Tag Archives: social media

Scientists, outreach and Twitter research plus some tips from a tweeting scientist

I have two bits today and both concern science and Twitter.

Twitter science research

A doodle by Isabelle Côté to illustrate her recent study on the effectiveness of scientists using Twitter to share their research with the public. Credit: Isabelle Côté

I was quite curious about this research on scientists and their Twitter audiences coming from Simon Fraser University (SFU; Vancouver, Canada). From a July 11, 2018 SFU news release (also on EurekAlert),

Isabelle Côté is an SFU professor of marine ecology and conservation and an active science communicator whose prime social media platform is Twitter.

Côté, who has cultivated more than 5,800 followers since she began tweeting in 2012, recently became curious about who her followers are.

“I wanted to know if my followers are mainly scientists or non-scientists – in other words was I preaching to the choir or singing from the rooftops?” she says.

Côté and collaborator Emily Darling set out to find the answer by analyzing the active Twitter accounts of more than 100 ecology and evolutionary biology faculty members at 85 institutions across 11 countries.

Their methodology included categorizing followers as either “inreach” if they were academics, scientists and conservation agencies and donors; or “outreach” if they were science educators, journalists, the general public, politicians and government agencies.

Côté found that scientists with fewer than 1,000 followers primarily reach other scientists. However, scientists with more than 1,000 followers have more types of followers, including those in the “outreach” category.

Twitter and other forms of social media provide scientists with a potential way to share their research with the general public and, importantly, decision- and policy-makers. Côté says public pressure can be a pathway to drive change at a higher level. However, she notes that while social media is an asset, it is “not likely an effective replacement for the more direct science-to-policy outreach that many scientists are now engaging in, such as testifying in front of special governmental committees, directly contacting decision-makers, etc.”

Further, even with greater diversity and reach of followers, the authors concede there are still no guarantees that Twitter messages will be read or understood. Côté cites evidence that people selectively read what fits with their perception of the world, that changing followers’ minds about deeply held beliefs is challenging.

“While Twitter is emerging as a medium of choice for scientists, studies have shown that less than 40 per cent of academic scientists use the platform,” says Côté.

“There’s clearly a lot of room for scientists to build a social media presence and increase their scientific outreach. Our results provide scientists with clear evidence that social media can be used as a first step to disseminate scientific messages well beyond the ivory tower.”

Here’s a link to and a citation for the paper (my thoughts on the matter are after),

Scientists on Twitter: Preaching to the choir or singing from the rooftops? by Isabelle M. Côté and Emily S. Darling. Facets DOI: https://doi.org/10.1139/facets-2018-0002 Published Online 28 June 2018

This paper is in an open access journal.

Thoughts on the research

Neither of the researchers, Côté and Darling, appears to have any social science training; so where I’d ordinarily laud the researchers for their good work, I have to include extra kudos for taking on a type of research outside their usual domain of expertise.

If this sort of thing interests you and you have the time, I definitely recommend reading the paper (from the paper‘s introduction), Note: Links have been removed)

Communication has always been an integral part of the scientific endeavour. In Victorian times, for example, prominent scientists such as Thomas H. Huxley and Louis Agassiz delivered public lectures that were printed, often verbatim, in newspapers and magazines (Weigold 2001), and Charles Darwin wrote his seminal book “On the origin of species” for a popular, non-specialist audience (Desmond and Moore 1991). In modern times, the pace of science communication has become immensely faster, information is conveyed in smaller units, and the modes of delivery are far more numerous. These three trends have culminated in the use of social media by scientists to share their research in accessible and relevant ways to potential audiences beyond their peers. The emphasis on accessibility and relevance aligns with calls for scientists to abandon jargon and to frame and share their science, especially in a “post-truth” world that can emphasize emotion over factual information (Nisbet and Mooney 2007; Bubela et al. 2009; Wilcox 2012; Lubchenco 2017).

The microblogging platform Twitter is emerging as a medium of choice for scientists (Collins et al. 2016), although it is still used by a minority (<40%) of academic faculty (Bart 2009; Noorden 2014). Twitter allows users to post short messages (originally up to 140 characters, increased to 280 characters since November 2017) that can be read by any other user. Users can elect to follow other users whose posts they are interested in, in which case they automatically see their followees’ tweets; conversely, users can be followed by other users, in which case their tweets can be seen by their followers. No permission is needed to follow a user, and reciprocation of following is not mandatory. Tweets can be categorized (with hashtags), repeated (retweeted), and shared via other social media platforms, which can exponentially amplify their spread and can offer links to websites, blogs, or scientific papers (Shiffman 2012).

There are scientific advantages to using digital communication technologies such as Twitter. Scientific users describe it as a means to stay abreast of new scientific literature, grant opportunities, and science policy, to promote their own published papers and exchange ideas, and to participate in conferences they cannot attend in person as “virtual delegates” (Bonetta 2009; Bik and Goldstein 2013; Parsons et al. 2014; Bombaci et al. 2016). Twitter can play a role in most parts of the life cycle of a scientific publication, from making connections with potential collaborators, to collecting data or finding data sources, to dissemination of the finished product (Darling et al. 2013; Choo et al. 2015). There are also some quantifiable benefits for scientists using social media. For example, papers that are tweeted about more often also accumulate more citations (Eysenbach 2011; Thelwall et al. 2013; Peoples et al. 2016), and the volume of tweets in the first week following publication correlates with the likelihood of a paper becoming highly cited (Eysenbach 2011), although such relationships are not always present (e.g., Haustein et al. 2014).

In addition to any academic benefits, scientists might adopt social media, and Twitter in particular, because of the potential to increase the reach of scientific messages and direct engagement with non-scientific audiences (Choo et al. 2015). This potential comes from the fact that Twitter leverages the power of weak ties, defined as low-investment social interactions that are not based on personal relationships (Granovetter 1973). On Twitter, follower–followee relationships are weak: users generally do not personally know the people they follow or the people who follow them, as their interactions are based mainly on message content. Nevertheless, by retweeting and sharing messages, weak ties can act as bridges across social, geographic, or cultural groups and contribute to a wide and rapid spread of information (Zhao et al. 2010; Ugander et al. 2012). The extent to which the messages of tweeting scientists benefit from the power of weak ties is unknown. Does Twitter provide a platform that allows scientists to simply promote their findings to other scientists within the ivory tower (i.e., “inreach”), or are tweeting scientists truly exploiting social media to potentially reach new audiences (“outreach”) (Bik et al. 2015; McClain and Neeley 2015; Fig. 1)?

Fig. 1. Conceptual depiction of inreach and outreach for Twitter communication by academic faculty. Left: If Twitter functions as an inreach tool, tweeting scientists might primarily reach only other scientists and perhaps, over time (arrow), some applied conservation and management science organizations. Right: If Twitter functions as an outreach tool, tweeting scientists might first reach other scientists, but over time (arrow) they will eventually attract members of the media, members of the public who are not scientists, and decision-makers (not necessarily in that order) as followers.

I’m glad to see this work but it’s use of language is not as precise in some places as it could be. They use the term ‘scientists’ throughout but their sample is made up of scientists identified as ecology and/or evolutionary biology (EEMB) researchers, as they briefly note in their Abstract and in the Methods section. With the constant use of the generic term, scientist, throughout most of the paper and taken in tandem with its use in the title, it’s easy to forget that this was a sample of a very specific population..

That the researchers’ sample of EEMB scientists is made up of those working at universities (academic scientists) is clear and it presents an interesting problem. How much does it matter that these are academic scientists? Both in regard to the research itself and with regard to perceptions about scientists. A sentence stating the question is beyond the scope of their research might have been a good idea.

Impressively, Darling and Côté have reached past the English language community to include other language groups, “We considered as many non-English Twitter profiles as possible by including common translations of languages we were familiar with (i.e., French and Spanish: biologista, professeur, profesora, etc.) in our search strings; …”

I cannot emphasize how rare it is to see this attempt to reach out beyond the English language community. Yes!

Getting back to my concern about language,  I would have used ‘suspect’ rather than ‘assume’ in this sentence from the paper’s Discussion, “We assume [emphasis mine] that the patterns we have uncovered for a sample of ecologists and evolutionary biologists in faculty positions can apply broadly across other academic disciplines.” I agree it’s quite likely but it’s an hypothesis/supposition and  needs to be tested. For example, will this hold true if you examine social scientists (such as economists, linguists, political scientists, psychologists, …) or physicists or mathematicians or …?

Is this evidence of unconscious bias regarding wheat the researchers term as ‘non-scientists’?  From the paper’s Discussion (Note: Links have been removed),

Of course, high numbers, diversity, and reach of followers offer no guarantee that messages will be read or understood. There is evidence that people selectively read what fits with their perception of the world (e.g., Sears and Freedman 1967; McPherson et al. 2001; Sunstein 2001; Himelboim et al. 2013). Thus, non-scientists [emphases mine] who follow scientists on Twitter might already be positively inclined to consume scientific information. If this is true, then one could argue that Twitter therefore remains an echo chamber, but it is a much larger one than the usual readership of scientific publications. Moreover, it is difficult to gauge the level of understanding of scientific tweets. The brevity and fragmented nature of science tweets can lead to shallow processing and comprehension of the message (Jiang et al. 2016). One metric of the influence of tweets is the extent to which they are shared (i.e., retweeted). Twitter users retweet posts when they find them interesting (hence the posts were at least read, if not understood) and when they deem the source credible (Metaxas et al. 2015). To our knowledge, there are no data on how often tweets by scientists are reposted by different types of followers. Such information would provide further evidence for an outreach function of Twitter in science communication.

Yes, it’s true that high numbers, etc. do not guarantee your messages will be read or understood and that people do selectively choose what fits their perception of the world. However, that applies equally to scientists and non-scientists despite what the authors appear to be claiming. Also, their use of the term non-scientist is not clear to me. Is this a synonym for ‘general public’ or is it being applied to anyone who may not have an educational background in science but is designated in another category such as policy makers, science communicators, etc. in the research paper?

In any event, ‘policy makers’ absorb a great deal of the researchers’ attention, from the paper’s Discussion (Note: Links have been removed),

Under most theories of change that describe how science ultimately affects evidence-based policies, decision-makers are a crucial group that should be engaged by scientists (Smith et al. 2013). Policy changes can be effected either through direct application of research to policy or, more often, via pressure from public awareness, which can drive or be driven by research (Baron 2010; Phillis et al. 2013). Either pathway requires active engagement by scientists with society (Lubchenco 2017). It is arguably easier than ever for scientists to have access to decision- and policy-makers, as officials at all levels of government are increasingly using social media to connect with the public (e.g., Grant et al. 2010; Kapp et al. 2015). However, we found that decision-makers accounted for only ∼0.3% (n = 191 out of 64 666) of the followers of academic scientists (see also Bombaci et al. 2016 in relation to the audiences of conference tweeting). Moreover, decision-makers begin to follow scientists in greater numbers only once the latter have reached a certain level of “popularity” (i.e., ∼2200 followers; Table 2). The general concern about whether scientific tweets are actually read by followers applies even more strongly to decision-makers, as they are known to use Twitter largely as a broadcasting tool rather than for dialogue (Grant et al. 2010). Thus, social media is not likely an effective replacement for more direct science-to-policy outreach that many scientists are now engaging in, such as testifying in front of special governmental committees, directly contacting decision-makers, etc. However, by actively engaging a large Twitter following of non-scientists, scientists increase the odds of being followed by a decision-maker who might see their messages, as well as the odds of being identified as a potential expert for further contributions.

It may due to the types of materials I tend to stumble across but science outreach has usually been presented as largely an educational effort with the long term goal of assuring the public will continue to support science funding. This passage in the research paper suggests more immediate political and career interests.

Should scientists be on Twitter?

This paper might discourage someone whose primary goal is to reach policy makers via this social media platform but the researchers seem to feel there is value in reaching out to a larger audience. While I’m not comfortable with how the researchers have generalized their results to the entire population of scientists, those results are intriguing..

This next bit features a scientist who as it turns out could be described as an EEMB (evolutionary biology and/or ecology) researcher.

How to tweet science

Stephen Heard wrote a July 31, 2018 posting on his Scientist Sees Squirrel blog about his Twitter feed,

At the 2018 conference of the Canadian Society for Ecology and Evolution, I was part of a lunchtime workshop, “The How and Why of Tweeting Science” – along with 5 friends.  Here I’ll share my slides and commentary.  I hope the other presenters will do the same, and I’ll link to them here as they become available.

 

I’ve been active on Twitter for about 4 years, but I’m very far from an expert, so my contribution to #CSEETweetShop was more to raise questions than to answer them.  What does it mean to “tweet to the science community”?  Here I’ll share some thoughts about Twitter audience, content, and voice.  These are, of course, my own (roughly formed) opinions, not some kind of wisdom on stone tablets, so take them with the requisite grain of salt!

Audience

 

Just as we do with blogging, we can draw a distinction between two audiences we might intend to reach via Twitter.  We might use Twitter for outreach, to talk to the general public – we could call this “science-communication tweeting”.  Or we could use Twitter for “inreach”, to talk to other scientists – which is what I’d call “science-community tweeting”.  But: for a couple of reasons, this distinction is not as clear as you might thing.  Or at least, your intent to reach one audience or the other may not match the outcome.

There are some data on the topic of scientists’ Twitter audiences.  The data in the slide above come from a recent paper by Isabelle Coté and Emily Darling.  They’re for a sample of 110 faculty members in ecology and evolution, for whom audiences are broken down by their relationship (if any) to science.  The key result: most ecology and evolution faculty on Twitter have audiences dominated by other scientists (light blue), with the general public (dark blue) a significant but more modest chunk. There’s variation, some of which may well relate to the tweeters’ intended audiences – but we can draw two fairly clear conclusions:

  • Nearly all of us tweet mostly to the science community; but
  • Almost none of us tweets only to the science community (or for that matter only to the general public).

The same paper analyzes follower composition as a function of audience size, and these data suggest that one’s audience is likely to change it builds.  Notice how the dark-blue “general public” line lags behind, then catches, the light-blue “other scientists” line*.  Earlier in your Twitter career, it’s likely that your audience will be even more strongly dominated by the science community – whether or not that’s what you intend.

In short: you probably can’t pick the audience you’re talking to; but you can pick the audience you’re talking for.  Given that, how might you use Twitter to talk for the science community?

I particularly like his constant questions about audience. He discusses other issues, such as content, but he always returns to the audience. Having worked in communication(s) and marketing, I have to applaud his focus on the audience. I can’t tell you how many times, we’d answer the question as to whom our audience was and we’d never revisit it. (mea culpa) Heard’s insistence on constantly checking in and questioning your assumptions is excellent.

Seeing  Coté’s and Darling’s paper cited in his presentation, gives some idea of how closely he follows the thinking about science outreach in his field.

Both Coté’s and Darling’s academic paper and Heard’s posting make for accessible reading while offering valuable information.

The Royal Bank of Canada reports ‘Humans wanted’ and some thoughts on the future of work, robots, and artificial intelligence

It seems the Royal Bank of Canada ((RBC or Royal Bank) wants to weigh in and influence what is to come with regard to what new technologies will bring us and how they will affect our working lives.  (I will be offering my critiques of the whole thing.)

Launch yourself into the future (if you’re a youth)

“I’m not planning on being replaced by a robot.” That’s the first line of text you’ll see if you go to the Royal Bank of Canada’s new Future Launch web space and latest marketing campaign and investment.

This whole endeavour is aimed at ‘youth’ and represents a $500M investment. Of course, that money will be invested over a 10-year period which works out to $50M per year and doesn’t seem quite so munificent given how much money Canadian banks make (from a March 1, 2017 article by Don Pittis for the Canadian Broadcasting Corporation [CBC] news website),

Yesterday [February 28, 2017] the Bank of Montreal [BMO] said it had made about $1.5 billion in three months.

That may be hard to put in context until you hear that it is an increase in profit of nearly 40 per cent from the same period last year and dramatically higher than stock watchers had been expecting.

Not all the banks have done as well as BMO this time. The Royal Bank’s profits were up 24 per cent at $3 billion. [emphasis mine] CIBC [Canadian Imperial Bank of Commerce] profits were up 13 per cent. TD [Toronto Dominion] releases its numbers tomorrow.

Those numbers would put the RBC on track to a profit of roughly $12B n 2017. This means  $500M represents approximately 4.5% of a single year’s profits which will be disbursed over a 10 year period which makes the investment work out to approximately .45% or less than 1/2 of one percent. Paradoxically, it’s a lot of money and it’s not that much money.

Advertising awareness

First, there was some advertising (in Vancouver at least),

[downloaded from http://flinflononline.com/local-news/356505]

You’ll notice she has what could be described as a ‘halo’. Is she an angel or, perhaps, she’s an RBC angel? After all, yellow and gold are closely associated as colours and RBC sports a partially yellow logo. As well, the model is wearing a blue denim jacket, RBC’s other logo colour.

Her ‘halo’ is intact but those bands of colour bend a bit and could be described as ‘rainbow-like’ bringing to mind ‘pots of gold’ at the end of the rainbow.  Free association is great fun and allows people to ascribe multiple and/or overlapping ideas and stories to the advertising. For example, people who might not approve of imagery that hearkens to religious art might have an easier time with rainbows and pots of gold. At any rate, none of the elements in images/ads are likely to be happy accidents or coincidence. They are intended to evoke certain associations, e.g., anyone associated with RBC will be blessed with riches.

The timing is deliberate, too, just before Easter 2018 (April 1), suggesting to some us, that even when the robots arrive destroying the past, youth will rise up (resurrection) for a new future. Or, if you prefer, Passover and its attendant themes of being spared and moving to the Promised Land.

Enough with the semiotic analysis and onto campaign details.

Humans Wanted: an RBC report

It seems the precursor to Future Launch, is an RBC report, ‘Humans Wanted’, which itself is the outcome of still earlier work such as this Brookfield Institute for Innovation + Entrepreneurship (BII+E) report, Future-proof: Preparing young Canadians for the future of work, March 2017 (authors: Creig Lamb and Sarah Doyle), which features a quote from RBC’s President and CEO (Chief Executive Officer) David McKay,

“Canada’s future prosperity and success will rely on us harnessing the innovation of our entire talent pool. A huge part of our success will depend on how well we integrate this next generation of Canadians into the workforce. Their confidence, optimism and inspiration could be the key to helping us reimagine traditional business models, products and ways of working.”  David McKay, President and CEO, RBC

There are a number of major trends that have the potential to shape the future of work, from climate change and resource scarcity to demographic shifts resulting from an aging population and immigration. This report focuses on the need to prepare Canada’s youth for a future where a great number of jobs will be rapidly created, altered or made obsolete by technology.

Successive waves of technological advancements have rocked global economies for centuries, reconfiguring the labour force and giving rise to new economic opportunities with each wave. Modern advances, including artificial intelligence and robotics, once again have the potential to transform the economy, perhaps more rapidly and more dramatically than ever before. As past pillars of Canada’s economic growth become less reliable, harnessing technology and innovation will become increasingly important in driving productivity and growth. 1, 2, 3

… (p. 2 print; p. 4 PDF)

The Brookfield Institute (at Ryerson University in Toronto, Ontario, Canada) report is worth reading if for no other reason than its Endnotes. Unlike the RBC materials, you can find the source for the information in the Brookfield report.

After Brookfield, there was the RBC Future Launch Youth Forums 2017: What We Learned  document (October 13, 2017 according to ‘View Page Info’),

In this rapidly changing world, there’s a new reality when it comes to work. A degree or diploma no longer guarantees a job, and some of the positions, skills and trades of today won’t exist – or be relevant – in the future.

Through an unprecedented 10-year, $500 million commitment, RBC Future LaunchTM  is focused on driving real change and preparing today’s young people for the future world of work, helping them access the skills, job experience and networks that will enable their success.

At the beginning of this 10-year journey RBC® wanted to go beyond research and expert reports to better understand the regional issues facing youth across Canada and to hear directly from young people and organizations that work with them. From November 2016 to May 2017, the RBC Future Launch team held 15 youth forums across the country, bringing together over 430 partners, including young people, to uncover ideas and talk through solutions to address the workforce gaps Canada’s youth face today.

Finally,  a March 26, 2018 RBC news release announces the RBC report: ‘Humans Wanted – How Canadian youth can thrive in the age of disruption’,

Automation to impact at least 50% of Canadian jobs in the next decade: RBC research

Human intelligence and intuition critical for young people and jobs of the future

  • Being ‘human’ will ensure resiliency in an era of disruption and artificial intelligence
  • Skills mobility – the ability to move from one job to another – will become a new competitive advantage

TORONTO, March 26, 2018 – A new RBC research paper, Humans Wanted – How Canadian youth can thrive in the age of disruption, has revealed that 50% of Canadian jobs will be disrupted by automation in the next 10 years.

As a result of this disruption, Canada’s Gen Mobile – young people who are currently transitioning from education to employment – are unprepared for the rapidly changing workplace. With 4 million Canadian youth entering the workforce over the next decade, and the shift from a jobs economy to a skills economy, the research indicates young people will need a portfolio of “human skills” to remain competitive and resilient in the labour market.

“Canada is at a historic cross-roads – we have the largest generation of young people coming into the workforce at the very same time technology is starting to impact most jobs in the country,” said Dave McKay, President and CEO, RBC. “Canada is on the brink of a skills revolution and we have a responsibility to prepare young people for the opportunities and ambiguities of the future.”

‘There is a changing demand for skills,” said John Stackhouse, Senior Vice-President, RBC. “According to our findings, if employers and the next generation of employees focus on foundational ‘human skills’, they’ll be better able to navigate a new age of career mobility as technology continues to reshape every aspect of the world around us.”

Key Findings:

  • Canada’s economy is on target to add 2.4 million jobs over the next four years, virtually all of which will require a different mix of skills.
  • A growing demand for “human skills” will grow across all job sectors and include: critical thinking, co-ordination, social perceptiveness, active listening and complex problem solving.
  • Rather than a nation of coders, digital literacy – the ability to understand digital items, digital technologies or the Internet fluently – will be necessary for all new jobs.
  • Canada’s education system, training programs and labour market initiatives are inadequately designed to help Canadian youth navigate the new skills economy, resulting in roughly half a million 15-29 year olds who are unemployed and another quarter of a million who are working part-time involuntarily.
  • Canadian employers are generally not prepared, through hiring, training or retraining, to recruit and develop the skills needed to ensure their organizations remain competitive in the digital economy.

“As digital and machine technology advances, the next generation of Canadians will need to be more adaptive, creative and collaborative, adding and refining skills to keep pace with a world of work undergoing profound change,” said McKay. “Canada’s future prosperity depends on getting a few big things right and that’s why we’ve introduced RBC Future Launch.”

RBC Future Launch is a decade-long commitment to help Canadian youth prepare for the jobs of tomorrow. RBC is committed to acting as a catalyst for change, bringing government, educators, public sector and not-for-profits together to co-create solutions to help young people better prepare for the future of the work through “human skills” development, networking and work experience.

Top recommendations from the report include:

  • A national review of post-secondary education programs to assess their focus on “human skills” including global competencies
  • A national target of 100% work-integrated learning, to ensure every undergraduate student has the opportunity for an apprenticeship, internship, co-op placement or other meaningful experiential placement
  • Standardization of labour market information across all provinces and regions, and a partnership with the private sector to move skills and jobs information to real-time, interactive platforms
  • The introduction of a national initiative to help employers measure foundational skills and incorporate them in recruiting, hiring and training practices

Join the conversation with Dave McKay and John Stackhouse on Wednesday, March 28 [2018] at 9:00 a.m. to 10:00 a.m. EDT at RBC Disruptors on Facebook Live.

Click here to read: Humans Wanted – How Canadian youth can thrive in the age of disruption.

About the Report
RBC Economics amassed a database of 300 occupations and drilled into the skills required to perform them now and projected into the future. The study groups the Canadian economy into six major clusters based on skillsets as opposed to traditional classifications and sectors. This cluster model is designed to illustrate the ease of transition between dissimilar jobs as well as the relevance of current skills to jobs of the future.

Six Clusters
Doers: Emphasis on basic skills
Transition: Greenhouse worker to crane operator
High Probability of Disruption

Crafters: Medium technical skills; low in management skills
Transition: Farmer to plumber
Very High Probability of Disruption

Technicians: High in technical skills
Transition: Car mechanic to electrician
Moderate Probability of Disruption

Facilitators: Emphasis on emotional intelligence
Transition: Dental assistant to graphic designer
Moderate Probability of Disruption

Providers: High in Analytical Skills
Transition: Real estate agent to police officer
Low Probability of Disruption

Solvers: Emphasis on management skills and critical thinking
Transition: Mathematician to software engineer
Minimal Probability of Disruption

About RBC
Royal Bank of Canada is a global financial institution with a purpose-driven, principles-led approach to delivering leading performance. Our success comes from the 81,000+ employees who bring our vision, values and strategy to life so we can help our clients thrive and communities prosper. As Canada’s biggest bank, and one of the largest in the world based on market capitalization, we have a diversified business model with a focus on innovation and providing exceptional experiences to our 16 million clients in Canada, the U.S. and 34 other countries. Learn more at rbc.com.‎

We are proud to support a broad range of community initiatives through donations, community investments and employee volunteer activities. See how at http://www.rbc.com/community-sustainability/.

– 30 – 

The report features a lot of bulleted points, airy text (large fonts and lots of space between the lines), inoffensive graphics, and human interest stories illustrating the points made elsewhere in the text.

There is no bibliography or any form of note telling you where to find the sources for the information in the report. The 2.4M jobs mentioned in the news release are also mentioned in the report on p. 16 (PDF) and is credited in the main body of the text to the EDSC. I’m not up-to-date on my abbreviations but I’m pretty sure it does not stand for East Doncaster Secondary College or East Duplin Soccer Club. I’m betting it stands for Employment and Social Development Canada. All that led to visiting the EDSC website and trying (unsuccessfully) to find the report or data sheet used to supply the figures RBC quoted in their report and news release.

Also, I’m not sure who came up with or how they developed the ‘crafters, ‘doers’, ‘technicians’, etc. categories.

Here’s more from p. 2 of their report,

CANADA, WE HAVE A PROBLEM. [emphasis mine] We’re hurtling towards the 2020s with perfect hindsight, not seeing what’s clearly before us. The next generation is entering the workforce at a time of profound economic, social and technological change. We know it. [emphasis mine] Canada’s youth know it. And we’re not doing enough about it.

RBC wants to change the conversation, [emphasis mine] to help Canadian youth own the 2020s — and beyond. RBC Future Launch is our 10-year commitment to that cause, to help young people prepare for and navigate a new world of work that, we believe, will fundamentally reshape Canada. For the better. If we get a few big things right.

This report, based on a year-long research project, is designed to help that conversation. Our team conducted one of the biggest labour force data projects [emphasis mine] in Canada, and crisscrossed the country to speak with students and workers in their early careers, with educators and policymakers, and with employers in every sector.

We discovered a quiet crisis — of recent graduates who are overqualified for the jobs they’re in, of unemployed youth who weren’t trained for the jobs that are out there, and young Canadians everywhere who feel they aren’t ready for the future of work.

Sarcasm ahead

There’s nothing like starting your remarks with a paraphrased quote from a US movie about the Apollo 13 spacecraft crisis as in, “Houston, we have a problem.” I’ve always preferred Trudeau (senior) and his comment about ‘keeping our noses out of the nation’s bedrooms’. It’s not applicable but it’s more amusing and a Canadian quote to boot.

So, we know we’re having a crisis which we know about but RBC wants to tell us about it anyway (?) and RBC wants to ‘change the conversation’. OK. So how does presenting the RBC Future Launch change the conversation? Especially in light of the fact, that the conversation has already been held, “a year-long research project … Our team conducted one of the biggest labour force data projects [emphasis mine] in Canada, and crisscrossed the country to speak with students and workers in their early careers, with educators and policymakers, and with employers in every sector.” Is the proposed change something along the lines of ‘Don’t worry, be happy; RBC has six categories (Doers, Crafters, Technicians, Facilitators, Providers, Solvers) for you.’ (Yes, for those who recognized it, I’m referencing I’m referencing Bobby McFerrin’s hit song, Don’t Worry, Be Happy.)

Also, what data did RBC collect and how do they collect it? Could Facebook and other forms of social media have been involved? (My March 29, 2018 posting mentions the latest Facebook data scandal; scroll down about 80% of the way.)

There are the people leading the way and ‘changing the conversation’ as it were and they can’t present logical, coherent points. What kind of conversation could they possibly have with youth (or anyone else for that matter)?

And, if part of the problem is that employers are not planning for the future, how does Future Launch ‘change that part of the conversation’?

RBC Future Launch

Days after the report’s release,there’s the Future Launch announcement in an RBC March 28, 2018 news release,

TORONTO, March 28, 2017 – In an era of unprecedented economic and technological change, RBC is today unveiling its largest-ever commitment to Canada’s future. RBC Future Launch is a 10-year, $500-million initiative to help young people gain access and opportunity to the skills, job experience and career networks needed for the future world of work.

“Tomorrow’s prosperity will depend on today’s young people and their ability to take on a future that’s equally inspiring and unnerving,” said Dave McKay, RBC president and CEO. “We’re sitting at an intersection of history, as a massive generational shift and unprecedented technological revolution come together. And we need to ensure young Canadians are prepared to help take us forward.”

Future Launch is a core part of RBC’s celebration of Canada 150, and is the result of two years of conversations with young Canadians from coast to coast to coast.

“Young people – Canada’s future – have the confidence, optimism and inspiration to reimagine the way our country works,” McKay said. “They just need access to the capabilities and connections to make the 21st century, and their place in it, all it should be.”

Working together with young people, RBC will bring community leaders, industry experts, governments, educators and employers to help design solutions and harness resources for young Canadians to chart a more prosperous and inclusive future.

Over 10 years, RBC Future Launch will invest in areas that help young people learn skills, experience jobs, share knowledge and build resilience. The initiative will address the following critical gaps:

  • A lack of relevant experience. Too many young Canadians miss critical early opportunities because they’re stuck in a cycle of “no experience, no job.” According to the consulting firm McKinsey & Co., 83 per cent of educators believe youth are prepared for the workforce, but only 34 per cent of employers and 44 per cent of young people agree. RBC will continue to help educators and employers develop quality work-integrated learning programs to build a more dynamic bridge between school and work.
  • A lack of relevant skills. Increasingly, young people entering the workforce require a complex set of technical, entrepreneurial and social skills that cannot be attained solely through a formal education. A 2016 report from the World Economic Forum states that by 2020, more than a third of the desired core skill-sets of most occupations will be different from today — if that job still exists. RBC will help ensure young Canadians gain the skills, from critical thinking to coding to creative design, that will help them integrate into the workplace of today, and be more competitive for the jobs of tomorrow.
  • A lack of knowledge networks. Young people are at a disadvantage in the job market if they don’t have an opportunity to learn from others and discover the realities of jobs they’re considering. Many have told RBC that there isn’t enough information on the spectrum of jobs that are available. From social networks to mentoring programs, RBC will harness the vast knowledge and goodwill of Canadians in guiding young people to the opportunities that exist and will exist, across Canada.
  • A lack of future readiness. Many young Canadians know their future will be defined by disruption. A new report, Future-proof: Preparing young Canadians for the future of work, by the Brookfield Institute for Innovation + Entrepreneurship, found that 42 per cent of the Canadian labour force is at a high risk of being affected by automation in the next 10 to 20 years. Young Canadians are okay with that: they want to be the disruptors and make the future workforce more creative and productive. RBC will help to create opportunities, through our education system, workplaces and communities at large to help young Canadians retool, rethink and rebuild as the age of disruption takes hold.

By helping young people unlock their potential and launch their careers, RBC can assist them with building a stronger future for themselves, and a more prosperous Canada for all. RBC created The Launching Careers Playbook, an interactive, digital resource focused on enabling young people to reach their full potential through three distinct modules: I am starting my career; I manage interns and I create internship programs. The Playbook shares the design principles, practices, and learnings captured from the RBC Career Launch Program over three years, as well as the research and feedback RBC has received from young people and their managers.

More information on RBC Future Launch can be found at www.rbc.com/futurelaunch.

Weirdly, this news release is the only document which gives you sources for some of RBC’s information. If you should be inclined, you can check the original reports as cited in the news release and determine if you agree with the conclusions the RBC people drew from them.

Cynicism ahead

They are planning to change the conversation, are they? I can’t help wondering what return they’re (RBC)  expecting to make on their investment ($500M over10 years). The RBC is prominently displayed not only on the launch page but in several of the subtopics listed on the page.

There appears to be some very good and helpful information although much of it leads you to using a bank for one reason or another. For example, if you’re planning to become an entrepreneur (and there is serious pressure from the government of Canada on this generation to become precisely that), then it’s very handy that you have easy access to RBC from any of the Future Launch pages. As well, you can easily apply for a job at or get a loan from RBC after you’ve done some of the exercises on the website and possibly given RBC a lot of data about yourself.

For anyone who believes I’m being harsh about the bank, you might want to check out a March 15, 2017 article by Erica Johnson for the Canadian Broadcasting Corporation’s Go Public website. It highlights just how ruthless Canadian banks can be,

Employees from all five of Canada’s big banks have flooded Go Public with stories of how they feel pressured to upsell, trick and even lie to customers to meet unrealistic sales targets and keep their jobs.

The deluge is fuelling multiple calls for a parliamentary inquiry, even as the banks claim they’re acting in customers’ best interests.

In nearly 1,000 emails, employees from RBC, BMO, CIBC, TD and Scotiabank locations across Canada describe the pressures to hit targets that are monitored weekly, daily and in some cases hourly.

“Management is down your throat all the time,” said a Scotiabank financial adviser. “They want you to hit your numbers and it doesn’t matter how.”

CBC has agreed to protect their identities because the workers are concerned about current and future employment.

An RBC teller from Thunder Bay, Ont., said even when customers don’t need or want anything, “we need to upgrade their Visa card, increase their Visa limits or get them to open up a credit line.”

“It’s not what’s important to our clients anymore,” she said. “The bank wants more and more money. And it’s leading everyone into debt.”

A CIBC teller said, “I am expected to aggressively sell products, especially Visa. Hit those targets, who cares if it’s hurting customers.”

….

Many bank employees described pressure tactics used by managers to try to increase sales.

An RBC certified financial planner in Guelph, Ont., said she’s been threatened with pay cuts and losing her job if she doesn’t upsell enough customers.

“Managers belittle you,” she said. “We get weekly emails that highlight in red the people who are not hitting those sales targets. It’s bullying.”

Some TD Bank employees told CBC’s Go Public they felt they had to break the law to keep their jobs. (Aaron Harris/Reuters)

Employees at several RBC branches in Calgary said there are white boards posted in the staff room that list which financial advisers are meeting their sales targets and which advisers are coming up short.

A CIBC small business associate who quit in January after nine years on the job said her district branch manager wasn’t pleased with her sales results when she was pregnant.

While working in Waterloo, Ont., she says her manager also instructed staff to tell all new international students looking to open a chequing account that they had to open a “student package,” which also included a savings account, credit card and overdraft.

“That is unfair and not the law, but we were told to do it for all of them.”

Go Public requested interviews with the CEOs of the five big banks — BMO, CIBC, RBC, Scotiabank and TD — but all declined.

If you have the time, it’s worth reading Johnson’s article in its entirety as it provides some fascinating insight into Canadian banking practices.

Final comments and an actual ‘conversation’ about the future of work

I’m torn, It’s good to see an attempt to grapple with the extraordinary changes we are likely to see in the not so distant future. It’s hard to believe that this Future Launch initiative is anything other than a self-interested means of profiting from fears about the future and a massive public relations campaign designed to engender good will. Doubly so since the very bad publicity the banks including RBC garnered last year (2017), as mentioned in the Johnson article.

Also, RBC and who knows how many other vested interests appear to have gathered data and information which they’ve used to draw any number of conclusions. First, I can’t find any information about what data RBC is gathering, who else might have access, and what plans, if any, they have to use it. Second, RBC seems to have predetermined how this ‘future of work’ conversation needs to be changed.

I suggest treading as lightly as possible and keeping in mind other ‘conversations’ are possible. For example, Mike Masnick at Techdirt has an April 3, 2018 posting about a new ‘future of work’ initiative,

For the past few years, there have been plenty of discussions about “the future of work,” but they tend to fall into one of two camps. You have the pessimists, who insist that the coming changes wrought by automation and artificial intelligence will lead to fewer and fewer jobs, as all of the jobs of today are automated out of existence. Then, there are the optimists who point to basically every single past similar prediction of doom and gloom due to innovation, which have always turned out to be incorrect. People in this camp point out that technology is more likely to augment than replace human-based work, and vaguely insist that “the jobs will come.” Whether you fall into one of those two camps — or somewhere in between or somewhere else entirely — one thing I’d hope most people can agree on is that the future of work will be… different.

Separately, we’re also living in an age where it is increasingly clear that those in and around the technology industry must take more responsibility in thinking through the possible consequences of the innovations they’re bringing to life, and exploring ways to minimize the harmful results (and hopefully maximizing the beneficial ones).

That brings us to the project we’re announcing today, Working Futures, which is an attempt to explore what the future of work might really look like in the next ten to fifteen years. We’re doing this project in partnership with two organizations that we’ve worked with multiples times in the past: Scout.ai and R Street.

….

The key point of this project: rather than just worry about the bad stuff or hand-wave around the idea of good stuff magically appearing, we want to really dig in — figure out what new jobs may actually appear, look into what benefits may accrue as well as what harms may be dished out — and see if there are ways to minimize the negative consequences, while pushing the world towards the beneficial consequences.

To do that, we’re kicking off a variation on the classic concept of scenario planning, bringing together a wide variety of individuals with different backgrounds, perspectives and ideas to run through a fun and creative exercise to imagine the future, while staying based in reality. We’re adding in some fun game-like mechanisms to push people to think about where the future might head. We’re also updating the output side of traditional scenario planning by involving science fiction authors, who obviously have a long history of thinking up the future, and who will participate in this process and help to craft short stories out of the scenarios we build, making them entertaining, readable and perhaps a little less “wonky” than the output of more traditional scenario plans.

There you have it; the Royal Bank is changing the conversation and Techdirt is inviting you to join in scenario planning and more.

The role of empathy in science communication

Phys.org has a Dec. 12, 2016 essay by Nicole Miller-Struttmann on the topic of empathy and science communication,

Science communication remains as challenging as it is necessary in the era of big data. Scientists are encouraged to reach out to non-experts through social media, collaborations with citizen scientists, and non-technical abstracts. As a science enthusiast (and extrovert), I truly enjoy making these connections and having conversations that span expertise, interests and geographic barriers. However, recent divisive and impassioned responses to the surprising election results in the U.S. made me question how effective these approaches are for connecting with the public.

Are we all just stuck in our own echo chambers, ignoring those that disagree with us?

How do we break out of these silos to reach those that disengage from science or stop listening when we focus on evidence? Particularly evidence that is increasingly large in volume and in scale? Recent research suggests that a few key approaches might help: (1) managing our social media use with purpose, (2) tailoring outreach efforts to a distinct public, and (3) empathizing with our audience(s) in a deep, meaningful way.

The essay, which originally appeared on the PLOS Ecology Community blog in a Dec. 9, 2016 posting, goes on to discuss social media, citizen science/crowdsourcing, design thinking, and next gen data visualization (Note: Links have been removed),

Many of us attempt to broaden our impact by sharing interesting studies with friends, family, colleagues, and the broader public on social media. While the potential to interact directly with non-experts through social media is immense, confirmation bias (the tendency to interpret and share information that supports one’s existing beliefs) provides a significant barrier to reaching non-traditional and contrarian publics. Insights from network analyses suggest that these barriers can be overcome by managing our connections and crafting our messages carefully. …

Technology has revolutionized how the public engages in science, particularly data acquisition, interpretation and dissemination. The potential benefits of citizen science and crowd sourcing projects are immense, but there are significant challenges as well. Paramount among them is the reliance on “near-experts” and amateur scientists. Domroese and Johnson (2016) suggest that understanding what motivates citizen scientists to get involved – not what we think motivates them – is the first step to deepening their involvement and attracting diverse participants.

Design Thinking may provide a framework for reaching diverse and under-represented publics. While similar to scientific thinking in several ways,

design thinking includes a crucial step that scientific thinking does not: empathizing with your audience.

It requires that the designer put themselves in the shoes of their audience, understand what motivates them (as Domroese and Johnson suggest), consider how they will interact with and perceive the ‘product’, and appeal to the perspective. Yajima (2015) summarizes how design thinking can “catalyze scientific innovation” but also why it might be a strange fit for scientists. …

Connecting the public to big data is particularly challenging, as the data are often complex with multifaceted stories to tell. Recent work suggests that art-based, interactive displays are more effective at fostering understanding of complex issues, such as climate change.

Thomsen (2015) explains that by eliciting visceral responses and stimulating the imagination, interactive displays can deepen understanding and may elicit behavioral changes.

I recommend reading this piece in its entirety as Miller-Struttmann presents a more cohesive description of current science communication practices and ideas than is sometimes the case.

Final comment, I would like to add one suggestion and that’s the adoption of an attitude of ‘muscular’ empathy. People are going to disagree with you, sometimes quite strongly (aggressively), and it can be very difficult to maintain communication with people who don’t want (i.e., reject) the communication. Maintaining empathy in the face of failure and rejection which can extend for decades or longer requires a certain muscularity

Canadian science media at June 28, 2015 SpaceX Dragon CRS-7 cargo mission to the International Space Station

The short story is that Elizabeth Hand, Digital Engagement Specialist, at Vancouver’s (Canada) Science World was selected to be a correspondent at the Cape Canaveral (Florida) Space X launch on June 28, 2015. There’s more in her June 24, 2015 posting on the Vancouver Sun newspaper blog network (Note: Links and some formatting niceties have been removed),

I [am] on my way to Cape Canaveral Air Force Station in Florida to join a team of social media correspondents from all over the world as a representative of Science World British Columbia to view the June 28, 2015 SpaceX Dragon CRS-7 cargo mission to the International Space Station.

I  received the news that I had been offered an invite at my thirty-something birthday celebration dinner. It was the gift to end all birthday gifts—a once-in-a-lifetime space nerd adventure. Any rocket launch would have made me happy, but a launch from Cape Canaveral is a particularly special one. For me, in particular, because I grew up in Florida and I can remember standing outside in the school yard hoping to catch a glimpse of the space shuttles that moved the Americans to the stars in the 80’s and 90’s. I dreamed of going up with them.

I am excited to bring the curiosity and excitement of the kids in BC with me to the events. Kids of all ages are invited to send their questions about space and rockets to @scienceworldca and/or @bettyHand on both Instagram and Twitter with the hashtag #whyspacematters. You can participate from home or from Science World, where, from June 24-28, kids can dress up in space suits and, with the help of our science facilitators, can snap photos and share their ideas and questions with me and the experts at NASA and SpaceX.

It’s not clear to me if she will be blogging live as well as using the vehicles (Twitter, etc.) mentioned in her posting*. It might be worth checking both the Vancouver Sun (Community Blogs Network) and Science World (blog) to see if she will be offering more substantive descriptions than are possible on the social media vehicles she mentioned.

* ‘posing’ corrected to ‘posting’ at 1115 hours on June 26, 2015.

ETA June 29, 2015: The rocket exploded nine minutes after launch (Daniel Terdiman’s June 28, 2015 posting for Fast Company).

Sick and tired of the ‘social media is changing how science is practiced’ narrative

The whole ‘social media is changing ______’ puzzles me. You can fill in the blank with science/government/social relationships/etc. It’s always the same notion. Somehow social media is engendering changes the like of which we’ve never seen before.

  • The February 2011 overthrow of Mubarak in Egypt was all due to social media, as is the current social unrest in many Middle Eastern Countries.
  • Social relationships are being negatively impacted (nobody talks to anybody else anymore or it’s opening new avenues for relationships)
  • The practice of science is being changed by the use of social media.
  • etc.

Mostly I’m concerned with the one about science since I recently ended up on a panel where the discussion turned on this topic. I think there are a lot of things having an impact on how science is practiced and trying to establish the role social media is playing, if any, is a little premature.

We had Rosie Redfield on the panel. Rosie is a professor at the University of British Columbia who was part of the ‘arsenic life’ story that took the internet by a storm in late November/early December 2010. (Confession: I got caught up in the excitement in my Dec. 6, 2010 posting and recanted in my Dec. 8, 2010 posting.) Recently, there’s been a story about ‘arsenic life’ by Carl Zimmer for Slate magazine titled, How #arseniclife changed science. Here’s Zimmer’s set up (from the Slate article),

On November 29, NASA announced that it would soon hold a press conference to “discuss an astrobiology finding that will impact the search for evidence of extraterrestrial life.” Wild speculation ran amok—perhaps scientists had found living things on one of Saturn’s moons. At the press conference, the scientists did not unveil an actual extraterrestrial, but they did have big news. A new paper had just been published in the journal Science, they said, which described bacteria that seemed able to build their own DNA from arsenic. If that were true, it would be an historic discovery, because no such ability has ever been found among Earth’s life-forms.

The paper was published online in late November and attracted a great deal of discussion and criticism almost immediately on blogs (Rosie Redfield’s RRResearch amongst them) and on twitter via the hash tag topic, #arseniclife. The print version of the paper, along with critical letters, will appear in the June 3, 2011 issue of Science.

Here’s Zimmer’s take on what makes this particular scientific dust-up different,

For those of us who have been tracking #arseniclife since last Thanksgiving, however, today comes as an anticlimax. There’s not much in the letters to Science that we haven’t read before. In the past, scientists might have kept their thoughts to themselves, waiting for journals to decide when and how they could debate the merits of a study. But this time, they started talking right away, airing their criticisms on the Internet. In fact, the true significance of the aliens-that-weren’t will be how it helped change the way scientists do science.

Zimmer goes on to describe this new practice,

Redfield and her colleagues are starting to carry out a new way of doing science, known as post-publication peer review. Rather than leaving the evaluation of new studies to a few anonymous scientists, researchers now debate the merit of papers after they have been published. The collective decision they come to stays open to revision.

Post-publication peer review—and open science in general—is attracting a growing number of followers in the scientific community. But some critics have argued that it’s been more successful in theory than in practice. The #arseniclife affair is one of the first cases in which the scientific community openly vetted a high-profile paper, and influenced how the public at large thought about it.

Post-publication peer review existed before social media as per ‘cold fusion’ (Wikipedia essay). I remember it because I wasn’t particularly interested in science at the time but this was everywhere and it went on for months. There was the initial excitement and enthusiasm (the ‘cold fusion’ scientists were featured on the cover of Times or Newsweek or maybe both in the days when those magazines were powerhouse publications). Then, as the initial enthusiasm died down, the storm of scientific criticism started (those other scientists may not have had social media but they made themselves felt). The story took place over eight to 10 months and achieved public awareness in a way that scientists can only fantasize about these days.  By comparison, the arsenic story blew up and disappeared from public consciousness within roughly two weeks, if that.

Social media may yet change how science is practiced but I wouldn’t use Zimmer’s story about #arsencilife to support that belief, in fact, I think it could support another idea altogether.

The ‘arsenic’ story was, by comparison, with ‘cold fusion’ greatly truncated and most members of the public never really heard about it and, as a consequence, were not exposed to the furious debate and discussion as they were with  ‘cold fusion’.  They did not get exposed to how science ‘really works and therein lies a problem because they did not see the uncertainties, the mistakes, and revised ideas.

As for what factors may be having an impact on scientific practice, I’d suggest reading Identifying good scientists and keeping them honest on The Black Hole blog by David Kent. Here’s an excerpt,

In a February 2011 interview with Lab Times, Cambridge scientist Peter Lawrence1 reflects on his own career and complains that “the heart of research is sick” as he charts the changes in the way in which science is pursued.  Briefly, he cites impact factors and the increased need to assign metrics to scientists (# of publications, H-index, etc) as main drivers of producing low quality research and unfairly squeezing out some good scientists who do not publish simply for the sake of publishing.  Impact factor fever runs deep throughout laboratories but, most damagingly, exists at the funding agency and university administrative level as well.

ETA June 17, 2011: For anyone who’d like to read some updated and contrasting discussion about the #arseniclife aftermath for scientific practice and science education there are two June 16, 2011 guest posts for Scientific American, one from Rosie Redfield and the other from Marie-Claire Shanahan. Plus, if you are interested in more details about the cold fusion story and the role electronic communication played, check out Marie-Claire Shanahan’s post,  Arsenic, cold fusion and the legitimacy of online critique, on the Boundary Vision blog.

Math, YouTube, and opening science

There’s a charming post (May 17, 2011) by James Grime, mathematician, at the Guardian Science Blogs about his and other science communicators’ YouTube videos. From the posting,

I’m a mathematician – and have the chalk marks to prove it – but I do not come from a family of academics. Growing up, my only access to that world was through the television. I remember Johnny Ball jumping up and down talking excitedly about the parabolic path of projectiles; Horizon’s documentary on the Andrew Wiles’ proof of Fermat’s Last Theorem; and at Christmas the theme music of the Royal Institution’s Christmas Lectures filled me with even more excitement than the bike that came with six sound effects.

Today the profile of science communication on TV may be at an all time high. My mum may not know what the Large Hadron Collider does, but she knows who Brian Cox is. But television remains a very 20th century method of communication. A channel will gear their science programming towards their perceived audience, be that BBC1 , BBC4 or a Channel 4 audience.

However, with the rise of new media, like YouTube, you no longer need to chase the audience. They find you.

He goes on to share one of his videos and a selection from other science communicators. It’s a great read and has attracted comments that include links to even more science videos.

Clearly, Grime’s main focus in this post is educational/popularizing/awareness raising for the general public.

Some scientists are trying to use social media such as YouTube to better communicate with each other. There are science videos (not many) wherein scientific papers are given video abstracts. For example materials scientists are doing this on their Materials’s Views Channel on YouTube. This is all part of a movement to make science more open through social media.

Science has been been opened up before according to the Open Science Manifesto,

In 1665, the first two scientific journals were published, and science was dragged out of its dark age of cryptic anagrams, secret discoveries, and bitter turf wars. Today we are living in another dark age of science: pay-per-access journals, unreleased code and data, prestige-based metrics, and irreproducible experiments.

As I kept on digging (clicking on the link to the dark ages reference), I found Michael Nielsen, previously an academic working in quantum computation (he has a PhD in physics according to Wikipedia) and now the writer of a forthcoming book, Reinventing Discovery, from the Princeton University Press in November 2011. He advocates strongly for the use of social media amongst scientists as you can see in this approximately 16 mins. March 2011 TED talk at Waterloo (Ontario, Canada),

I notice that his focus is on scientists using social media as a means of communication amongst themselves (and anyone else who may choose to join in) but control remains firmly with the scientists. In other words, science is practiced by scientists and there’s no discussion of citizen scientists where people reach beyond their general science awareness for some form of science activity. I believe it’s an unconscious assumption that the experts (scientists) are the only ones expected to participate while the rest of us gaze on. This is true too of James Grime’s piece where the rest of us are more or less passive viewers of his science videos and not expected to practice science.

There’s nothing wrong with these approaches and, most of the time, I’m perfectly to have scientists do their work and I’m hugely happy when they choose to share it with me.

However, when scientists talk about opening up science they usually mean that the public should learn more about their work (i.e. we are the tabula rasa and not expected to be able to reciprocate; our role is to listen and to be educated by the expert) or that research should be more easily available (mostly amongst themselves). There are some crowdsourced science projects (e.g. Foldit, which boasted some 50,000 authors and there’s also the recently launched Phylo at McGill University [my most recent posting on these projects] amongst others) where members of the public are invited to participate in science activities directly related to answering research questions.

My point is that ‘open science’ means more than one thing.

Synthetic biology: commercialization, Canadian farmers, and public discourse

You may see synthetic biology (or more properly a synthetic organism) referred to as ‘Synthia’. The term was coined (or, for some word play, created) by the ETC Group as they note in their May 20, 2010 news release about J. Craig Venter’s latest accomplishment (noted on this blog here and here),

The construction of this synthetic organism, anticipated and dubbed “Synthia” by the ETC Group three years ago, will stir a firestorm of controversy over the ethics of building artificial life and the implications of the largely unknown field of synthetic biology.

Clearly the ETC Group, which is based in Canada, has been gearing up for a campaign. It’ll be interesting to note whether or not they are successful at making ‘Synthia’ stick. I gather the group was able to capitalize on ‘frankenfoods’ for the campaign on genetically modified foods but someone else coined that phrase for them. (You can read about who coined the phrase in Susan Tyler Hitchcock’s book, Frankenstein; a cultural history.)

The advantage with ‘frankenfoods’ is the reference to an internationally recognized cultural icon, Frankenstein, and all of the associations that naturally follow. With ‘Synthia’, the ETC Group will have to build (link? graft?) the references to/onto the term.

I shouldn’t forget that the ETC Group does make an important point with this,

The team behind today’s announcement, led by controversial scientist and entrepreneur Craig Venter, is associated with a private company, Synthetic Genomics Inc, bankrolled by the US government and energy behemoths BP and Exxon. Synthetic Genomics recently announced a $600 million research and investment deal with Exxon Mobil in addition to a 2007 investment from BP for an undisclosed amount. Venter, who led the private sector part of the human genome project ten years ago, has already applied for patents related to Synthia’s technology.

In a possibly related (to the ETC Group) statement, the National Farmers Union (NFU) had this to say (from the May 22, 2010 news item on CBC News),

The National Farmers Union says the development of a synthetic cell could lead to worrisome, long-term consequences.

“This new technology raises serious concerns about who controls it, what it will be used for, and its potential impact,” [Terry] Boehm [president, NFU] said.

There are two things I want to note. First, the concerns raised by the ETC Group, the NFU, and others in Canada and across the globe are important and require discussion. Second, all of the parties involved business interests, civil society groups, scientists, government agencies, etc. work independently and together (formally and informally) to promote their interests.

In a related note: In a May 23, 2010 CBC news item (published on Sunday during a long weekend),

The government is looking for ways to monitor online chatter about political issues and correct what it perceives as misinformation.

The move started recently with a pilot project on the East Coast seal hunt. A Toronto-based company called Social Media Group has been hired to help counter some information put forward by the anti-sealing movement.

The Department of Foreign Affairs and International Trade has paid the firm $75,000 “to monitor social activity and help identify … areas where misinformation is being presented and repeated as fact,” Simone MacAndrew, a department spokesperson, said in an email.

The firm alerts the government to questionable online comments and then employees in Foreign Affairs or the Department of Fisheries and Oceans, who have recently been trained in online posting, point the authors to information the government considers more accurate.

It appears to be just the beginning. [emphases mine]

(Digression alert! Does this mean I’ll be able to easily get more information about nanotechnology research in Canada, about the national institute, about nanomaterials, about proposed regulatory frameworks, etc.?)

I have to admit to being suspicious about this ‘information initiative’ when the announcement appears to have been made in an email during a holiday weekend. As well, it seems a bit schizoid given the government’s ban (I’ve commented about that here) on direct communication between journalists and scientists working for Environment Canada. So, the government will contact us if they think we have it wrong but a journalist can’t directly approach one of their scientists to ask a question.

Returning to my main focus, the impact that all these groups with their interests, by turns competitive and collegial, will have on the synthetic biology debate is impossible to evaluate at this time. It does seem that much of the framing for the discussion has been predetermined by various interest groups while the rest of us have remained in relative ignorance. I think the ‘pre-framing’ is inevitable given that most of us would not be interested in engaging in a discussion about developments which were largely theoretical, until recently.

For those who are interested in learning about the science and the debates, check out the Oscillator here. She notes that we’ve had some parts of this discussion as early as the 19th century,

My ScienceBlogs colleague PZ Myers compares the synthetic genome to Wöhler’s chemical synthesis of urea in 1828. In the 19th century, scientists debated whether or not the chemicals that make up living cells–organic chemistry–had to be made by a cell possessing a “vital spark” or could be made by humans in a test tube. By synthesizing urea from ammonium cyanate, Wöhler broke down some of the mysticism associated with living cells. From that point on, organic chemistry stopped being magic and became a science.

Does the Venter Institute’s achievement show that life is just chemicals? I don’t think so …

New media (the social kind) at the Vancouver Olympics, is it cohesive or isolating?

There is a passage in The Diamond Age Or, A Young lady’s Illustrated Primer a 1995 science fiction novel by Neal Stephenson that states this,

Now nanotechnology had made nearly anything possible, and so the cultural role in deciding what should be done with it had become far more important than imagining what could be done with it. One of the insights of the Victorian Revival was that it was not necessarily a good thing for everyone to read a completely different newspaper in the morning; so the higher one rose in the society, the more similar one’s Times became to one’s peers’. (p. 37, Bantam Books, trade paperback, Sept. 2000 reissue)

It’s haunted me since I first read it about three years ago while preparing to write an academic paper I titled Writing Nanotechnology; first investigation where I was linking my nanotechnology interests to my writing and new media interests.

As I followed these interests, I discovered that the period of the Industrial Revolution was, in addition to being a period of tremendous interest and discovery in science and technology, a period of great upheaval amongst purveyors of the written word. For example, Sir Walter Scott, known today as a writer of historical novels such as Ivanhoe, was too embarrassed to have his name published in his first books. At the time, Scott was known foremost as a poet and writing novels was considered beneath a poet’s dignity. From Frankenstein; A Cultural History by Susan Tyler Hitchcock,

Meanwhile Walter Scott, already revered for poems that sang of his native Scotland was suspected of being the author of Waverley. What a shock if it were true—that a popular poet would descend to write a novel, a new and not altogether respected literary form. (p. 24, 2007, W. W. Norton & Co., Inc, NY & London)

There are some striking parallels between the 19th century, during which much of the Industrial Revolution played itself out and which is also known as the Victorian period, and our own time. We too are obsessed with science and finding new ways to tell stories. Both of which occurred to me during Andy Miah’s session at the Fresh Media Olympics Conference I attended on Feb. 22, 2010 in Vancouver at W2 Culture + Media House.

During the discussion about the impact that social media (part & parcel of what is sometimes called new media) is having on the games and the discussion about the games themselves. I’d estimate 40 – 50 people were there, most of them part of the social media/citizen journalist community and/or academics.

Apparently the Vancouver games are becoming known as the Twitter Olympics. Andy Miah, an academic, who has been following and researching the Olympic games since the 2000 Summer Games in Sydney, Australia) asked (paraphrased)  if we thought that the social media we use creates ‘silos’. (For anyone unfamiliar with the concept, the word silo in this context means isolated group.  e.g. a business where the engineers exist in their silo and the sales team in their silo with virtually no communication between the two)

I found it to be a thought-provoking question which returned me to the The Diamond Age passage I quoted previously  and that led me to reframe the question this way, Is social media going to be a cohesive force or an isolating force? At this point, I can make a case for both using the information and comments shared at the conference.

Earlier in the conference Andy suggested (paraphrased) that the friction provided by the official games story and the reporters and IOC (International Olympic Committee) structures is useful and necessary for the unofficial games stories and social media as promoted by activists. In this case, social media provides cohesion for the activists and a means of distribution.

Social media can also be isolating. As one participant noted (in another context not meant to support the case I’m building), it is your responsibility to find and develop your networks for information (as opposed to turning on the television or radio at the right time). It seems to me that this responsibility could be a problem when you need to extend past your natural networks.

In real life, extending beyond your personal network can be very difficult. Yes, there are times when it’s easier, i.e., going to a new school, starting a new job, moving to a new place are all situations where this happens naturally or you’re forced to do it. But in the general way once your networks are established there’s not much need to extend past them and it’s not easy to do. Academics tend to know other academics; scientists know other scientists, business owners know other business owners.You may have multiple networks (work, neighbourhood, friends from high school, etc.) but they don’t intersect. These kinds of silos exist in social media too. For example, there’s a Linked In network, a Facebook network, a Twitter network and these all breakdown into every smaller networks within networks. Plus there’s the assumption that you know it exists. How do you connect to network if you don’t know it exists? Or, you suspect there’s something out there but you don’t know how to find it.

Now, I want to add another element to the mix. One of the participants discussed how she uses Twitter and used as an example (as best I can remember) a fire near where she lived. She saw the fire, tweeted the info. and within minutes her followers sent pictures and shared stories about the building that were burning and the people who lived there. The next day, the local paper accorded the incident a single paragraph. What struck me about her story wasn’t difference in what she valued as news as opposed to a traditional outlet valued but rather how individual her experience was and how dependent it was on her network.  Another person with different followers would have had a different news experience and that may or may not be a good thing as suggested in The Diamond Age.

Finally, a comment I registered (but didn’t immediately place in the context of media,  social cohesion and isolation) was made by someone discussing the reasons for why the activist communities in Vancouver have not been more effective at working together (a situation I was unaware of). If the activist groups have not been as effective as they could have been, I wonder whether or not part of the issue (in addition to the suggestions the participant made)  might be the social media used to organize those networks.

I suspect social media  is both cohesive and isolating to a greater degree than the older broadcast media. In some odd way (I am being poetical here), I don’t believe it’s an accident that we are refining our understanding of matter at ever more infinitesimal scales (e.g. micro, nano, femto, and atto scales) and that we seem to be experiencing increasing fragmentation (e.g. tweets are called micro-blogging).

Enough now, I’m off to do some more thinking.

Tomorrow: NSERC gives SFU (Simon Fraser University) some money.