Tag Archives: solar cells

Beautiful solar cells based on insect eyes

What a gorgeous image!

The compound eye of a fly inspired Stanford researchers to create a compound solar cell consisting of perovskite microcells encapsulated in a hexagon-shaped scaffold. (Image credit: Thomas Shahan/Creative Commons)

An August 31, 2017 news item on Nanowerk describes research into solar cells being performed at Stanford University (Note: A link has been removed),

Packing tiny solar cells together, like micro-lenses in the compound eye of an insect, could pave the way to a new generation of advanced photovoltaics, say Stanford University scientists.

In a new study, the Stanford team used the insect-inspired design to protect a fragile photovoltaic material called perovskite from deteriorating when exposed to heat, moisture or mechanical stress. The results are published in the journal Energy & Environmental Science (“Scaffold-reinforced perovskite compound solar cells”).

An August 31, 2017 Stanford University news release (also on EurekAlert) by Mark Schwartz, which originated the news item,

“Perovskites are promising, low-cost materials that convert sunlight to electricity as efficiently as conventional solar cells made of silicon,” said Reinhold Dauskardt, a professor of materials science and engineering and senior author of the study. “The problem is that perovskites are extremely unstable and mechanically fragile. They would barely survive the manufacturing process, let alone be durable long term in the environment.”

Most solar devices, like rooftop panels, use a flat, or planar, design. But that approach doesn’t work well with perovskite solar cells.

“Perovskites are the most fragile materials ever tested in the history of our lab,” said graduate student Nicholas Rolston, a co-lead author of the E&ES study. “This fragility is related to the brittle, salt-like crystal structure of perovskite, which has mechanical properties similar to table salt.”

Eye of the fly

To address the durability challenge, the Stanford team turned to nature.

“We were inspired by the compound eye of the fly, which consists of hundreds of tiny segmented eyes,” Dauskardt explained. “It has a beautiful honeycomb shape with built-in redundancy: If you lose one segment, hundreds of others will operate. Each segment is very fragile, but it’s shielded by a scaffold wall around it.”

Scaffolds in a compound solar cell filled with perovskite after fracture testing.

Scaffolds in a compound solar cell filled with perovskite after fracture testing. (Image credit: Dauskardt Lab/Stanford University)

Using the compound eye as a model, the researchers created a compound solar cell consisting of a vast honeycomb of perovskite microcells, each encapsulated in a hexagon-shaped scaffold just 0.02 inches (500 microns) wide.

“The scaffold is made of an inexpensive epoxy resin widely used in the microelectronics industry,” Rolston said. “It’s resilient to mechanical stresses and thus far more resistant to fracture.”

Tests conducted during the study revealed that the scaffolding had little effect on how efficiently perovskite converted light into electricity.

“We got nearly the same power-conversion efficiencies out of each little perovskite cell that we would get from a planar solar cell,” Dauskardt said. “So we achieved a huge increase in fracture resistance with no penalty for efficiency.”


But could the new device withstand the kind of heat and humidity that conventional rooftop solar panels endure?

To find out, the researchers exposed encapsulated perovskite cells to temperatures of 185 F (85 C) and 85 percent relative humidity for six weeks. Despite these extreme conditions, the cells continued to generate electricity at relatively high rates of efficiency.

Dauskardt and his colleagues have filed a provisional patent for the new technology. To improve efficiency, they are studying new ways to scatter light from the scaffold into the perovskite core of each cell.

“We are very excited about these results,” he said. “It’s a new way of thinking about designing solar cells. These scaffold cells also look really cool, so there are some interesting aesthetic possibilities for real-world applications.”

Researchers have also made this image available,

Caption: A compound solar cell illuminated from a light source below. Hexagonal scaffolds are visible in the regions coated by a silver electrode. The new solar cell design could help scientists overcome a major roadblock to the development of perovskite photovoltaics. Credit: Dauskardt Lab/Stanford University

Not quite as weirdly beautiful as the insect eyes.

Here’s a link to and a citation for the paper,

Scaffold-reinforced perovskite compound solar cells by Brian L. Watson, Nicholas Rolston, Adam D. Printz, and Reinhold H. Dauskardt. Energy & Environmental Science 2017 DOI: 10.1039/C7EE02185B first published on 23 Aug 2017

This paper is behind a paywall.

A different type of ‘smart’ window with a new solar cell technology

I always like a ‘smart’ window story. Given my issues with summer (I don’t like the heat), anything which promises to help reduce the heat in my home at that time of year, has my vote. Unfortunately, solutions don’t seem to have made a serious impact on the marketplace. Nonetheless, there’s always hope and perhaps this development at Princeton University will be the one to break through the impasse. From a June 30, 2017 news item on ScienceDaily,

Smart windows equipped with controllable glazing can augment lighting, cooling and heating systems by varying their tint, saving up to 40 percent in an average building’s energy costs.

These smart windows require power for operation, so they are relatively complicated to install in existing buildings. But by applying a new solar cell technology, researchers at Princeton University have developed a different type of smart window: a self-powered version that promises to be inexpensive and easy to apply to existing windows. This system features solar cells that selectively absorb near-ultraviolet (near-UV) light, so the new windows are completely self-powered.

A June 30, 2017 Princeton University news release, which originated the news item, expands on the theme,

“Sunlight is a mixture of electromagnetic radiation made up of near-UV rays, visible light, and infrared energy, or heat,” said Yueh-Lin (Lynn) Loo, director of the Andlinger Center for Energy and the Environment, and the Theodora D. ’78 and William H. Walton III ’74 Professor in Engineering. “We wanted the smart window to dynamically control the amount of natural light and heat that can come inside, saving on energy cost and making the space more comfortable.”

The smart window controls the transmission of visible light and infrared heat into the building, while the new type of solar cell uses near-UV light to power the system.

“This new technology is actually smart management of the entire spectrum of sunlight,” said Loo, who is a professor of chemical and biological engineering. Loo is one of the authors of a paper, published June 30, that describes this technology, which was developed in her lab.

Because near-UV light is invisible to the human eye, the researchers set out to harness it for the electrical energy needed to activate the tinting technology.

“Using near-UV light to power these windows means that the solar cells can be transparent and occupy the same footprint of the window without competing for the same spectral range or imposing aesthetic and design constraints,” Loo added. “Typical solar cells made of silicon are black because they absorb all visible light and some infrared heat – so those would be unsuitable for this application.”

In the paper published in Nature Energy, the researchers described how they used organic semiconductors – contorted hexabenzocoronene (cHBC) derivatives – for constructing the solar cells. The researchers chose the material because its chemical structure could be modified to absorb a narrow range of wavelengths – in this case, near-UV light. To construct the solar cell, the semiconductor molecules are deposited as thin films on glass with the same production methods used by organic light-emitting diode manufacturers. When the solar cell is operational, sunlight excites the cHBC semiconductors to produce electricity.

At the same time, the researchers constructed a smart window consisting of electrochromic polymers, which control the tint, and can be operated solely using power produced by the solar cell. When near-UV light from the sun generates an electrical charge in the solar cell, the charge triggers a reaction in the electrochromic window, causing it to change from clear to dark blue. When darkened, the window can block more than 80 percent of light.

Nicholas Davy, a doctoral student in the chemical and biological engineering department and the paper’s lead author, said other researchers have already developed transparent solar cells, but those target infrared energy. However, infrared energy carries heat, so using it to generate electricity can conflict with a smart window’s function of controlling the flow of heat in or out of a building. Transparent near-UV solar cells, on the other hand, don’t generate as much power as the infrared version, but don’t impede the transmission of infrared radiation, so they complement the smart window’s task.

Davy said that the Princeton team’s aim is to create a flexible version of the solar-powered smart window system that can be applied to existing windows via lamination.

“Someone in their house or apartment could take these wireless smart window laminates – which could have a sticky backing that is peeled off – and install them on the interior of their windows,” said Davy. “Then you could control the sunlight passing into your home using an app on your phone, thereby instantly improving energy efficiency, comfort, and privacy.”

Joseph Berry, senior research scientist at the National Renewable Energy Laboratory, who studies solar cells but was not involved in the research, said the research project is interesting because the device scales well and targets a specific part of the solar spectrum.

“Integrating the solar cells into the smart windows makes them more attractive for retrofits and you don’t have to deal with wiring power,” said Berry. “And the voltage performance is quite good. The voltage they have been able to produce can drive electronic devices directly, which is technologically quite interesting.”

Davy and Loo have started a new company, called Andluca Technologies, based on the technology described in the paper, and are already exploring other applications for the transparent solar cells. They explained that the near-UV solar cell technology can also power internet-of-things sensors and other low-power consumer products.

“It does not generate enough power for a car, but it can provide auxiliary power for smaller devices, for example, a fan to cool the car while it’s parked in the hot sun,” Loo said.

Here’s a link to and a citation for the paper,

Pairing of near-ultraviolet solar cells with electrochromic windows for smart management of the solar spectrum by Nicholas C. Davy, Melda Sezen-Edmonds, Jia Gao, Xin Lin, Amy Liu, Nan Yao, Antoine Kahn, & Yueh-Lin Loo. Nature Energy 2, Article number: 17104 (2017 doi:10.1038/nenergy.2017.104 Published online: 30 June 2017

This paper is behind a paywall.

Here’s what a sample of the special glass looks like,

Graduate student Nicholas Davy holds a sample of the special window glass. (Photos by David Kelly Crow)

Stellar’s jay gives structural colo(u)r a new look

The structural colo(u)r stories I’ve posted previously identify nanostructures as the reason for why certain animals and plants display a particular set of optical properties, colours that can’t be obtained by pigment or dye. However, the Stellar’s jay structural colour story is a little different.

Caption: Bio-inspired bright structurally colored colloidal amorphous array enhanced by controlling thickness and black background. ©Yukikazu Takeoka

From a May 8, 2017 news item on ScienceDaily,

A Nagoya University-led [Japan] research team mimics the rich color of bird plumage and demonstrates new ways to control how light interacts with materials.

Bright colors in the natural world often result from tiny structures in feathers or wings that change the way light behaves when it’s reflected. So-called “structural color” is responsible for the vivid hues of birds and butterflies. Artificially harnessing this effect could allow us to engineer new materials for applications such as solar cells and chameleon-like adaptive camouflage.

Inspired by the deep blue coloration of a native North American bird, Stellar’s jay, a team at Nagoya University reproduced the color in their lab, giving rise to a new type of artificial pigment. This development was reported in Advanced Materials.

“The Stellar’s jay’s feathers provide an excellent example of angle-independent structural color,” says last author Yukikazu Takeoka, “This color is enhanced by dark materials, which in this case can be attributed to black melanin particles in the feathers.

A May 8, 2017 Nagoya University press release (also on EurekAlert), which originated the news item, expands on the theme of what makes the structural colour of a Stellar’s jay feather different,

In most cases, structural colors appear to change when viewed from different perspectives. For example, imagine the way that the colors on the underside of a CD appear to shift when the disc is viewed from a different angle. The difference in Stellar’s jay’s blue is that the structures, which interfere with light, sit on top of black particles that can absorb a part of this light. This means that at all angles, however you look at it, the color of the Stellar’s Jay does not change.

The team used a “layer-by-layer” approach to build up films of fine particles that recreated the microscopic sponge-like texture and black backing particles of the bird’s feathers.

To mimic the feathers, the researchers covered microscopic black core particles with layers of even smaller transparent particles, to make raspberry-like particles. The size of the core and the thickness of the layers controlled the color and saturation of the resulting pigments. Importantly, the color of these particles did not change with viewing angle.

“Our work represents a much more efficient way to design artificially produced angle-independent structural colors,” Takeoka adds. “We still have much to learn from biological systems, but if we can understand and successfully apply these phenomena, a whole range of new metamaterials will be accessible for all kinds of advanced applications where interactions with light are important.”

Here’s a link to and a citation for the paper,

Bio-Inspired Bright Structurally Colored Colloidal Amorphous Array Enhanced by Controlling Thickness and Black Background by Masanori Iwata, Midori Teshima, Takahiro Seki, Shinya Yoshioka, and Yukikazu Takeoka. Advanced Materials DOI: 10.1002/adma.201605050 Version of Record online: 26 APR 2017

© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This paper is behind a paywall.

Ordinarily, I’d expect to see the term ‘nano’ somewhere in the press release or in the abstract but that’s not the case here. The best I could find was a reference to ‘submicrometer-sized .. particles” in the abstract. I suppose that could refer to the nanoscale but given that a Japanese researcher (Norio Taniguchi in 1974) coined the phrase ‘nanotechnology’ to describe research at that scale it seems unlikely that Japanese researchers some forty years later wouldn’t use that term when appropriate.

Café Scientifique (Vancouver, Canada) April 25, 2017 talk: No Small Feat: Seeing Atoms and Molecules

I thought I’d been knocked off the list but finally I have a notice for an upcoming Café Scientifique talk that arrived and before the event, at that.  From an April 12, 2017 notice (received via email),

Our next café will happen on TUESDAY APRIL 25TH, 7:30PM in the back
room at YAGGER’S DOWNTOWN (433 W Pender). Our speaker for the
evening will be DR. SARAH BURKE, an Assistant Professor in the
Department of Physics and Astronomy/ Department of Chemistry at UBC [University of British Columbia]. The title of her talk is:


From solar cells to superconductivity, the properties of materials and
the devices we make from them arise from the atomic scale structure of
the atoms that make up the material, their electrons, and how they all
interact.  Seeing this takes a microscope, but not like the one you may
have had as a kid or used in a university lab, which are limited to
seeing objects on the scale of the wavelength of visible light: still
thousands of times bigger than the size of an atom.  Scanning probe
microscopes operate more like a nanoscale record player, scanning a very
sharp tip over a surface and measuring interactions between the tip and
surface to create atomically resolved images.  These techniques show us
where atoms and electrons live at surfaces, on nanostructures, and in
molecules.  I will describe how these techniques give us a powerful
glimpse into a tiny world.

I have a little more about Sarah Burke from her webpage in the UBC Physics and Astronomy webspace,

Building an understanding of important electronic and optoelectronic processes in nanoscale materials from the atomic scale up will pave the way for next generation materials and technologies.

My research interests broadly encompass the study of electronic processes where nanoscale structure influences or reveals the underlying physics. Using scanning probe microscopy (SPM) techniques, my group investigates materials for organic electronics and optoelectronics, graphene and other carbon-based nanomaterials, and other materials where a nanoscale view offers the potential for new understanding. We also work to expand the SPM toolbox; developing new methods in order to probe different aspects of materials, and working to understand leading edge techniques.

For the really curious, you can find more information about her research group, UBC Laboratory for Atomic Imaging Research (LAIR) here.

‘Brewing up’ conductive inks for printable electronics

Scientists from Duke University aren’t exactly ‘brewing’ or ‘cooking up’ the inks but they do come close according to a Jan. 3, 2017 news item on ScienceDaily,

By suspending tiny metal nanoparticles in liquids, Duke University scientists are brewing up conductive ink-jet printer “inks” to print inexpensive, customizable circuit patterns on just about any surface.

A Jan. 3, 2017 Duke University news release (also on EurekAlert), which originated the news item, explains why this technique could lead to more accessible printed electronics,

Printed electronics, which are already being used on a wide scale in devices such as the anti-theft radio frequency identification (RFID) tags you might find on the back of new DVDs, currently have one major drawback: for the circuits to work, they first have to be heated to melt all the nanoparticles together into a single conductive wire, making it impossible to print circuits on inexpensive plastics or paper.

A new study by Duke researchers shows that tweaking the shape of the nanoparticles in the ink might just eliminate the need for heat.

By comparing the conductivity of films made from different shapes of silver nanostructures, the researchers found that electrons zip through films made of silver nanowires much easier than films made from other shapes, like nanospheres or microflakes. In fact, electrons flowed so easily through the nanowire films that they could function in printed circuits without the need to melt them all together.

“The nanowires had a 4,000 times higher conductivity than the more commonly used silver nanoparticles that you would find in printed antennas for RFID tags,” said Benjamin Wiley, assistant professor of chemistry at Duke. “So if you use nanowires, then you don’t have to heat the printed circuits up to such high temperature and you can use cheaper plastics or paper.”

“There is really nothing else I can think of besides these silver nanowires that you can just print and it’s simply conductive, without any post-processing,” Wiley added.

These types of printed electronics could have applications far beyond smart packaging; researchers envision using the technology to make solar cells, printed displays, LEDS, touchscreens, amplifiers, batteries and even some implantable bio-electronic devices. The results appeared online Dec. 16 [2016] in ACS Applied Materials and Interfaces.

Silver has become a go-to material for making printed electronics, Wiley said, and a number of studies have recently appeared measuring the conductivity of films with different shapes of silver nanostructures. However, experimental variations make direct comparisons between the shapes difficult, and few reports have linked the conductivity of the films to the total mass of silver used, an important factor when working with a costly material.

“We wanted to eliminate any extra materials from the inks and simply hone in on the amount of silver in the films and the contacts between the nanostructures as the only source of variability,” said Ian Stewart, a recent graduate student in Wiley’s lab and first author on the ACS paper.

Stewart used known recipes to cook up silver nanostructures with different shapes, including nanoparticles, microflakes, and short and long nanowires, and mixed these nanostructures with distilled water to make simple “inks.” He then invented a quick and easy way to make thin films using equipment available in just about any lab — glass slides and double-sided tape.

“We used a hole punch to cut out wells from double-sided tape and stuck these to glass slides,” Stewart said. By adding a precise volume of ink into each tape “well” and then heating the wells — either to relatively low temperature to simply evaporate the water or to higher temperatures to begin melting the structures together — he created a variety of films to test.

The team say they weren’t surprised that the long nanowire films had the highest conductivity. Electrons usually flow easily through individual nanostructures but get stuck when they have to jump from one structure to the next, Wiley explained, and long nanowires greatly reduce the number of times the electrons have to make this “jump”.

But they were surprised at just how drastic the change was. “The resistivity of the long silver nanowire films is several orders of magnitude lower than silver nanoparticles and only 10 times greater than pure silver,” Stewart said.

The team is now experimenting with using aerosol jets to print silver nanowire inks in usable circuits. Wiley says they also want to explore whether silver-coated copper nanowires, which are significantly cheaper to produce than pure silver nanowires, will give the same effect.

Here’s a link to and a citation for the paper,

Effect of Morphology on the Electrical Resistivity of Silver Nanostructure Films by Ian E. Stewart, Myung Jun Kim, and Benjamin J. Wiley. ACS Appl. Mater. Interfaces, Article ASAP
DOI: 10.1021/acsami.6b12289 Publication Date (Web): December 16, 2016

Copyright © 2016 American Chemical Society

This paper is behind a paywall but there is an image of the silver nanowires, which is not exactly compensation but is interesting,

Caption: Duke University chemists have found that silver nanowire films like these conduct electricity well enough to form functioning circuits without applying high temperatures, enabling printable electronics on heat-sensitive materials like paper or plastic.
Credit: Ian Stewart and Benjamin Wiley

Trying to push past the 30% energy conversion ceiling for solar cells

A Nov. 21, 2016 news item on Nanowerk describes some work in Japan which suggests that more energy conversion for solar cells is possible,

Solar energy could provide a renewable, sustainable source of power for our daily needs. However, even the most state-of-the-art solar cells struggle to achieve energy conversion efficiency of higher than 30%. While current solar-powered water heaters fare better in terms of energy efficiency, there are still improvements to be made if the systems are to be used more widely.

One potential candidate for inclusion in solar water heaters is “nanofluid,” that is, a liquid containing specially-designed nanoparticles that are capable of absorbing sunlight and transforming it into thermal energy in order to heat water directly.

A Nov. 20, 2016 (Japan) International Center for Materials Nanoarchitectonics (WPI-MANA) press release (received via email), explains further,

Nanoparticle Boost for Solar-powered Water Heating

Now, Satoshi Ishii and his co-workers at the International Center for Materials Nanoarchitectonics (WPI-MANA) and the Japan Science and Technology Agency have developed a new nanofluid containing titanium nitride (TiN) nanoparticles, which demonstrates high efficiency in heating water and generating water vapor.

The team analytically studied the optical absorption efficiency of a TiN nanoparticle and found that it has a broad and strong absorption peak thanks to lossy plasmonic resonances. Surprisingly, the sunlight absorption efficiency of a TiN nanoparticle outperforms that of a carbon nanoparticle and a gold nanoparticle.

They then exposed each nanofluid to sunlight and measured its ability to heat pure water. The TiN nanofluid had the highest water heating properties, stemming from the resonant sunlight absorption. It also generated more vapor than its carbon‒based counterpart. The efficiency of the TiN nanofluid reached nearly 90 %. Crucially, the TiN particles were not consumed during the process, meaning a TiN‒based heating system could essentially be self‒sustaining over time.

TiN nanofluids show great promise in solar heat applications, with high potential for use in everyday appliances such as showers. The new design could even contribute to methods for decontaminating water through vaporization.

90% is a very exiting conversion rate. Of course, now they need to make sure they can achieve those results consistently, get those results outside the laboratory, and scale up to industrial standards.

Here’s a link to and a citation for the paper,

Titanium Nitride Nanoparticles as Plasmonic Solar Heat Transducers by Satoshi Ishii, Ramu Pasupathi Sugavaneshwar, and Tadaaki Nagao. J. Phys. Chem. C, 2016, 120 (4), pp 2343–2348 DOI: 10.1021/acs.jpcc.5b09604 Publication Date (Web): December 21, 2015

Copyright © 2015 American Chemical Society

This paper is behind a paywall and it’s almost a year old. I wonder what occasioned the push for publicity.

Ocean-inspired coatings for organic electronics

An Oct. 19, 2016 news item on phys.org describes the advantages a new coating offers and the specific source of inspiration,

In a development beneficial for both industry and environment, UC Santa Barbara [University of California at Santa Barbara] researchers have created a high-quality coating for organic electronics that promises to decrease processing time as well as energy requirements.

“It’s faster, and it’s nontoxic,” said Kollbe Ahn, a research faculty member at UCSB’s Marine Science Institute and corresponding author of a paper published in Nano Letters.

In the manufacture of polymer (also known as “organic”) electronics—the technology behind flexible displays and solar cells—the material used to direct and move current is of supreme importance. Since defects reduce efficiency and functionality, special attention must be paid to quality, even down to the molecular level.

Often that can mean long processing times, or relatively inefficient processes. It can also mean the use of toxic substances. Alternatively, manufacturers can choose to speed up the process, which could cost energy or quality.

Fortunately, as it turns out, efficiency, performance and sustainability don’t always have to be traded against each other in the manufacture of these electronics. Looking no further than the campus beach, the UCSB researchers have found inspiration in the mollusks that live there. Mussels, which have perfected the art of clinging to virtually any surface in the intertidal zone, serve as the model for a molecularly smooth, self-assembled monolayer for high-mobility polymer field-effect transistors—in essence, a surface coating that can be used in the manufacture and processing of the conductive polymer that maintains its efficiency.

An Oct. 18, 2016 UCSB news release by Sonia Fernandez, which originated the news item, provides greater technical detail,

More specifically, according to Ahn, it was the mussel’s adhesion mechanism that stirred the researchers’ interest. “We’re inspired by the proteins at the interface between the plaque and substrate,” he said.

Before mussels attach themselves to the surfaces of rocks, pilings or other structures found in the inhospitable intertidal zone, they secrete proteins through the ventral grove of their feet, in an incremental fashion. In a step that enhances bonding performance, a thin priming layer of protein molecules is first generated as a bridge between the substrate and other adhesive proteins in the plaques that tip the byssus threads of their feet to overcome the barrier of water and other impurities.

That type of zwitterionic molecule — with both positive and negative charges — inspired by the mussel’s native proteins (polyampholytes), can self-assemble and form a sub-nano thin layer in water at ambient temperature in a few seconds. The defect-free monolayer provides a platform for conductive polymers in the appropriate direction on various dielectric surfaces.

Current methods to treat silicon surfaces (the most common dielectric surface), for the production of organic field-effect transistors, requires a batch processing method that is relatively impractical, said Ahn. Although heat can hasten this step, it involves the use of energy and increases the risk of defects.

With this bio-inspired coating mechanism, a continuous roll-to-roll dip coating method of producing organic electronic devices is possible, according to the researchers. It also avoids the use of toxic chemicals and their disposal, by replacing them with water.

“The environmental significance of this work is that these new bio-inspired primers allow for nanofabrication on silicone dioxide surfaces in the absence of organic solvents, high reaction temperatures and toxic reagents,” said co-author Roscoe Lindstadt, a graduate student researcher in UCSB chemistry professor Bruce Lipshutz’s lab. “In order for practitioners to switch to newer, more environmentally benign protocols, they need to be competitive with existing ones, and thankfully device performance is improved by using this ‘greener’ method.”

Here’s a link to and a citation for the research paper,

Molecularly Smooth Self-Assembled Monolayer for High-Mobility Organic Field-Effect Transistors by Saurabh Das, Byoung Hoon Lee, Roscoe T. H. Linstadt, Keila Cunha, Youli Li, Yair Kaufman, Zachary A. Levine, Bruce H. Lipshutz, Roberto D. Lins, Joan-Emma Shea, Alan J. Heeger, and B. Kollbe Ahn. Nano Lett., 2016, 16 (10), pp 6709–6715
DOI: 10.1021/acs.nanolett.6b03860 Publication Date (Web): September 27, 2016

Copyright © 2016 American Chemical Society

This paper is behind a paywall but the scientists have made an illustration available,

An artist's concept of a zwitterionic molecule of the type secreted by mussels to prime surfaces for adhesion Photo Credit: Peter Allen

An artist’s concept of a zwitterionic molecule of the type secreted by mussels to prime surfaces for adhesion Photo Credit: Peter Allen

Could your photo be a solar cell?

Scientists at Aalto University (Finland) have found a way to print photographs that produce energy (like a solar cell does) according to a July 25, 2016 news item on Nanowerk,

Solar cells have been manufactured already for a long from inexpensive materials with different printing techniques. Especially organic solar cells and dye-sensitized solar cells are suitable for printing.

“We wanted to take the idea of printed solar cells even further, and see if their materials could be inkjet-printed as pictures and text like traditional printing inks,” tells University Lecturer Janne Halme.

A semi-transparent dye-sensitized solar cell with inkjet-printed photovoltaic portraits of the Aalto researchers (Ghufran Hashmi, Merve Özkan, Janne Halme) and a QR code that links to the original research paper. Courtesy: Aalto University

A semi-transparent dye-sensitized solar cell with inkjet-printed photovoltaic portraits of the Aalto researchers (Ghufran Hashmi, Merve Özkan, Janne Halme) and a QR code that links to the original research paper. Courtesy: Aalto University

A July 26, 2016 Aalto University press release, which originated the news item, describes the innovation in more detail,

When light is absorbed in an ordinary ink, it generates heat. A photovoltaic ink, however, coverts part of that energy to electricity. The darker the color, the more electricity is produced, because the human eye is most sensitive to that part of the solar radiation spectrum which has highest energy density. The most efficient solar cell is therefore pitch-black.

The idea of a colorful, patterned solar cell is to combine also other properties that take advantage of light on the same surface, such as visual information and graphics.

– For example, installed on a sufficiently low-power electrical device, this kind of solar cell could be part of its visual design, and at the same time produce energy for its needs, ponders Halme.

With inkjet printing, the photovoltaic dye could be printed to a shape determined by a selected image file, and the darkness and transparency of the different parts of the image could be adjusted accurately.

– The inkjet-dyed solar cells were as efficient and durable as the corresponding solar cells prepared in a traditional way. They endured more than one thousand hours of continuous light and heat stress without any signs of performance degradation, says Postdoctoral Researcher Ghufran Hashmi.

The dye and electrolyte that turned out to be best were obtained from the research group in the Swiss École Polytechnique Fédérale de Lausanne, where Dr. Hashmi worked as a visiting researcher.

– The most challenging thing was to find suitable solvent for the dye and the right jetting parameters that gave precise and uniform print quality, tells Doctoral Candidate Merve Özkan.

This puts solar cells (pun alert) in a whole new light.

Here’s a link to and a citation for the paper,

Dye-sensitized solar cells with inkjet-printed dyes by Syed Ghufran Hashmi, Merve Özkan, Janne Halme, Shaik Mohammed Zakeeruddin, Jouni Paltakari, Michael Grätzel, and Peter D. Lund. Energy Environ. Sci., 2016,9, 2453-2462 DOI: 10.1039/C6EE00826G First published online 09 Jun 2016

This paper is behind a paywall.

Pushing efficiency of perovskite-based solar cells to 31%

This atomic force microscopy image of the grainy surface of a perovskite solar cell reveals a new path to much greater efficiency. Individual grains are outlined in black, low-performing facets are red, and high-performing facets are green. A big jump in efficiency could possibly be obtained if the material can be grown so that more high-performing facets develop. (Credit: Berkeley Lab)

This atomic force microscopy image of the grainy surface of a perovskite solar cell reveals a new path to much greater efficiency. Individual grains are outlined in black, low-performing facets are red, and high-performing facets are green. A big jump in efficiency could possibly be obtained if the material can be grown so that more high-performing facets develop. (Credit: Berkeley Lab)

It’s always fascinating to observe a trend (or a craze) in science, an endeavour that outsiders (like me) tend to think of as impervious to such vagaries. Perovskite seems to be making its way past the trend/craze phase and moving into a more meaningful phase. From a July 4, 2016 news item on Nanowerk,

Scientists from the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) have discovered a possible secret to dramatically boosting the efficiency of perovskite solar cells hidden in the nanoscale peaks and valleys of the crystalline material.

Solar cells made from compounds that have the crystal structure of the mineral perovskite have captured scientists’ imaginations. They’re inexpensive and easy to fabricate, like organic solar cells. Even more intriguing, the efficiency at which perovskite solar cells convert photons to electricity has increased more rapidly than any other material to date, starting at three percent in 2009 — when researchers first began exploring the material’s photovoltaic capabilities — to 22 percent today. This is in the ballpark of the efficiency of silicon solar cells.

Now, as reported online July 4, 2016 in the journal Nature Energy (“Facet-dependent photovoltaic efficiency variations in single grains of hybrid halide perovskite”), a team of scientists from the Molecular Foundry and the Joint Center for Artificial Photosynthesis, both at Berkeley Lab, found a surprising characteristic of a perovskite solar cell that could be exploited for even higher efficiencies, possibly up to 31 percent.

A July 4, 2016 Berkeley Lab news release (also on EurekAlert), which originated the news item, details the research,

Using photoconductive atomic force microscopy, the scientists mapped two properties on the active layer of the solar cell that relate to its photovoltaic efficiency. The maps revealed a bumpy surface composed of grains about 200 nanometers in length, and each grain has multi-angled facets like the faces of a gemstone.

Unexpectedly, the scientists discovered a huge difference in energy conversion efficiency between facets on individual grains. They found poorly performing facets adjacent to highly efficient facets, with some facets approaching the material’s theoretical energy conversion limit of 31 percent.

The scientists say these top-performing facets could hold the secret to highly efficient solar cells, although more research is needed.

“If the material can be synthesized so that only very efficient facets develop, then we could see a big jump in the efficiency of perovskite solar cells, possibly approaching 31 percent,” says Sibel Leblebici, a postdoctoral researcher at the Molecular Foundry.

Leblebici works in the lab of Alexander Weber-Bargioni, who is a corresponding author of the paper that describes this research. Ian Sharp, also a corresponding author, is a Berkeley Lab scientist at the Joint Center for Artificial Photosynthesis. Other Berkeley Lab scientists who contributed include Linn Leppert, Francesca Toma, and Jeff Neaton, the director of the Molecular Foundry.

A team effort

The research started when Leblebici was searching for a new project. “I thought perovskites are the most exciting thing in solar right now, and I really wanted to see how they work at the nanoscale, which has not been widely studied,” she says.

She didn’t have to go far to find the material. For the past two years, scientists at the nearby Joint Center for Artificial Photosynthesis have been making thin films of perovskite-based compounds, and studying their ability to convert sunlight and CO2 into useful chemicals such as fuel. Switching gears, they created pervoskite solar cells composed of methylammonium lead iodide. They also analyzed the cells’ performance at the macroscale.

The scientists also made a second set of half cells that didn’t have an electrode layer. They packed eight of these cells on a thin film measuring one square centimeter. These films were analyzed at the Molecular Foundry, where researchers mapped the cells’ surface topography at a resolution of ten nanometers. They also mapped two properties that relate to the cells’ photovoltaic efficiency: photocurrent generation and open circuit voltage.

This was performed using a state-of-the-art atomic force microscopy technique, developed in collaboration with Park Systems, which utilizes a conductive tip to scan the material’s surface. The method also eliminates friction between the tip and the sample. This is important because the material is so rough and soft that friction can damage the tip and sample, and cause artifacts in the photocurrent.

Surprise discovery could lead to better solar cells

The resulting maps revealed an order of magnitude difference in photocurrent generation, and a 0.6-volt difference in open circuit voltage, between facets on the same grain. In addition, facets with high photocurrent generation had high open circuit voltage, and facets with low photocurrent generation had low open circuit voltage.

“This was a big surprise. It shows, for the first time, that perovskite solar cells exhibit facet-dependent photovoltaic efficiency,” says Weber-Bargioni.

Adds Toma, “These results open the door to exploring new ways to control the development of the material’s facets to dramatically increase efficiency.”

In practice, the facets behave like billions of tiny solar cells, all connected in parallel. As the scientists discovered, some cells operate extremely well and others very poorly. In this scenario, the current flows towards the bad cells, lowering the overall performance of the material. But if the material can be optimized so that only highly efficient facets interface with the electrode, the losses incurred by the poor facets would be eliminated.

“This means, at the macroscale, the material could possibly approach its theoretical energy conversion limit of 31 percent,” says Sharp.

A theoretical model that describes the experimental results predicts these facets should also impact the emission of light when used as an LED. …

The Molecular Foundry is a DOE Office of Science User Facility located at Berkeley Lab. The Joint Center for Artificial Photosynthesis is a DOE Energy Innovation Hub led by the California Institute of Technology in partnership with Berkeley Lab.

Here’s a link to and a citation for the paper,

Facet-dependent photovoltaic efficiency variations in single grains of hybrid halide perovskite by Sibel Y. Leblebici, Linn Leppert, Yanbo Li, Sebastian E. Reyes-Lillo, Sebastian Wickenburg, Ed Wong, Jiye Lee, Mauro Melli, Dominik Ziegler, Daniel K. Angell, D. Frank Ogletree, Paul D. Ashby, Francesca M. Toma, Jeffrey B. Neaton, Ian D. Sharp, & Alexander Weber-Bargioni. Nature Energy 1, Article number: 16093 (2016  doi:10.1038/nenergy.2016.93 Published online: 04 July 2016

This paper is behind a paywall.

Dexter Johnson’s July 6, 2016 posting on his Nanoclast blog (on the IEEE [Institute of Electrical and Electronics Engineers] website} presents his take on the impact that this new finding may have,

The rise of the crystal perovskite as a potential replacement for silicon in photovoltaics has been impressive over the last decade, with its conversion efficiency improving from 3.8 to 22.1 percent over that time period. Nonetheless, there has been a vague sense that this rise is beginning to peter out of late, largely because when a solar cell made from perovskite gets larger than 1 square centimeter the best conversion efficiency had been around 15.6 percent. …

Photovoltaics as rose petals

Where solar cells (photovoltaics) are concerned, mimimicking plants is a longstanding pursuit. The latest  plant material to be mimicked is the rose petal’s surface. From a June 24, 2016 news item on ScienceDaily,

With a surface resembling that of plants, solar cells improve light-harvesting and thus generate more power. Scientists of KIT (Karlsruhe Institute of Technology) reproduced the epidermal cells of rose petals that have particularly good antireflection properties and integrated the transparent replicas into an organic solar cell. This resulted in a relative efficiency gain of twelve percent. …

Caption: Biomimetics: the epidermis of a rose petal is replicated in a transparent layer which is then integrated into the front of a solar cell. Credit Illustration: Guillaume Gomard, KIT

Caption: Biomimetics: the epidermis of a rose petal is replicated in a transparent layer which is then integrated into the front of a solar cell.
Credit Illustration: Guillaume Gomard, KIT

A June 24, 2016 KIT press release on EurekAlert, which originated the news item, expands on the theme,

Photovoltaics works in a similar way as the photosynthesis of plants. Light energy is absorbed and converted into a different form of energy. In this process, it is important to use a possibly large portion of the sun’s light spectrum and to trap the light from various incidence angles as the angle changes with the sun’s position. Plants have this capability as a result of a long evolution process – reason enough for photovoltaics researchers to look closely at nature when developing solar cells with a broad absorption spectrum and a high incidence angle tolerance.

Scientists at the KIT and the ZSW (Center for Solar Energy and Hydrogen Research Baden-Württemberg) now suggest in their article published in the Advanced Optical Materials journal to replicate the outermost tissue of the petals of higher plants, the so-called epidermis, in a transparent layer and integrate that layer into the front of solar cells in order to increase their efficiency.

First, the researchers at the Light Technology Institute (LTI), the Institute of Microstructure Technology (IMT), the Institute of Applied Physics (APH), and the Zoological Institute (ZOO) of KIT as well as their colleagues from the ZSW investigated the optical properties, and above all, the antireflection effect of the epidermal cells of different plant species. These properties are particularly pronounced in rose petals where they provide stronger color contrasts and thus increase the chance of pollination. As the scientists found out under the electron microscope, the epidermis of rose petals consists of a disorganized arrangement of densely packed microstructures, with additional ribs formed by randomly positioned nanostructures.

In order to exactly replicate the structure of these epidermal cells over a larger area, the scientists transferred it to a mold made of polydimethylsiloxane, a silicon-based polymer, pressed the resulting negative structure into optical glue which was finally left to cure under UV light. “This easy and cost-effective method creates microstructures of a depth and density that are hardly achievable with artificial techniques,” says Dr. Guillaume Gomard, Group Leader “Nanopothonics” at KIT’s LTI.

The scientists then integrated the transparent replica of the rose petal epidermis into an organic solar cell. This resulted in power conversion efficiency gains of twelve percent for vertically incident light. At very shallow incidence angles, the efficiency gain was even higher. The scientists attribute this gain primarily to the excellent omnidirectional antireflection properties of the replicated epidermis that is able to reduce surface reflection to a value below five percent, even for a light incidence angle of nearly 80 degrees. In addition, as examinations using a confocal laser microscope showed, every single replicated epidermal cell works as a microlense. The microlense effect extends the optical path within the solar cell, enhances the light-matter-interaction, and increases the probability that the photons will be absorbed.

“Our method is applicable to both other plant species and other PV technologies,” Guillaume Gomard explains. “Since the surfaces of plants have multifunctional properties, it might be possible in the future to apply multiple of these properties in a single step.” The results of this research lead to another basic question: What is the role of disorganization in complex photonic structures? Further studies are now examining this issue with the perspective that the next generation of solar cells might benefit from their results.

Here’s a link to and a citation for the paper,

Flower Power: Exploiting Plants’ Epidermal Structures for Enhanced Light Harvesting in Thin-Film Solar Cells by Ruben Hünig, Adrian Mertens, Moritz Stephan, Alexander Schulz, Benjamin Richter, Michael Hetterich, Michael Powalla, Uli Lemmer, Alexander Colsmann, and Guillaume Gomard. Advanced Optical Materials  Version of Record online: 30 MAY 2016 DOI: 10.1002/adom.201600046

© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This paper is behind a paywall.