Tag Archives: smart windows

University of British Columbia (Canada) researchers reverse coating process: a smart window story?

It’s nice to see that the science writing at the University of British Columbia (UBC) has gone up a notch if a Feb. 11, 2016 news release (original received via email; see also a Feb. 11, 2016 news item on Nanowerk and EurekAlert) is any indication,

Imagine if the picture window in your living room could double as a giant thermostat or big screen TV. A discovery by researchers at the University of British Columbia has brought us one step closer to this becoming a reality.

Researchers at UBC’s Okanagan campus in Kelowna found that coating small pieces of glass with extremely thin layers of metal like silver makes it possible to enhance the amount of light coming through the glass. This, coupled with the fact that metals naturally conduct electricity, may make it possible to add advanced technologies to windowpanes and other glass objects.

“Engineers are constantly trying to expand the scope of materials that they can use for display technologies, and having thin, inexpensive, see-through components that conduct electricity will be huge,” said UBC Associate Professor and lead investigator Kenneth Chau. “I think one of the most important implications of this research is the potential to integrate electronic capabilities into windows and make them smart.” [!]

The next phase of this research, added Chau, will be to incorporate their invention onto windows with an aim to selectively filter light and heat waves depending on the season or time of day.

The theory underlying the research was developed by Chau and collaborator Loïc Markley, an assistant professor of engineering at UBC. Chau and Markley questioned what would happen if they reversed the practice of applying glass over metal—a typical method used in the creation of energy efficient window coatings.

“It’s been known for quite a while that you could put glass on metal to make metal more transparent, but people have never put metal on top of glass to make glass more transparent,” said Markley. “It’s counter-intuitive to think that metal could be used to enhance light transmission, but we saw that this was actually possible, and our experiments are the first to prove it.”

This work from UBC comes on the heels of a University of Alberta team rethinking the architecture for thin film transistors  (a Feb. 10, 2016 posting).

Getting back to UBC, here’s a link to and a citation for the paper,

Layers by Coatings of Opposing Susceptibility: How Metals Help See Through Dielectrics by Mohammed Al Shakhs, Lucian Augusto, Loïc Markley, & Kenneth J. Chau. Scientific Reports 6, Article number: 20659 (2016) doi:10.1038/srep20659 Published online: 10 February 2016

This is an open access paper.

My most recent post about smart windows (a longstanding obsession) is a Jan. 21, 2016 piece featuring a UK technology that combines self-cleaning and temperature control properties for a possible market introduction in the next three to five years.

#BCTECH: being at the Summit (Jan. 18-19, 2016)

#BCTECH Summit 2016*, a joint event between the province of British Columbia (BC, Canada) and the BC Innovation Council (BCIC), a crown corporation formerly known as the Science Council of British Columbia, launched on Jan. 18, 2016. I have written a preview (Jan. 17, 2016 post) and a commentary on the new #BCTECH strategy (Jan. 19, 2016 posting) announced by British Columbia Premier, Christy Clark, on the opening day (Jan. 18, 2016) of the summit.

I was primarily interested in the trade show/research row/technology showcase aspect of the summit focusing (but not exclusively) on nanotechnology. Here’s what I found,

Nano at the Summit

  • Precision NanoSystems: fabricates equipment which allows researchers to create polymer nanoparticles for delivering medications.

One of the major problems with creating nanoparticles is ensuring a consistent size and rapid production. According to Shell Ip, a Precision NanoSystems field application scientist, their NanoAssemblr Platform has solved the consistency problem and a single microfluidic cartridge can produce 15 ml in two minutes. Cartridges can run in parallel for maximum efficiency when producing nanoparticles in greater quantity.

The NanoAssemblr Platform is in use in laboratories around the world (I think the number is 70) and you can find out more on the company’s About our technology webpage,

The NanoAssemblr™ Platform

The microfluidic approach to particle formulation is at the heart of the NanoAssemblr Platform. This well-controlled process mediates bottom-up self-assembly of nanoparticles with reproducible sizes and low polydispersity. Users can control size by process and composition, and adjust parameters such as mixing ratios, flow rate and lipid composition in order to fine-tune nanoparticle size, encapsulation efficiency and much more. The system technology enables manufacturing scale-up through microfluidic reactor parallelization similar to the arraying of transistors on an integrated chip. Superior design ensures that the platform is fast and easy to use with a software controlled manufacturing process. This usability allows for the simplified transfer of manufacturing protocols between sites, which accelerates development, reduces waste and ultimately saves money. Precision NanoSystems’ flagship product is the NanoAssemblr™ Benchtop Instrument, designed for rapid prototyping of novel nanoparticles. Preparation time on the system is streamlined to approximately one minute, with the ability to complete 30 formulations per day in the hands of any user.

The company is located on property known as the Endowment Lands or, more familiarly, the University of British Columbia (UBC).

A few comments before moving on, being able to standardize the production of medicine-bearing nanoparticles is a tremendous step forward which is going to help scientists dealing with other issues. Despite all the talk in the media about delivering nanoparticles with medication directly to diseased cells, there are transport issues: (1) getting the medicine to the right location/organ and (2) getting the medicine into the cell. My Jan. 12, 2016 posting featured a project with Malaysian scientists and a team at Harvard University who are tackling the transport and other nanomedicine) issues as they relate to the lung. As well, I have a Nov. 26, 2015 posting which explores a controversy about nanoparticles getting past the ‘cell walls’ into the nucleus of the cell.

The next ‘nano’ booths were,

  • 4D Labs located at Simon Fraser University (SFU) was initially hailed as a nanotechnology facility but these days they’re touting themselves as an ‘advanced materials’ facility. Same thing, different branding.

They advertise services including hands-on training for technology companies and academics. There is a nanoimaging facility and nanofabrication facility, amongst others.

I spoke with their operations manager, Nathaniel Sieb who mentioned a few of the local companies that use their facilities. (1) Nanotech Security (featured here most recently in a Dec. 29, 2015 post), an SFU spinoff company, does some of their anticounterfeiting research work at 4D Labs. (2) Switch Materials (a smart window company, electrochromic windows if memory serves) also uses the facilities. It is Neil Branda’s (4D Labs Executive Director) company and I have been waiting impatiently (my May 14, 2010 post was my first one about Switch) for either his or someone else’s electrochromic windows (they could eliminate or reduce the need for air conditioning during the hotter periods and reduce the need for heat in the colder periods) to come to market. Seib tells me, I’ll have to wait longer for Switch. (3) A graduate student was presenting his work at the booth, a handheld diagnostic device that can be attached to a smartphone to transmit data to the cloud. While the first application is for diabetics, there are many other possibilities. Unfortunately, glucose means you need to produce blood for the test when I suggested my preference for saliva the student explained some of the difficulties. Apparently, your saliva changes dynamically and frequently and something as simple as taking a sip of orange juice could result in a false reading. Our conversation (mine, Seib’s and the student’s) also drifted over into the difficulties of bringing products to market. Sadly, we were not able to solve that problem in our 10 minute conversation.

  • FPInnovations is a scientific research centre and network for the forestry sector. They had a display near their booth which was like walking into a peculiar forest (I was charmed). The contrast with the less imaginative approaches all around was striking.

FPInnovation helped to develop cellulose nanocrystals (CNC), then called nanocrystalline cellulose (NCC), and I was hoping to be updated about CNC and about the spinoff company Celluforce. The researcher I spoke to was from Sweden and his specialty was business development. He didn’t know much about CNC in Canada and when I commented on how active Sweden has been its pursuit of a CNC application, he noted Finland has been the most active. The researcher noted that making the new materials being derived from the forest, such as CNC, affordable and easily produced for use in applications that have yet to be developed are all necessities and challenges. He mentioned that cultural changes also need to take place. Canadians are accustomed to slicing away and discarding most of the tree instead of using as much of it as possible. We also need to move beyond the construction and pulp & paper sectors (my Feb. 15, 2012 posting featured nanocellulose research in Sweden where sludge was the base material).

Other interests at the Summit

I visited:

  • “The Wearable Lower Limb Anthropomorphic Exoskeleton (WLLAE) – a lightweight, battery-operated and ergonomic robotic system to help those with mobility issues improve their lives. The exoskeleton features joints and links that correspond to those of a human body and sync with motion. SFU has designed, manufactured and tested a proof-of-concept prototype and the current version can mimic all the motions of hip joints.” The researchers (Siamak Arzanpour and Edward Park) pointed out that the ability to mimic all the motions of the hip is a big difference between their system and others which only allow the leg to move forward or back. They rushed the last couple of months to get this system ready for the Summit. In fact, they received their patent for the system the night before (Jan. 17, 2016) the Summit opened.

It’s the least imposing of the exoskeletons I’ve seen (there’s a description of one of the first successful exoskeletons in a May 20, 2014 posting; if you scroll down to the end you’ll see an update about the device’s unveiling at the 2014 World Cup [soccer/football] in Brazil).

Unfortunately, there aren’t any pictures of WLLAE yet and the proof-of-concept version may differ significantly from the final version. This system could be used to help people regain movement (paralysis/frail seniors) and I believe there’s a possibility it could be used to enhance human performance (soldiers/athletes). The researchers still have some significant hoops to jump before getting to the human clinical trial stage. They need to refine their apparatus, ensure that it can be safely operated, and further develop the interface between human and machine. I believe WLLAE is considered a neuroprosthetic device. While it’s not a fake leg or arm, it enables movement (prosthetic) and it operates on brain waves (neuro). It’s a very exciting area of research, consequently, there’s a lot of international competition. [ETA January 3, 2024: I’m pretty sure I got the neuroprosthetic part wrong]

  • Delightfully, after losing contact for a while, I reestablished it with the folks (Sean Lee, Head External Relations and Jim Hanlon, Chief Administrative Officer) at TRIUMF (Canada’s national laboratory for particle and nuclear physics). It’s a consortium of 19 Canadian research institutions (12 full members and seven associate members).

It’s a little disappointing that TRIUMF wasn’t featured in the opening for the Summit since the institution houses theoretical, experimental, and applied science work. It’s a major BC (and Canada) science and technology success story. My latest post (July 16, 2015) about their work featured researchers from California (US) using the TRIUMF cyclotron for imaging nanoscale materials and, on the more practical side, there’s a Mar. 6, 2015 posting about their breakthrough for producing nuclear material-free medical isotopes. Plus, Maclean’s Magazine ran a Jan. 3, 2016 article by Kate Lunau profiling an ‘art/science’ project that took place at TRIUMF (Note: Links have been removed),

It’s not every day that most people get to peek inside a world-class particle physics lab, where scientists probe deep mysteries of the universe. In September [2015], Vancouver’s TRIUMF—home to the world’s biggest cyclotron, a type of particle accelerator—opened its doors to professional and amateur photographers, part of an event called Global Physics Photowalk 2015. (Eight labs around the world participated, including CERN [European particle physics laboratory], in Geneva, where the Higgs boson particle was famously discovered.)

Here’s the local (Vancouver) jury’s pick for the winning image (from the Nov. 4, 2015 posting [Winning Photographs Revealed] by Alexis Fong on the TRIUMF website),

Caption: DESCANT (at TRIUMF) neutron detector array composed of 70 hexagonal detectors Credit: Pamela Joe McFarlane

Caption: DESCANT (at TRIUMF) neutron detector array composed of 70 hexagonal detectors Credit: Pamela Joe McFarlane

With all those hexagons and a spherical shape, the DESCANT looks like a ‘buckyball’ or buckminsterfullerene or C60  to me.

I hope the next Summit features TRIUMF and/or some other endeavours which exemplify, Science, Technology, and Creativity in British Columbia and Canada.

Onto the last booth,

  • MITACS was originally one of the Canadian federal government’s Network Centres for Excellence projects. It was focused on mathematics, networking, and innovation but once the money ran out the organization took a turn. These days, it’s describing itself as (from their About page) “a national, not-for-profit organization that has designed and delivered research and training programs in Canada for 15 years. Working with 60 universities, thousands of companies, and both federal and provincial governments, we build partnerships that support industrial and social innovation in Canada.”Their Jan. 19, 2016 news release (coincidental with the #BCTECH Summit, Jan. 18 – 19, 2016?) features a new report about improving international investment in Canada,”Opportunities to improve Canada’s attractiveness for R&D investment were identified:1.Canada needs to better incentivize R&D by rebalancing direct and indirect support measures

    2.Canada requires a coordinated, client-centric approach to incentivizing R&D

    3.Canada needs to invest in training programs that grow the knowledge economy”

    Oddly, entrepreneurial/corporate/business types never have a problem with government spending when the money is coming to them; it’s only a problem when it’s social services.

    Back to MITACS, one of their more interesting (to me) projects was announced at the 2015 Canadian Science Policy Conference. MITACS has inaugurated a Canadian Science Policy Fellowships programme which in its first year (pilot) will see up up to 10 academics applying their expertise to policy-making while embedded in various federal government agencies. I don’t believe anything similar has occurred here in Canada although, if memory serves, the Brits have a similar programme.

    Finally, I offer kudos to Sherry Zhao, MITACS Business Development Specialist, the only person to ask me how her organization might benefit my business. Admittedly I didn’t talk to a lot of people but it’s striking to me that at an ‘innovation and business’ tech summit, only one person approached me about doing business.  Of course, I’m not a male aged between 25 and 55. So, extra kudos to Sherry Zhao and MITACS.

Christy Clark (Premier of British Columbia), in her opening comments, stated 2800 (they were expecting about 1000) had signed up for the #BCTECH Summit. I haven’t been able to verify that number or get other additional information, e.g., business deals, research breakthroughs, etc. announced at the Summit. Regardless, it was exciting to attend and find out about the latest and greatest on the BC scene.

I wish all the participants great and good luck and look forward to next year’s where perhaps we’ll here about how the province plans to help with the ‘manufacturing middle’ issue. For new products you need to have facilities capable of reproducing your devices at a speed that satisfies your customers; see my Feb. 10, 2014 post featuring a report on this and other similar issues from the US General Accountability Office.

*’BCTECH Summit 2016′ link added Jan. 21, 2016.

A step toward commercializing smart windows with electrochromic film

A Dec. 4, 2015 news item on phys.org has reawakened my dream of electrochromic (smart) windows,

EC [electrochromic] film devices have been hampered in making the move from research to innovation by a number of technical and economic obstacles. EELICON [Enhanced Energy Efficiency and Comfort by Smart Light Transmittance Control] aims to overcome these obstacles by removing equipment limitations, automating processes, and validating a possible high-throughput prototype production process for a cost-effective, high-performance EC film technology.

Retrofitting windows with an electrically dimmable plastic film is a dream that is finally coming close to fruition. According to life cycle assessment studies, considerable energy savings may result when such films are included in architectural glazing, appliance doors, aircraft cabin windows, and vehicle sunroofs; and user comfort is enhanced as well.

The EU [European Union]-funded EELICON (Enhanced Energy Efficiency and Comfort by Smart Light Transmittance Control) project is focusing on an innovative switchable light transmittance technology that was developed in a project previously co-funded by the EU Framework Programmes. The project developed mechanically flexible and light-weight electrochromic (EC) film devices based on a conductive polymer nanocomposite technology with a property profile far beyond the current state-of-the art.

A Dec. 3, 2015 CORDIS (EU Community Research and Development Service) press release, which originated the news item, features an interview with the project coordinator and manager,

Dr. Uwe Posset, project coordinator and Expert Group Manager at ZfAE – Center for Applied Electrochemistry, Fraunhofer ISC, discusses the project’s achievements so far.

Do you have any results to show regarding the objectives that you have defined?

We are indeed working on a demonstration line to roll out a possible production process for electrochromic (EC) films, i.e. plastic films that can change colour upon application of a small voltage. Such films can be used to create smart windows for the control of sunlight and glare in buildings and vehicles. This technology is known to have the potential to save substantial amounts of energy for air conditioning. Darkening the film will decrease heat gain in the interior while maintaining the view through the window. The film provides possibilities to retrofit existing windows.

Do you have results from a life cycle assessment (LCA)?

Yes. The results essentially show that the targeted film technology can be produced with less primary energy than a standard EC window. We are currently working on extending the LCA to demonstrate the energy saving potential of the EC film during the use phase.

How much do you expect the technology to cost? How competitive will it be with existing technologies (e.g. price/performance)?

We target a price level of 200 €/m2, which is about a factor of 4 less than standard EC windows based on glass. To be really competitive, an even lower price may be required, but 200 €/m2 is usually discussed in the community as a threshold price for competitiveness. A full performance evaluation is currently in progress. According to discussions with potential end-users, producers and customers, price is the major driver, while some performance aspects may be negotiable, depending on the application.

How easy or difficult will the technology be to commercialise?

It is a complex process presumably requiring an industrial development phase of 2-3 years after the end of the project and substantial investment (currently estimated: €10 million).

Which are the most promising application areas?

Smart windows for energy-efficient buildings, vehicle sunroofs, smart aircraft cabin windows, switchable appliance doors, smart eyewear and visors.

What are the main benefits provided by the technology (any quantitative data would be welcome in addition to a qualitative description)?

There are many benefits. What we are developing is a film-based technology suitable for window integration and retrofitting. It will have short switching times (<1 min as compared to 10-15 min for state-of-the-art EC windows), and most importantly cost-effective, high-throughput production will be possible (roll-to-roll manufacturing).

Our technology will also have a higher bleached state visual light transmittance as compared to state-of-the-art EC windows (60-65 % vs. 50-55 %); a lower darkened state visual light transmittance as compared to state-of-the-art EC windows (5-10 % vs. 10-15 %); it will be fully colourless (“neutral tint”) bleached state with no residual colour or hue.; it will have an appreciable g-value modulation as opposed to liquid crystal-based smart window film technologies; it is mechanically rugged; and it has a large thermal operation range (-25 to +60 °C).

Once the project is completed, what will be the next steps? How do you see the technology evolving in the future?

We will then have to focus on industrial development – scaling from pilot to production scale. Huge markets will become accessible in the future if the price target can be met and minimum performance requirements are fulfilled.

You can find out more about EELICON here.

I’m glad to see they’re finding a way to make the technology affordable and that they’ve tackled the ‘ruggedness’ issue; see my Oct. 9, 2015 posting about smart windows and their need for anti-aging treatment (apparently the windows are prone to mechanical failures over time).

Smart windows need anti-aging treatments

I’ve long been interested in electrochromic windows and this is the first I’ve heard of a problem with limited lifespans. Here’s more from an Oct. 1, 2015 news item on Nanowerk (Note: A link has been removed),

Electrochromic windows, so-called ‘smart windows’, share a well-known problem with rechargeable batteries – their limited lifespan. Researchers at Uppsala University [Sweden] have now worked out an entirely new way to rejuvenate smart windows which have started to show signs of age. The study, published in Nature Materials (“Eliminating degradation and uncovering ion-trapping dynamics in electrochromic WO3 thin films”), may open the way to other areas of application.

An Oct. 1, 2015 Uppsala University press release (also on EurekAlert), which originated the new item, describes previous work on electrochromic windows to provide context for the current research,

The electrochromic smart windows are controlled electrically. This kind of window is the result of research carried out at Uppsala University. Commercial production has recently been started by the company ChromoGenics AB.

The electrochromic smart window is made up of a series of thin layers on top of each other. The most important of these are two layers of tungsten oxide and nickel oxide, both about a third of a micrometer thick. They are separated by an electrolyte layer. The window’s opacity to visible light and solar energy varies when an electrical current flows between the oxide layers.

“The principle is the same as for an electric battery. Here the tungsten-oxide is the cathode and the nickel-oxide the anode. Opacity depends on how much the ‘battery’ is charged,” says Rui-Tao Wen, a doctoral student who carried out the study as part of his thesis.

The lifespan of both electric batteries and electrochromic smart windows is a well-known problem. They need to work after being charged and discharged many times if they are to be really profitable.

In the study, the researchers show that an electrochromic tungsten oxide layer which has been charged and discharged many times and has started to lose its capacity can be restored to its former high capacity. This is achieved by running a weak electric current through it while it is in light mode. This takes about an hour. In this way, the electric charge which has ‘fastened’ in the material is removed and the tungsten oxide layer is like new again.

“This is a new way to rejuvenate smart windows so that they last much longer. And the same principle might perhaps be used for electric batteries,” says Claes-Göran Granqvist, senior professor at the Ångström Laboratory, Uppsala University and one of the authors of the study.

Here’s a link to and a citation for the paper,

Eliminating degradation and uncovering ion-trapping dynamics in electrochromic WO3 thin films by Rui-Tao Wen, Claes G. Granqvist, & Gunnar A. Niklasson. Nature Materials 14, 996–1001 (2015) doi:10.1038/nmat4368 Published online 10 August 2015

This paper is behind a paywall.

Smart windows from Texas (US)

I’ve been waiting for ‘smart’ windows and/or self-cleaning windows since 2008. While this research on ‘smart’ windows at the University of Texas at Austin looks promising I suspect it will be years before these things are in the marketplace. A July 22, 2015 news item on Nanotechnology Now announces the latest research,

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for heating and cooling buildings.

In 2013, chemical engineering professor Delia Milliron and her team became the first to develop dual-band electrochromic materials that blend two materials with distinct optical properties for selective control of visible and heat-producing near-infrared light (NIR). In a 2013 issue of Nature, Milliron’s research group demonstrated how, using a small jolt of electricity, a nanocrystal material could be switched back and forth, enabling independent control of light and energy.

A July 23, 2015 University of Texas at Austin news release, which originated the news item, provides more details about the research which has spawned two recently published papers,

The team now has engineered two new advancements in electrochromic materials — a highly selective cool mode and a warm mode — not thought possible several years ago.

The cool mode material is a major step toward a commercialized product because it enables control of 90 percent of NIR and 80 percent of the visible light from the sun and takes only minutes to switch between modes. The previously reported material could require hours.

To achieve this high performance, Milliron and a team, including Cockrell School postdoctoral researcher Jongwook Kim and collaborator Brett Helms of the Lawrence Berkeley National Lab, developed a new nanostructured architecture for electrochromic materials that allows for a cool mode to block near-infrared light while allowing the visible light to shine through. This could help reduce energy costs for cooling buildings and homes during the summer. The researchers reported the new architecture in Nano Letters on July 20.

“We believe our new architected nanocomposite could be seen as a model material, establishing the ideal design for a dual-band electrochromic material,” Milliron said. “This material could be ideal for application as a smart electrochromic window for buildings.”

In the paper, the team demonstrates how the new material can strongly and selectively modulate visible light and NIR by applying a small voltage.

To optimize the performance of electrochromics for practical use, the team organized the two components of the composite material to create a porous interpenetrating network. The framework architecture provides channels for transport of electronic and ionic change. This organization enables substantially faster switching between modes.
Smart Window

The researchers are now working to produce a similarly structured nanocomposite material by simple methods, suitable for low-cost manufacturing.

In a second research paper, Milliron and her team, including Cockrell School graduate student Clayton Dahlman, have reported a proof-of-concept demonstrating how they can achieve optical control properties in windows from a well-crafted, single-component film. The concept includes a simple coating that creates a new warm mode, in which visible light can be blocked, while near-infrared light can enter. This new setting could be most useful on a sunny winter day, when an occupant would want infrared radiation to pass into a building for warmth, but the glare from sunlight to be reduced.

In this paper, published in the Journal of the American Chemical Society, Milliron proved that a coating containing a single component ­— doped titania nanocrystals — could demonstrate dynamic control over the transmittance of solar radiation. Because of two distinct charging mechanisms found at different applied voltages, this material can selectively block visible or infrared radiation.

“These two advancements show that sophisticated dynamic control of sunlight is possible,” Milliron said. “We believe our deliberately crafted nanocrystal-based materials could meet the performance and cost targets needed to progress toward commercialization of smart windows.”

Interestingly, the news release includes this statement,

The University of Texas at Austin is committed to transparency and disclosure of all potential conflicts of interest. The lead UT investigator involved with this project, Delia Milliron, is the chief scientific officer and owns an equity position in Heliotrope Technologies, an early-stage company developing new materials and manufacturing processes for electrochromic devices with an emphasis on energy-saving smart windows. Milliron is associated with patents at Lawrence Berkeley National Laboratory licensed to Heliotrope Technologies. Collaborator Brett Helms serves on the scientific advisory board of Heliotrope and owns equity in the company.

Here are links to and citations for the two papers,

Nanocomposite Architecture for Rapid, Spectrally-Selective Electrochromic Modulation of Solar Transmittance by Jongwook Kim, Gary K. Ong, Yang Wang, Gabriel LeBlanc, Teresa E. Williams, Tracy M. Mattox, Brett A. Helms, and Delia J. Milliron. Nano Lett., Article ASAP DOI: 10.1021/acs.nanolett.5b02197 Publication Date (Web): July 20, 2015

Copyright © 2015 American Chemical Society

Spectroelectrochemical Signatures of Capacitive Charging and Ion Insertion in Doped Anatase Titania Nanocrystals by Clayton J. Dahlman, Yizheng Tan, Matthew A. Marcus, and Delia J. Milliron. J. Am. Chem. Soc., 2015, 137 (28), pp 9160–9166 DOI: 10.1021/jacs.5b04933 Publication Date (Web): July 8, 2015

Copyright © 2015 American Chemical Society

These papers are behind paywalls.

*University of Waterloo (Canada) and three of its nano startup companies

All three of these University of Waterloo (UW) startups could be said to feature windows in one fashion or another but it is a bit of a stretch to describe their products as ‘window-oriented’ since these entrepreneurs have big plans.

The first company I’m mentioning is Lumotune, a company whose homepage features NanoShutters and this tagline, “Smarter Glass for a Smarter World”. A Dec. 10, 2013 article by Terry Pender for GuelphMercury.com provides a description of this product which is controlled by a smartphone application,

The product is made of two thin sheets of clear plastic. In between the sheets is the nanotechnology the trio started developing as a school project. The optics of the glass can easily be changed from clear to opaque using a laptop, tablet or smartphone.

The NanoShutters adhere to a window and are connected to a control box with tiny wires. The control box can be plugged into a laptop or controlled wirelessly with tablets and smartphones.

The control box is the most important part of the NanoShutters; the founders have applied for a patent to protect their ownership of it.

“That is basically the core technology,” Esfahani said. “It is futuristic to be able to control what passes through your window with your phone.”

Esfahani, Safaee and Siddiqi [Lumotune founders: Matin Esfahani, Hooman Safaee and Shafi Siddiqi] started all this as a project for their undergrad studies in 2011. They developed the technology, showcased it in March, won a lot of awards, incorporated Lumotune in April, and then collected their degrees from UW.

NanoShutters, the first commercial product to come out of Lumotune, is now in testing with a group of residential, commercial and institutional customers. The founders are using the testing to smooth out kinks and challenges in the technology and develop relationships with customers.

Safaee estimates the market for NanoShutters will be worth about $4 billion a year by 2016.

But the company was founded with much bigger ideas in mind. Instead of using their invention to make windows more or less transparent, they want the product to be used for digital displays that can be put on any surface with no visible technology.

I was not able to find any more details about how nanotechnology enables this window or, more accurately, glass ‘frosting’ experience (perhaps there’s some information in the installation guide mentioned later in this post) but the inventors do offer this video demonstrating their product,

Here’s more from the company’s homepage,

Windows drain energy and reduce privacy. NanoShutters can be fully automated to turn your window opaque or transparent according to the weather and your schedule. They can help lower heating and cooling costs by up to 20%, while always enabling privacy when you need it.

If you’re comfortable putting up a poster and setting up a toaster, you can install NanoShutters yourself. It takes less than 30 minutes. See how easy it is.

You can also get installation from a local NanoShutters Certified Professional.

I did click to find out if there’s a NanoShutter professional nearby but it appears there aren’t any entries yet so this may be an opportunity for entrepreneurial types.

The next two University of Waterloo startups are here courtesy of a Dec. 10, 2013 news item on DigitalJournal.com,

Harsh winter conditions may be easier for Canadians to manage with new products invented by two University of Waterloo graduates.

“Frost is a major problem for individuals and businesses daily. Not only is it inconvenient but it has an impact on safety and can even hinder economic activity,” said Abhinay Kondamreddy, a nanotechnology engineering graduate who developed Neverfrost along with three classmates.

For contractors who drop salt on parking lots and sidewalks, as well as the municipalities or owners who pay for it, there’s never been a way to measure how much salt is actually dispensed. Smart Scale, an automated salt logging and tracking system designed specifically for the winter maintenance industry is changing that.

The Dec. 10, 2013 University of Waterloo news release, which originated the news item, provides more detail about both Neverfrost and Smart Scale (Note: Links have been removed),

Neverfrost is an environmentally-friendly technology that prevents frost, fog, and ice formation. The innovation is the foundation for a new startup, also called Neverfrost.

By spraying Neverfrost on a windshield at night, drivers can avoid scraping and defrosting it on cold winter mornings, and clear the windshield simply by running the wipers. The Neverfrost technology prevents snow from freezing to the glass as well as fog and frost. Neverfrost expects to begin taking pre-orders for the spray with a Kickstarter campaign in March.Future plans for Neverfrost include incorporating it directly into washer fluids.

Frost and ice create challenges for aircrafts, air conditioning, commercial refrigerators, power lines, and agriculture – creating future opportunities for the Neverfrost technology.

Kondamreddy is one of two entrepreneurs who continue to further their technologies and startups thanks to a $60,000 Scientists and Engineers in Business fellowship. The fellowship is a University of Waterloo program supported by the Federal Economic Development Agency for Southern Ontario for promising entrepreneurs who want to commercialize their innovations and start high-tech businesses.

Developed by Raqib Omer, a Waterloo Engineering graduate, Smart Scale uses exclusive hardware wirelessly paired with GPS-enabled smart phones to track the location of a maintenance vehicle and amount of salt dispensed, and logs the information on a cloud-based system in real time. Since the cost of salt is based on size of load, property owners can be assured they’re getting what they paid for, as well as reducing risks that exist in the industry.

“With growing public concern on the environmental effects of salt, rising salt prices, and increasing fear of litigation due to slips and falls, as well as driving conditions, reliable and accurate information on salt application is becoming a necessity for maintenance contractors,” said Omer.

More than 20 winter maintenance contractors in Canada and the U.S., including Urban Meadows Property Maintenance Group in Ayr, Ontario, currently use Smart Scale.

Urban Meadows owner, William Jordan, met Omer in the early testing phase of Smart Scale and the startup phase of Omer’s company, Viaesys. As the first contractor to test Smart Scale, he quickly learned there were times his company was using too much salt.

“The accuracy rate wasn’t there at all,” said Jordan. “We’re now able to accurately monitor salt usage, prevent excessive material use, keep bullet-proof records of our work and job-cost a lot better. The real time tracking of salt has helped us use up to 30 per cent less salt.”

Smart Scale is now installed on all four of his company’s trucks which service 75 properties in Cambridge and Ayr, including parking lots for grocery stores and post offices.

Jordan, who is also chair of the snow and ice committee management sector for the horticultural trade association, Landscape Ontario, says he quickly jumped on board with Omer’s research and would like to see Smart Scale change the way salt is applied across Ontario. With no industry standards for salt application currently in place, Smart Scale could make this possible.

You can find Neverfrost and an opportunity to beta test the product here. I’ve not been able to find a website featuring Smart Scale but here’s Viaesys, a company founded by Raqib Omer, the person who developed the product. I was not able to find additional technical details for either Neverfrost or Smart Scale on either of the company websites.

* ‘Unviersity’ corrected to ‘University’  in posting header on Dec. 13, 2013. I uttered a very loud Drat! when I saw it.

Smarter ‘smart’ windows

It seems to me we may have to find a new way to discuss ‘smart’ windows as there’s only one more category after the comparative  ‘smarter’ and that’s the superlative ‘smartest’. Lawrence Berkeley National Laboratory (Berkeley Lab), please, let’s stop the madness now! That said, the Berkeley Lab issued an Aug. 14, 2013 news release  (also on EurekAlert) about it’s latest work on raising the IQ of smart windows,

Researchers at the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) have designed a new material to make smart windows even smarter. The material is a thin coating of nanocrystals embedded in glass that can dynamically modify sunlight as it passes through a window. Unlike existing technologies, the coating provides selective control over visible light and heat-producing near-infrared (NIR) light, so windows can maximize both energy savings and occupant comfort in a wide range of climates.

Milliron’s research group is already well known for their smart-window technology that blocks NIR without blocking visible light. The technology hinges on an electrochromic effect, where a small jolt of electricity switches the material between NIR-transmitting and NIR-blocking states. This new work takes their approach to the next level by providing independent control over both visible and NIR light. The innovation was recently recognized with a 2013 R&D 100 Award and the researchers are in the early stages of commercializing their technology.

Independent control over NIR light means that occupants can have natural lighting indoors without unwanted thermal gain, reducing the need for both air-conditioning and artificial lighting. The same window can also be switched to a dark mode, blocking both light and heat, or to a bright, fully transparent mode.

“We’re very excited about the combination of unique optical function with the low-cost and environmentally friendly processing technique,” said Llordés, a project scientist working with Milliron. “That’s what turns this ‘universal smart window’ concept into a promising competitive technology.”

Here’s the specific technology that’s been developed, from the news release,

At the heart of their technology is a new “designer” electrochromic material, made from nanocrystals of indium tin oxide embedded in a glassy matrix of niobium oxide. The resulting composite material combines two distinct functionalities—one providing control over visible light and the other, control over NIR—but it is more than the sum of its parts. The researchers found a synergistic interaction in the tiny region where glassy matrix meets nanocrystal that increases the potency of the electrochromic effect, which means they can use thinner coatings without compromising performance. The key is that the way atoms connect across the nanocrystal-glass interface causes a structural rearrangement in the glass matrix. The interaction opens up space inside the glass, allowing charge to move in and out more readily. Beyond electrochromic windows, this discovery suggests new opportunities for battery materials where transport of ions through electrodes can be a challenge.

I notice they’re using indium, one of the ‘rare earths’. Last I heard, China, one of the main sources for ‘rare earths’, was limiting its exports so this seems like an odd choice of material. Perhaps now they’ve proved this can be done,  they’ll research for easily available substitutes. Here’s a link to and a citation for the published paper,

Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites by Anna Llordés, Guillermo Garcia, Jaume Gazquez, & Delia J. Milliron. Nature 500, 323–326 (15 August 2013) doi:10.1038/nature12398 Published online 14 August 2013

Finally, the researchers have provided an illustration of indium tin oxide nanocrystals,

Nanocrystals of indium tin oxide (shown here in blue) embedded in a glassy matrix of niobium oxide (green) form a composite material that can switch between NIR-transmitting and NIR-blocking states with a small jolt of electricity. A synergistic interaction in the region where glassy matrix meets nanocrystal increases the potency of the electrochromic effect. Courtesy Berkeley Lab

Nanocrystals of indium tin oxide (shown here in blue) embedded in a glassy matrix of niobium oxide (green) form a composite material that can switch between NIR-transmitting and NIR-blocking states with a small jolt of electricity. A synergistic interaction in the region where glassy matrix meets nanocrystal increases the potency of the electrochromic effect. Courtesy Berkeley Lab

Liquid solar blocker from Ontario’s Hy-Power Nano

Hy-Power Nano, mentioned in my Aug. 15, 2012 posting, has announced its first nanotechnology-enabled product and it’s a coating product for windows. From the Sept. 3, 2012 news item by Will Soutter item on Azonano,

Hy-Power Nano, the subsidiary of South Ontario-based [Canada] Hy-Power Coatings, engaged in developing nanocoating products characterized by thermal insulation and a solar blocking capability has introduced its first product labeled the Hy-Power Clear Liquid Solar Blocker.

The launch of the solar blocker represents a significant milestone in the company’s endeavors towards the development of nanotechnology-based coating products. The product was demonstrated in Mississauga at the International Conference Centre to a group of customers. The product is the output of two-and-a-half years of labor initiated after Hy-Power Nano President and CEO, Joseph Grzyb, envisaged the potential of leveraging their 46 years of expertise in industrial coating in combination with nanotechnology.

Hy-Power Nano’s Aug. 31, 2012 product announcement offers this comment from the company’s president, Joseph Grzyb,

“While we all love sunlight, ultraviolet (UV) rays can be damaging and infrared (IR) rays are a source of energy costs,” says Joseph Grzyb, President and CEO of Hy-Power Nano. “Our Clear Liquid Solar Blocker is so clear you can’t see it on glass, yet it blocks 99.99 per cent of UV and 40 per cent of infrared rays. Since the product is liquid-based, it can be applied on a variety of glass surfaces and geometries.”

“There are many applications for this product. For example, for retailers, that means products in windows won’t fade from sunlight while allowing customers a completely unobstructed view of the goods in the window. Skylights coated with our product allow people to enjoy the comfort and natural light without any negative impacts. There are actually quite a range of needs addressed by this product,” adds Grzyb.

There’s a lot of research interest in windows these days and it’s not just in Canada. This Aug. 27, 2012 Nanowerk Spotlight essay by Michael Berger offers an overview of some of the latest work,

Buildings and other man-made structures consume as much as 30-40% of the primary energy in the world, mainly for heating, cooling, ventilation, and lighting. In particular, air conditioners are responsible for a large proportion of the energy usage in the US: 13% in 2006 and 10% in 2020 (projected) of the total primary energy. Air conditioning in China is 40-60% of a building’s energy consumption (the exact figure depends on the area of the building), and overall, accounts for 30% of the total primary energy available. These figures will grow very rapidly with urbanization development.

“Smart window” is a term that refers to a glass window that allows intelligent control of the amount of light and heat passing though. This control is made possible by an external stimulus such as electrical field (electrochromic), temperature (thermochromic), ultraviolet irradiation (photochromic) and reductive or oxidizing gases (gasochromic). These technologies save energy, address CO2 concerns, improve comfort levels, and have economic benefits.

One of these days I’d like to see a study or two about the occupational health and safety issues for people who produce and apply coatings such as this one from Hy-Power.

Smart wall or smart window? Ravenbrick brings one to the market in 2013

Alex Davies posted a July 10, 2012 article on the Treehugger website about a smart window/wall system from RavenBrick. From the article (Note: I have removed links),

The RavenWindow from RavenBrick changes its tint in response to temperature, so it blocks sunlight entering a building after a set temperature has been reached. Combine it with a layer of insulating materials that store heat during the day and release it at night, and you’ve got the RavenSkin Smart Wall System.

Here’s a little more about the RavenWindow from the company’s Project Portfolio page,

RavenBrick has installed their RavenWindow product at the [US] Department of Energy’s National Renewable Energy Lab in Golden Colorado. This LEED platinum building was designed to use the most energy efficient products available. This installation, on the executive floor, is the first of three installations that will be done at NREL.

RavenWindow at NREL in the clear state viewed from the inside (from the RavenBrick website)

 

RavenWindow at NREL in the tinted state viewed from the inside (from the RavenBrick website)

Then, here is the view of the tinted windows from the outside,

RavenWindow at NREL in the tinted state viewed from outside (from the RavenBrick website)

They do give a fairly simple explanation of the technology, from the company’s The Technology page,

RavenBrick’s smart window systems are changing the rules of energy efficent design by doing something that previous generations of building materials simply couldn’t: letting the sun’s heat into the building when you need it, and keeping it out when you don’t.

Our thermochromic filters utilize advances in nanotechnology, pioneered and patented by RavenBrick, to transition from a transparent to a reflective state in response to changes in the outside temperature. This transition allows a building to use the sun as a source of free heat on cold days and block solar heat effectively on hot days.

RavenBrick’s technology diagram (from the RavenBrick website)

Davies’ Treehugger article offers some figures regarding savings (and another illustration),

The RavenSkin Smart Wall System promises to cut energy bills by as much as 30 percent, so it’s sure to offset the costs of installation (not listed on the RavenBrick website). The “infrared power system” doesn’t involve electricity, moving parts or wires, so it’s low maintenance, [sic]

I would have liked a little more detail. How did they derive the savings number, i.e.,  “by as much as 30%”? Also, is there any data from the US Dept. of Energy? At any rate, this product is due to reach the marketplace sometime in 2013.

I last mentioned RavenBrick and their windows in my Aug. 5, 2009 posting. In my Sept. 7, 2011 posting about the US Dept. of Energy, I focussed on smart window research being done at their Lawrence Berkeley National Laboratory (Berkeley Lab).

Smart glass, curling electrodes and a business opportunity

Boris Lamontagne (boris.lamontagne@nrc.ca) at Canada’s National Research Council is looking for a business partner or two to commercialize his smart glass which features ‘micro blinds’. Here’s a demonstration complete with illustrations of the technology,

I found more technical details about the ‘micro blinds’ (from the abstract of a paper, The next generation of switchable glass : the Micro-Blinds, by Boris Lamontagne, Pedro Barrios and Christophe Py at Glassfiles.com (you will need to register at the website to view the full text of the paper),

The micro-blinds are composed of invisible and electrostatically activated curling electrodes of 100 micrometers size. They can be deposited on flat glass by magnetron sputtering like regular low-E coatings, and then patterned by laser. They possess several advantages such as switching speed, UV durability, customized appearance and transmission, and do not employ costly ITO, relative to the current smart windows technologies: electrochromic, suspended particles and liquid crystals.

Let’s get this smart glass commercialized. As regular readers know, I’m very interested in smart glass/windows and I would very much like to see the technology enter the marketplace. My most recent posting on smart windows was Sept. 7, 2011 about some research done by the  US Dept. of Energy.

ETA Sept. 22, 2011: There’s a Sept. 22, 2011 news item about Lamontagne’s smart glass on Nanowerk.