Tag Archives: solar cells

Infusing solar cells with beauty

There is a bit of a theme emerging (if two news items some six months apart can be considered a theme) with scientists now trying to make solar cells or solar panels (as per my July 3, 2013 posting) objects of beauty. The latest project is from the University of Michigan according to a March 4, 2014 news item on ScienceDaily,

Colorful, see-through solar cells invented at the University of Michigan could one day be used to make stained-glass windows, decorations and even shades that turn the sun’s energy into electricity.

The cells, believed to be the first semi-transparent, colored photovoltaics, have the potential to vastly broaden the use of the energy source, says Jay Guo, a professor of electrical engineering and computer science, mechanical engineering, and macromolecular science and engineering at U-M. Guo is lead author of a paper about the work newly published online in Scientific Reports.

Here’s a video (from the University of Michigan) where Jay Guo describes his work,

For those who are too impatient to watch the video, here’s some of what was discussed along with  additional technical detail from a March 3, 2014 University of Michigan news release, which originated the news item,

“I think this offers a very different way of utilizing solar technology rather than concentrating it in a small area,” he said. “Today, solar panels are black and the only place you can put them on a building is the rooftop. And the rooftop of a typical high-rise is so tiny.

“We think we can make solar panels more beautiful—any color a designer wants. And we can vastly deploy these panels, even indoors.”

Guo envisions them on the sides of buildings, as energy-harvesting billboards and as window shades—a thin layer on homes and cities. Such an approach, he says, could be especially attractive in densely populated cities.

In a palm-sized American flag slide, the team demonstrated the technology.

“All the red stripes, the blue background and so on—they are all working solar cells,” Guo said.

The Stars and Stripes achieved 2 percent efficiency. A meter-square panel could generate enough electricity to power fluorescent light bulbs and small electronic gadgets, Guo says. State-of-the art organic cells in research labs are roughly 10 percent efficient.

The researchers are working to improve their numbers with new materials, but there will always be a tradeoff between beauty and utility in this case. Traditional black solar cells absorb all wavelengths of visible light. Guo’s cells are designed to transmit, or—in other versions—reflect certain colors, so by nature they’re kicking energy from those wavelengths back out to our eyes rather than converting it to electricity.

Unlike other color solar cells, Guo’s don’t rely on dyes or microstructures that can blur the image behind them. The cells are mechanically structured to transmit certain light wavelengths. To get different colors, they varied the thickness of the semiconductor layer of amorphous silicon in the cells. The blue regions are six nanometers thick while the red is 31 (the team also made green, but that color isn’t in the flag).

Amorphous silicon is commonly used in screens on cell phones, laptops and large LCD screens, in addition to solar cells. They sandwiched an ultrathin sheet of it between two semi-transparent electrodes that could let light in and also carry away the electrical current.

One of these so-called charge transport layers is made of an organic material. This hybrid structure, a combination of both organic and inorganic components, lets the researchers make cells that are 10 times thinner than traditional amorphous silicon solar cells. The organic layer replaces a thick ‘doped’ region that would typically controls the flow of electricity.

The ultrathin, hybrid design helps the cells hold their color and leads to a nearly 100 percent quantum efficiency. Quantum efficiency is different from overall efficiency. It refers to the percentage of light particles the device catches that lead to electrical current in that charge transport layer. Solar cells can leak current after this point, but researchers strive for a high number.

The cells’ hues don’t change based on viewing angle, which is important for several reasons. It means manufacturers could lock in color for precise pictures or patterns. It’s also a sign that the devices are soaking up the same amount of light regardless of where the sun is in the sky. Conventional solar panels pivot across the day to track rays.

“Solar energy is essentially inexhaustible, and it’s the only energy source that can sustain us long-term,” Guo said. “We have to figure out how to use as much of it as we can.”

Here’s a link to and a citation for the paper,

Decorative power generating panels creating angle insensitive transmissive colors by Jae Yong Lee, Kyu-Tae Lee, Sungyong Seo, & L. Jay Guo. Scientific Reports 4, Article number: 4192 doi:10.1038/srep04192 Published 28 February 2014

This paper is open access.

Université de Montréal (Canada) collaborates with University of Houston (US) for a new theory and better solar cells

Solar cell efficiency is not good as researchers from  l’Université de Montréal (UdeM, located in Quebec, Canada) and the University of Houston (UH, located Texas, US) note in a Jan. 29, 2014 joint UH/UdeM news release written by Lisa Merkl (UH) on EurekAlert,

“Scientists don’t fully understand what is going on inside the materials that make up solar cells. We were trying to get at the fundamental photochemistry or photophysics that describes how these cells work,” Bittner said [Eric Bittner, a John and Rebecca Moores Professor of Chemistry and Physics in UH’s College of Natural Sciences and Mathematics,].

Solar cells are made out of organic semiconductors – typically blends of materials. However, solar cells made of these materials have about 3 percent efficiency. Bittner added that the newer materials, the fullerene/polymer blends, only reach about 10 percent efficiency.

“There is a theoretical limit for the efficiency of the ideal solar cell – the Shockley-Queisser limit. The theory we published describes how we might be able to get above this theoretical limit by taking advantage of quantum mechanical effects,” Bittner said. “By understanding these effects and making use of them in the design of a solar cell, we believe you can improve efficiency.”

Silva [Carlos Silva, an associate professor at the Université de Montréal and Canada Research Chair in Organic Semiconductor Materials] added, “In polymeric semiconductors, where plastics form the active layer of solar cells, the electronic structure of the material is intimately correlated with the vibrational motion within the polymer chain. Quantum-mechanical effects due to such vibrational-electron coupling give rise to a plethora of interesting physical processes that can be controlled to optimize solar cell efficiencies by designing materials that best exploit them.”

Unfortunately, there’s no more information about this model other than this (from the news release),

“Our theoretical model accomplishes things that you can’t get from a molecular model,” he [Bittner] said. “It is mostly a mathematical model that allows us to look at a much larger system with thousands of molecules. You can’t do ordinary quantum chemistry calculations on a system of that size.”

The calculations have prompted a series of new experiments by Silva’s group to probe the outcomes predicted by their model.

Bittner and Silva’s next steps involve collaborations with researchers who are experts in making the polymers and fabricating solar cells.

Here’s a link to and a citation for the paper,

Noise-induced quantum coherence drives photo-carrier generation dynamics at polymeric semiconductor heterojunctions by Eric R. Bittner & Carlos Silva. Nature Communications 5, Article number: 3119 doi:10.1038/ncomms4119 Published 29 January 2014

This article is behind a paywall although you can get a free preview via ReadCube Access.

Pop and rock music lead to better solar cells

A Nov. 6, 2013 news item on Nanowerk reveals that scientists at the Imperial College of London (UK) and Queen Mary University of London (UK),

Playing pop and rock music improves the performance of solar cells, according to new research from scientists at Queen Mary University of London and Imperial College London.

The high frequencies and pitch found in pop and rock music cause vibrations that enhanced energy generation in solar cells containing a cluster of ‘nanorods’, leading to a 40 per cent increase in efficiency of the solar cells.

The study has implications for improving energy generation from sunlight, particularly for the development of new, lower cost, printed solar cells.

The Nov. 6, 2013 Imperial College of London (ICL) news release, which originated the news item, gives more details about the research,

The researchers grew billions of tiny rods (nanorods) made from zinc oxide, then covered them with an active polymer to form a device that converts sunlight into electricity.

Using the special properties of the zinc oxide material, the team was able to show that sound levels as low as 75 decibels (equivalent to a typical roadside noise or a printer in an office) could significantly improve the solar cell performance.

“After investigating systems for converting vibrations into electricity this is a really exciting development that shows a similar set of physical properties can also enhance the performance of a photovoltaic,” said Dr Steve Dunn, Reader in Nanoscale Materials from Queen Mary’s School of Engineering and Materials Science.

Scientists had previously shown that applying pressure or strain to zinc oxide materials could result in voltage outputs, known as the piezoelectric effect. However, the effect of these piezoelectric voltages on solar cell efficiency had not received significant attention before.

“We thought the soundwaves, which produce random fluctuations, would cancel each other out and so didn’t expect to see any significant overall effect on the power output,” said James Durrant, Professor of Photochemistry at Imperial College London, who co-led the study.

“The key for us was that not only that the random fluctuations from the sound didn’t cancel each other out, but also that some frequencies of sound seemed really to amplify the solar cell output – so that the increase in power was a remarkably big effect considering how little sound energy we put in.”

“We tried playing music instead of dull flat sounds, as this helped us explore the effect of different pitches. The biggest difference we found was when we played pop music rather than classical, which we now realise is because our acoustic solar cells respond best to the higher pitched sounds present in pop music,” he concluded.

The discovery could be used to power devices that are exposed to acoustic vibrations, such as air conditioning units or within cars and other vehicles.

This is not the first time that music has been shown to affect properties at the nanoscale. A March 12, 2008 article by Anna Salleh for the Australian Broadcasting Corporation featured a researcher who tested nanowire growth by playing music (Note: Links have been removed),

Silicon nanowires grow more densely when blasted with Deep Purple than any other music tested, says an Australian researcher.

But the exact potential of music in growing nanowires remains a little hazy.

David Parlevliet, a PhD student at Murdoch University in Perth, presented his findings at a recent Australian Research Council Nanotechnology Network symposium in Melbourne.

Parlevliet is testing nanowires for their ability to absorb sunlight in the hope of developing solar cells from them.

I’ve taken a look at the references cited by researchers in their paper and there is nothing from Parleviet listed, so, this seems to be one of those cases where more than one scientist is thinking along the similar lines, i.e., that sound might affect nanoscale structures in such a way as to improve solar cell efficiency.

Here’s a link to and a citation for the ICL/University of Queen Mary research paper,

Acoustic Enhancement of Polymer/ZnO Nanorod Photovoltaic Device Performance by Safa Shoaee, Joe Briscoe, James R. Durrant, Steve Dunn. Article first published online: 6 NOV 2013 DOI: 10.1002/adma.201303304
© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This paper is behind a paywall.

Another day, another solar cell improvement: replacing platinum with 3D graphene

On the plus side, this may replace platinum but it does seem to be one of a plethora of solar cell improvements that don’t make much difference in the current marketplace as this and other improvements are still at the laboratory stage.  Still, it’s encouraging to remember that scientific and technical progress in an area can be agonizingly slow in the early stages only to gain speed at an exponential rate in later stages of development. Fingers crossed this is the case with solar cells.

From the Aug. 20, 2013 Michigan Technological University news release by Marcia Goodrich (also on EurekAlert),

One of the most promising types of solar cells has a few drawbacks. …

Dye-sensitized solar cells are thin, flexible, easy to make and very good at turning sunshine into electricity. However, a key ingredient is one of the most expensive metals on the planet: platinum. While only small amounts are needed, at $1,500 an ounce, the cost of the silvery metal is still significant.

Yun Hang Hu, the Charles and Caroll McArthur Professor of Materials Science and Engineering [Michigan Technological University], has developed a new, inexpensive material that could replace the platinum in solar cells without degrading their efficiency: 3D graphene.

Regular graphene is a famously two-dimensional form of carbon just a molecule or so thick. Hu and his team invented a novel approach to synthesize a unique 3D version with a honeycomb-like structure. To do so, they combined lithium oxide with carbon monoxide in a chemical reaction that forms lithium carbonate (Li2CO3) and the honeycomb graphene. The Li2CO3 helps shape the graphene sheets and isolates them from each other, preventing the formation of garden-variety graphite.  Furthermore, the Li2CO3 particles can be easily removed from 3D honeycomb-structured graphene by an acid.

The researchers determined that the 3D honeycomb graphene had excellent conductivity and high catalytic activity, raising the possibility that it could be used for energy storage and conversion. So they replaced the platinum counter electrode in a dye-sensitized solar cell with one made of the 3D honeycomb graphene. Then they put the solar cell in the sunshine and measured its output.

The cell with the 3D graphene counter electrode converted 7.8 percent of the sun’s energy into electricity, nearly as much as the conventional solar cell using costly platinum (8 percent).

Synthesizing the 3D honeycomb graphene is neither expensive nor difficult, said Hu, and making it into a counter electrode posed no special challenges.

Here’s a link to and a citation for the research paper,

3D Honeycomb-Like Structured Graphene and Its High Efficiency as a Counter-Electrode Catalyst for Dye-Sensitized Solar Cells by Yun Hang Hu, Hui Wang, Franklin Tao, Dario J. Stacchiola, and Kai Sun. Angewandte Chemie, International Edition, Article first published online: 29 JUL 2013 DOI: 10.1002/anie.201303497

The article is behind a paywall.

Making solar panels beautiful

Researchers at Germany’s Fraunhofer Institute for Applied Optics and Precision Engineering IOF in Jena are working on ways to make solar panels more aesthetically pleasing according to a July 1, 2013 news item on Azonano,

Until now, designers of buildings have no choice but to use black or bluish-gray colored solar panels. With the help of thin-film technologies, researchers have now been able to turn solar cells into colorful creations.

Covering a roof or a façade with standard solar cells to generate electricity will change a building’s original appearance – and not always for the better. At present only dark solar panels are widely available on the market. “Not enough work has been done so far on combining photovoltaics and design elements to really do the term ‘customized photovoltaics’ justice,” says Kevin Füchsel, project manager at the Fraunhofer Institute for Applied Optics and Precision Engineering IOF in Jena.

But things are changing. The IOF physicist has been focusing for the last four years on nanostructured solar cells suitable for mass production as part of a junior research group funded by Germany’s Federal Ministry for Education and Research (BMBF). Together with a Fraunhofer team and scientists from the Friedrich-Schiller University in Jena, the group of optics specialists is looking for cost-effective techniques and manufacturing processes to increase both the efficiency of solar panels and the design flexibility they give architects and designers.

Here’s photomontage illustrating Füchsel’s ideas,

The photomontage shows how the Fraunhofer IAO building in Stuttgart could be fitted with an “efficient design” solar façade. © Fraunhofer IOF

The photomontage shows how the Fraunhofer IAO building in Stuttgart could be fitted with an “efficient design” solar façade.
© Fraunhofer IOF

The July 1, 2013 Fraunhofer Institute news release, which originated the news item, describes Füchsel’s work in more detail,

Füchsel is currently working with his “efficient design” team on the fundamentals of how to make colored solar cells from paper-thin silicon wafers. These will be particularly suited to designs for decorative façades and domestic roofs. The silicon semiconductor material, just a few micrometers thick, absorbs light and turns it into electricity. To enable lots of light to reach the silicon substrate, the semiconductor layer is given an optically neutral protective barrier (insulator), onto which a hundred-nanometer-thick oxide layer is applied. This transparent conductive oxide (TCO) conducts electricity, and is there primarily to guide as many light particles as possible to the semiconductor layer below. “TCO has a lower refractive index than silicon, so it works as an anti-reflective coating,” Füchsel says.

The simple construction of this SIS (semiconductor-insulator-semiconductor) solar cell, with its transparent outer layer, has a further advantage: Not only does it capture more light, it means solar panels can be made in different colors and shapes. “The color comes from changing the physical thickness of the transparent conductive oxide layer, or modifying its refractive index,” Füchsel says. The Jena-based researchers have thus managed to combine wafer-based silicon with processes borrowed from thin-film photovoltaics. They are also pioneering the use of innovative coating materials. Indium tin oxide is the most common material used today, but it is expensive.  The IOF laboratory is working on how to use cheaper zinc oxide with added aluminum. New opportunities in façade design are being opened up not just by SIS solar cells, however, but also by dye solar modules and flexible organic solar cells.

But how does color affect the efficiency of these new SIS modules? “Giving solar cells color doesn’t really affect their efficiency. The additional transparent TCO layer has barely any impact on the current yield,” Füchsel says. Simulations showed that SIS cells could be up to 20 percent efficient. In practice, the efficiency depends on the design of the solar panels and the direction the building faces. But not every color allows you to generate the same amount of electricity. There are restrictions for example with certain blends of red, blue and green.

To connect several solar cells to create a single module the IOF scientist will use laser-based optical welding processes. They enable accurate work at a micrometer scale and do not damage the surrounding material. Researchers are also developing an inkjet printing process to contact the conductive TCO later on the silicon wafer. This will make manufacturing faster and allow additional degrees of flexibility in design. SIS solar cells could even be used to make large billboards that produce their own electricity. Patents already cover the production of colored cells, as well as the ability to integrate design elements into solar panels and whole modules. “This opens up numerous possibilities to use a building to communicate information, displaying the name of a company or even artistic pictures,” Füchsel says.

I look forward to a more beautiful future.

Solar cells made even more leaflike with inclusion of nanocellulose fibers

Researchers at the US Georgia  Institute of Technology (Georgia Tech)  and Purdue University (Indiana) have used cellulose nanocrystals (CNC), which is also known as nanocrystalline cellulose (NCC), to create solar cells that have greater efficiency and can be recycled. From the Mar. 26, 2013 news item on Nanowerk,

Georgia Institute of Technology and Purdue University researchers have developed efficient solar cells using natural substrates derived from plants such as trees. Just as importantly, by fabricating them on cellulose nanocrystal (CNC) substrates, the solar cells can be quickly recycled in water at the end of their lifecycle.

The Georgia Tech Mar. 25, 2013 news release, which originated the news item,

The researchers report that the organic solar cells reach a power conversion efficiency of 2.7 percent, an unprecedented figure for cells on substrates derived from renewable raw materials. The CNC substrates on which the solar cells are fabricated are optically transparent, enabling light to pass through them before being absorbed by a very thin layer of an organic semiconductor. During the recycling process, the solar cells are simply immersed in water at room temperature. Within only minutes, the CNC substrate dissolves and the solar cell can be separated easily into its major components.

Georgia Tech College of Engineering Professor Bernard Kippelen led the study and says his team’s project opens the door for a truly recyclable, sustainable and renewable solar cell technology.

“The development and performance of organic substrates in solar technology continues to improve, providing engineers with a good indication of future applications,” said Kippelen, who is also the director of Georgia Tech’s Center for Organic Photonics and Electronics (COPE). “But organic solar cells must be recyclable. Otherwise we are simply solving one problem, less dependence on fossil fuels, while creating another, a technology that produces energy from renewable sources but is not disposable at the end of its lifecycle.”

To date, organic solar cells have been typically fabricated on glass or plastic. Neither is easily recyclable, and petroleum-based substrates are not very eco-friendly. For instance, if cells fabricated on glass were to break during manufacturing or installation, the useless materials would be difficult to dispose of. Paper substrates are better for the environment, but have shown limited performance because of high surface roughness or porosity. However, cellulose nanomaterials made from wood are green, renewable and sustainable. The substrates have a low surface roughness of only about two nanometers.

“Our next steps will be to work toward improving the power conversion efficiency over 10 percent, levels similar to solar cells fabricated on glass or petroleum-based substrates,” said Kippelen. The group plans to achieve this by optimizing the optical properties of the solar cell’s electrode.

The news release also notes the impact that using cellulose nanomaterials could have economically,

There’s also another positive impact of using natural products to create cellulose nanomaterials. The nation’s forest product industry projects that tens of millions of tons of them could be produced once large-scale production begins, potentially in the next five years.

One might almost  suspect that the forest products industry is experiencing financial difficulty.

The researchers’ paper was published by Scientific Reports, an open access journal from the Nature Publishing Group,

Recyclable organic solar cells on cellulose nanocrystal substrates by Yinhua Zhou, Canek Fuentes-Hernandez, Talha M. Khan, Jen-Chieh Liu, James Hsu, Jae Won Shim, Amir Dindar, Jeffrey P. Youngblood, Robert J. Moon, & Bernard Kippelen. Scientific Reports  3, Article number: 1536  doi:10.1038/srep01536 Published 25 March 2013

In closing, the news release notes that a provisional patent has been filed at the US Patent Office.And one final note, I have previously commented on how confusing the reported power conversion rates are. You’ll find a recent comment in my Mar. 8, 2013 posting about Ted Sargent’s work with colloidal quantum dots and solar cells.

A ‘wandering meatloaf’ with teeth inspires nanomaterials for solar cells and Li-ion batteries

The ‘wandering meatloaf’ is a species of marine snail (or chiton) that has extraordinary teeth according to the Jan. 16, 2013 news item on ScienceDaily,

An assistant professor [David Kisailus] at the University of California, Riverside’s Bourns College of Engineering is using the teeth of a marine snail found off the coast of California to create less costly and more efficient nanoscale materials to improve solar cells and lithium-ion batteries.

The paper is focused on the gumboot chiton, the largest type of chiton, which can be up to a foot-long. They are found along the shores of the Pacific Ocean from central California to Alaska. They have a leathery upper skin, which is usually reddish-brown and occasionally orange, leading some to give it the nickname “wandering meatloaf.”

Over time, chitons have evolved to eat algae growing on and within rocks using a specialized rasping organ called a radula, a conveyer belt-like structure in the mouth that contains 70 to 80 parallel rows of teeth. During the feeding process, the first few rows of the teeth are used to grind rock to get to the algae. They become worn, but new teeth are continuously produced and enter the “wear zone” at the same rate as teeth are shed.

The University of California Riverside Jan. 15, 2013 news release by Sean Nealon, which originated the news item, describes the chiton’s teeth and the specifics of Kisailus’ inspiration (Note: A link has been removed),

Over time, chitons have evolved to eat algae growing on and within rocks using a specialized rasping organ called a radula, a conveyer belt-like structure in the mouth that contains 70 to 80 parallel rows of teeth. During the feeding process, the first few rows of the teeth are used to grind rock to get to the algae. They become worn, but new teeth are continuously produced and enter the “wear zone” at the same rate as teeth are shed.

Kisailus, who uses nature as inspiration to design next generation engineering products and materials, started studying chitons five years ago because he was interested in abrasion and impact-resistant materials. He has previously determined that the chiton teeth contain the hardest biomineral known on Earth, magnetite, which is the key mineral that not only makes the tooth hard, but also magnetic.

Kisailus is using the lessons learned from this biomineralization pathway as inspiration in his lab to guide the growth of minerals used in solar cells and lithium-ion [li-ion] batteries. By controlling the crystal size, shape and orientation of engineering nanomaterials, he believes he can build materials that will allow the solar cells and lithium-ion batteries to operate more efficiently. In other words, the solar cells will be able to capture a greater percentage of sunlight and convert it to electricity more efficiently and the lithium-ion batteries could need significantly less time to recharge.

Using the chiton teeth model has another advantage: engineering nanocrystals can be grown at significantly lower temperatures, which means significantly lower production costs.

While Kisailus is focused on solar cells and lithium-ion batteries, the same techniques could be used to develop everything from materials for car and airplane frames to abrasion resistant clothing. In addition, understanding the formation and properties of the chiton teeth could help to create better design parameters for better oil drills and dental drill bits.

Here’s a representation of the teeth from the University of California Riverside,

A series of images that show the teeth of the gumboot chiton (aka, snail, aka, wandering meatloaf)

A series of images that show the teeth of the gumboot chiton (aka, snail, aka, wandering meatloaf)

You can find other images and media materials in the ScienceDaily news item or the University of California Riverside news release. This citation and link for the research paper is from the ScienceDaily news item,

Qianqian Wang, Michiko Nemoto, Dongsheng Li, James C. Weaver, Brian Weden, John Stegemeier, Krassimir N. Bozhilov, Leslie R. Wood, Garrett W. Milliron, Christopher S. Kim, Elaine DiMasi, David Kisailus. Phase Transformations and Structural Developments in the Radular Teeth ofCryptochiton Stelleri. Advanced Functional Materials, 2013; DOI: 10.1002/adfm.201202894

This article is behind a paywall.

Spinach + Silicon = Green Power

I wouldn’t expect that anyone will be turning their spinach salads into hybrid solar cells anytime soon despite what scientists at Vanderbilt University (Tennessee) have achieved. From the Sept. 4, 2012 news release on EurekAlert,

An interdisciplinary team of researchers at Vanderbilt University have developed a way to combine the photosynthetic protein that converts light into electrochemical energy in spinach with silicon, the material used in solar cells, in a fashion that produces substantially more electrical current than has been reported by previous “biohybrid” solar cells.

Here’s an illustration of the concept provided by Vanderbilt University,

(Julie Turner/Vanderbilt)

According to the Sept. 4, 2012 Vanderbilt University news release , the researchers were trying exploit a feature of a protein found in spinach (and other plants),

More than 40 years ago, scientists discovered that one of the proteins involved in photosynthesis, called Photosystem 1 (PS1), continued to function when it was extracted from plants like spinach. Then they determined PS1 converts sunlight into electrical energy with nearly 100 percent efficiency, compared to conversion efficiencies of less than 40 percent achieved by manmade devices. This prompted various research groups around the world to begin trying to use PS1 to create more efficient solar cells.

When a PS1 protein exposed to light, it absorbs the energy in the photons and uses it to free electrons and transport them to one side of the protein. That creates regions of positive charge, called holes, which move to the opposite side of the protein.

In a leaf, all the PS1 proteins are aligned. But in the protein layer on the device, individual proteins are oriented randomly. Previous modeling work indicated that this was a major problem. When the proteins are deposited on a metallic substrate, those that are oriented in one direction provide electrons that the metal collects while those that are oriented in the opposite direction pull electrons out of the metal in order to fill the holes that they produce. As a result, they produce both positive and negative currents that cancel each other out to leave a very small net current flow.

The problem with using a metallic substrate was addressed by using and ‘doping’ silicon (from the Vanderbilt University news release),

The Vanderbilt researchers report that their PS1/silicon combination produces nearly a milliamp (850 microamps) of current per square centimeter at 0.3 volts. That is nearly two and a half times more current than the best level reported previously from a biohybrid cell. The reason this combo works so well is because the electrical properties of the silicon substrate have been tailored to fit those of the PS1 molecule. This is done by implanting electrically charge atoms in the silicon to alter its electrical properties: a process called “doping.” In this case, the protein worked extremely well with silicon doped with positive charges and worked poorly with negatively doped silicon.

To make the device, the researchers extracted PS1 from spinach into an aqueous solution and poured the mixture on the surface of a p-doped silicon wafer. Then they put the wafer in a vacuum chamber in order to evaporate the water away leaving a film of protein. They found that the optimum thickness was about one micron, about 100 PS1 molecules thick.

Here’s a graph illustrating the improvement (larger version available here),

Graph shows the dramatic increase in electrical current that Vanderbilt researchers have managed to produce from biohybrid solar cells. (Courtesy of Cliffel Lab/Vanderbilt University)

Encouraging news overall but the researchers still have more work to do (from the Vanderbilt University news release),

This combination produces current levels almost 1,000 times higher than we were able to achieve by depositing the protein on various types of metals. It also produces a modest increase in voltage,” said David Cliffel, associate professor of chemistry, who collaborated on the project with Kane Jennings, professor of chemical and biomolecular engineering.

“If we can continue on our current trajectory of increasing voltage and current levels, we could reach the range of mature solar conversion technologies in three years.”

The researchers’ next step is to build a functioning PS1-silicon solar cell using this new design. Jennings has an Environmental Protection Agency award that will allow a group of undergraduate engineering students to build the prototype. The students won the award at the National Sustainable Design Expo in April based on a solar panel that they had created using a two-year old design. With the new design, Jennings estimates that a two-foot panel could put out at least 100 milliamps at one volt – enough to power a number of different types of small electrical devices.

So, our solar cells are going to become more and more plantlike? I can certainly see the appeal if it means minimizing dependency on “rare and expensive materials like platinum or indium” as per the Vanderbilt University news release.

Using your microwave for DIY (do it yourself) solar panels?

The researchers at Oregon State University seem to think that their discovery will scale up to commercial levels for manufacturing solar panels that are cheaper and easier. Still, if all you need is a microwave, then I imagine some enterprising do-it-yourselfer will give this technique a try.

Microwave oven

This microwave oven technology is being used to produce solar cells with less energy, expense and environmental concerns. (Photo courtesy of Oregon State University Copied from: http://www.flickr.com/photos/oregonstateuniversity/7841150094/in/photostream)

From the Aug. 24, 2012 news item on Nanowerk,

The same type of microwave oven technology that most people use to heat up leftover food has found an important application in the solar energy industry, providing a new way to make thin-film photovoltaic products with less energy, expense and environmental concerns.

Engineers at Oregon State University have for the first time developed a way to use microwave heating in the synthesis of copper zinc tin sulfide, a promising solar cell compound that is less costly and toxic than some solar energy alternatives.

The Oregon State University Aug. 24, 2012 news release which originated the news item provides additional detail about the technology and future plans for commercializing it,

“All of the elements used in this new compound are benign and inexpensive, and should have good solar cell performance,” said Greg Herman, an associate professor in the School of Chemical, Biological and Environmental Engineering at OSU.

“Several companies are already moving in this direction as prices continue to rise for some alternative compounds that contain more expensive elements like indium,” he said. “With some improvements in its solar efficiency this new compound should become very commercially attractive.”

These thin-film photovoltaic technologies offer a low cost, high volume approach to manufacturing solar cells. A new approach is to create them as an ink composed of nanoparticles, which could be rolled or sprayed – by approaches such as old-fashioned inkjet printing – to create solar cells. [emphasis mine]

To further streamline that process, researchers have now succeeded in using microwave heating, instead of conventional heating, to reduce reaction times to minutes or seconds, and allow for great control over the production process. This “one-pot” synthesis is fast, cheap and uses less energy, researchers say, and has been utilized to successfully create nanoparticle inks that were used to fabricate a photovoltaic device.

From a do-it-yourself point of view, this technology sounds even more promising with the mention of an inkjet printer.

Nanomaterials and energy storage talk at Vancouver’s (Canada) Café Scientifique on July 31, 2012

The Tuesday, July 31, 2012 talk for the local (Vancouver, Canada) Café Scientifique will be given by Dr. Michael O. Wolf, a chemist at the University of British Columbia. The talk is schedule for  7:30 pm at the Railway Club, 579 Dunsmuir St., 2nd floor andWolf’s topic is,

How nanomaterials can be used to change the way we collect and store energy in the future.
Growing global energy demands and the potential for environmental catastrophe require a dramatic shift in how we obtain and utilize energy. The vast majority of energy currently used by humans is produced by combustion of fossil fuels.  Fossil fuel consumption is driving significant increases in atmospheric carbon dioxide, threatening the planet with mass extinctions, starvation, and rising sea levels. With global energy demands projected to increase by 50% in the next 25 years, the rapid development of renewable “clean” energy sources, as well as methods to store this energy and harness it, are needed.  This talk will explore how a special class of substances called nanomaterials offer the potential of breakthroughs in solar energy harvesing and energy storage.

Wolf’s research page is here and the Wolf Research Group page is here.