynamic properties.

The aerodynamic properties of dimpled balls can be a bit counterintuitive: One might expect that a ball with a smooth surface would sail through the air more easily than one with an irregular surface. The reason for the opposite result has to do with the nature of a small layer of the air next to the surface of the ball. The irregular surface, it turns out, holds the airflow close to the ball’s surface longer, delaying the separation of this boundary layer. This reduces the size of the wake — the zone of turbulence behind the ball — which is the primary cause of drag for blunt objects.

When the researchers saw the wrinkled outcomes of their initial tests with their multilayer spheres, “We realized that these samples look just like golf balls,” Reis says. “We systematically tested them in a wind tunnel, and we saw a reduction in drag very similar to that of golf balls.”

Because the surface texture can be controlled by adjusting the balls’ interior pressure, the degree of drag reduction can be controlled at will. “We can generate that surface topography, or erase it,” Reis says. “That reversibility is why this is pretty interesting; you can switch the drag-reducing effect on and off, and tune it.”

As a result of that variability, the team refers to these as “smart morphable surfaces” — or “smorphs,” for short. The pun is intentional, Reis says: The paper’s lead author — Terwagne, a Belgian comics fan — pointed out that one characteristic of Smurfs cartoon characters is that no matter how old they get, they never develop wrinkles.

Terwagne says that making the morphable surfaces for lab testing required a great deal of trial-and-error — work that ultimately yielded a simple and efficient fabrication process. “This beautiful simplicity to achieve a complex functionality is often used by nature,” he says, “and really inspired me to investigate further.”

Many researchers have studied various kinds of wrinkled surfaces, with possible applications in areas such as adhesion, or even unusual optical properties. “But we are the first to use wrinkling for aerodynamic properties,” Reis says.

The drag reduction of a textured surface has already expanded beyond golf balls: The soccer ball being used at this year’s World Cup, for example, uses a similar effect; so do some track suits worn by competitive runners. For many purposes, such as in golf and soccer, constant dimpling is adequate, Reis says.

But in other uses, the ability to alter a surface could prove useful: For example, many radar antennas are housed in spherical domes, which can collapse catastrophically in very high winds. A dome that could alter its surface to reduce drag when strong winds are expected might avert such failures, Reis suggests. Another application could be the exterior of automobiles, where the ability to adjust the texture of panels to minimize drag at different speeds could increase fuel efficiency, he says.

Delightful is not the first adjective that jumps to my mind when describing this work but I’m not an engineer (from the news release),

John Rogers, a professor of materials research and engineering at the University of Illinois at Urbana-Champaign who was not involved in this work, says, “It represents a delightful example of how controlled processes of mechanical buckling can be used to create three-dimensional structures with interesting aerodynamic properties. The type of dynamic tuning of sophisticated surface morphologies made possible by this approach would be difficult or impossible to achieve in any other way.”

Here’s a link to and a citation for the paper,

Smart Morphable Surfaces for Aerodynamic Drag Control by Denis Terwagne, Miha Brojan, and Pedro M. Reis. Advanced Materials DOI: 10.1002/adma.201401403 Article first published online: 23 JUN 2014

© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This paper is behind a paywall.

Sniffing old books

I don’t know if it’s nano but this story about old books and their smell ‘speaks’ to me. Thanks to GrrlScientist for her May 1, 2012 posting about this interesting work on degradomics,

Every time I catch a whiff of that special old books smell, I am transported through time and space to the cool welcoming basement of The Strand Bookstore in New York City, where I spent many hot humid summer afternoons, searching for some used book I’ve never seen nor even heard of, or sitting on the cold concrete floor, reading. The smell of old books isn’t pleasant, exactly, but it is unmistakable — and powerfully evocative.

“A combination of grassy notes with a tang of acids and a hint of vanilla over an underlying mustiness,” writes an international team of chemists from University College London (UCL) and the University of Ljubljana (UL) in Slovenia in their scientific paper ([Material Degradomics: On the Smell of Old Books] doi:10.1021/ac9016049 [this paper is behind a paywall despite the fact the paper was published in 2009]).

Here’s an entertaining video about this work,

Not all old books are deteriorating and expelling gases. There are some very old books that are in pretty good condition. The problem arises with the paper production techniques of the 19th and 20th centuries. We put a lot of acid in our papers and that’s what’s breaking down the material. From GrrlScientist’s May 1, 2012 posting,

The one factor that speeds a book’s death more rapidly than any other is acidity: paper that is too acidic significantly decreases a book’s lifespan. These papers are cheap and easy to mass produce. This explains why a newspaper clipping left in the pages of a book creates an ugly orange-brown stain on the book’s pages. But books have also been printed on acidic paper. Many of the books now crowding onto shelves in used bookstores were published in the 19th and 20th centuries; yellowing books with brown spots and crackling bindings that were mass printed on cheap paper that was too acidic. These books are aging rapidly whilst much older books are still in good shape because the paper they were printed on was much purer.

The paper’s lead author, Matija Strlič, is a senior lecturer at the University College of London (UCL) and he has a research interest that I did not realize existed, Heritage Smells,

Research interests span multi-disciplinary research linked to cultural heritage. The focus of these efforts are the development of new scientific tools and methods of study of heritage materials, collections and their interactions with the environment. Among the pioneering contributions are the development of degradomics, use of Near Infrared Spectrometry with chemometric data analysis in heritage science, use of chemiluminometry for studies of degradation of organic heritage materials, and studies of emission and absorption of volatile degradation products in heritage collections. My current research interests include development and use of damage functions and integrated modeling of heritage collections.

Presently, Matija Strlic is the Principal Investigator of the UK AHRC/EPSRC Science and Heritage Programme project Collections Demography (2010-2013) and a Co-Investigator on Heritage Smells! (2010-2013).  He is also involved in  several other projects, including the EU projects POPART (2009-2012, “Preservation of plastic artefacts in museum collections”) and TEACH (2009-2011, “Technologies and tools to prioritize assessment and diagnosis of air pollution impact on immovable and movable cultural heritage”), and UK Technology Strategy Board-funded project Heritage Intelligence (2009-2011).
In the past few years he has been  involved in other large collaborative projects: coordination of SurveNIR (2005-2008, “Near Infrared Tool for Collection Surveying”), scientific coordination of Papylum (2001-2004, “Chemiluminescence – a novel tool in paper conservation studies”), and participation in PaperTreat (2005-2008, “Evaluation of mass deacidification processes”), InkCor (2002-2005, “Stabilisation of iron-gall ink containing paper”) and MIP (2002-2005, “Metals in paper”). He co-coordinated the 8th European Conference on Research for Protection, Conservation and Enhancement of Cultural Heritage, Ljubljana, Slovenia, 10-13 November 2008.

Our paper is crumbling, eh? That means song sheets with the notations from composers such as Beethoven, etc.; original editions of important books of literature and nonfiction; drawings and prints by important artists; and scientific and other research papers; in other words,  historical documents of all kinds will be disappearing unless researchers can find a solution to the problem.