Tag Archives: solar cells

Build nanoparticles using techniques from the ancient Egyptians

Great Pyramid of Giza and Sphinx [downloaded from http://news.ifmo.ru/en/science/photonics/news/7731/]

Russian and German scientists have taken a closer look at the Great Pyramid as they investigate better ways of designing sensors and solar cells. From a July 30, 2018 news item on Nanowerk,

An international research group applied methods of theoretical physics to investigate the electromagnetic response of the Great Pyramid to radio waves. Scientists predicted that under resonance conditions the pyramid can concentrate electromagnetic energy in its internal chambers and under the base. The research group plans to use these theoretical results to design nanoparticles capable of reproducing similar effects in the optical range. Such nanoparticles may be used, for example, to develop sensors and highly efficient solar cells.

A July 30, 2018 ITMO University press release, which originated the news item,  expands on the theme,

While Egyptian pyramids are surrounded by many myths and legends, we have little scientifically reliable information about their physical properties. As it turns out, sometimes this information proves to be more fascinating than any fiction. This idea found confirmation in a new joint study undertaken by scientists from ITMO University and the Laser Zentrum Hannover. The physicists took an interest in how the Great Pyramid would interact with electromagnetic waves of a proportional, or resonant, length. Calculations showed that in the resonant state the pyramid can concentrate electromagnetic energy in its internal chambers as well as under its base, where the third unfinished chamber is located.

These conclusions were derived on the basis of numerical modeling and analytical methods of physics. The researchers first estimated that resonances in the pyramid can be induced by radio waves with a length ranging from 200 to 600 meters. Then they made a model of the electromagnetic response of the pyramid and calculated the extinction cross section. This value helps to estimate which part of the incident wave energy can be scattered or absorbed by the pyramid under resonant conditions. Finally, for the same conditions, the scientists obtained the electromagnetic fields distribution inside the pyramid.

3D model of the pyramid. Credit: cheops.SU
3D model of the pyramid. Credit: cheops.SU

In order to explain the results, the scientists conducted a multipole analysis. This method is widely used in physics to study the interaction between a complex object and electromagnetic field. The object scattering the field is replaced by a set of simpler sources of radiation: multipoles. The collection of multipoles radiation coincides with the field scattering by an entire object. Therefore, by knowing the type of each multipole, it is possible to predict and explain the distribution and configuration of the scattered fields in the whole system.

The Great Pyramid attracted the researchers’ attention while they were studying the interaction between light and dielectric nanoparticles. The scattering of light by nanoparticles depends on their size, shape, and refractive index of the source material. By varying these parameters, it is possible to determine the resonance scattering regimes and use them to develop devices for controlling light at the nanoscale.

“Egyptian pyramids have always attracted great attention. We as scientists were interested in them as well, and so we decided to look at the Great Pyramid as a particle resonantly dissipating radio waves. Due to the lack of information about the physical properties of the pyramid, we had to make some assumptions. For example, we assumed that there are no unknown cavities inside, and the building material has the properties of an ordinary limestone and is evenly distributed in and out of the pyramid. With these assumptions, we obtained interesting results that can have important practical applications,” says Andrey Evlyukhin, DSc, scientific supervisor and coordinator of the research.

Now the scientists plan to use the results to reproduce similar effects at the nanoscale.

Polina Kapitanova
Polina Kapitanova

“By choosing a material with suitable electromagnetic properties, we can obtain pyramidal nanoparticles with a potential for practical application in nanosensors and effective solar cells,” says Polina Kapitanova, PhD, associate at the Faculty of Physics and Engineering of ITMO University.

The research was supported by the Russian Science Foundation and the Deutsche Forschungsgemeinschaft (grants № 17-79-20379 and №16-12-10287).

Here’s a link to and a citation for the paper,

Electromagnetic properties of the Great Pyramid: First multipole resonances and energy concentration featured by Mikhail Balezin, Kseniia V. Baryshnikova, Polina Kapitanova, and Andrey B. Evlyukhin. Journal of Applied Physics 124, 034903 (2018) https://doi.org/10.1063/1.5026556 or Journal of Applied Physics, Volume 124, Issue 3. 10.1063/1.5026556 Published Online 20 July 2018

This paper is behind a paywall..

New semiconductor material from pigment produced by fungi?

Chlorociboria Aeruginascens fungus on a tree log. (Image: Oregon State University)

Apparently the pigment derived from the fungi you see in the above picture is used by visual artists and, perhaps soon, will be used by electronics manufacturers. From a June 5, 2018 news item on Nanowerk,

Researchers at Oregon State University are looking at a highly durable organic pigment, used by humans in artwork for hundreds of years, as a promising possibility as a semiconductor material.

Findings suggest it could become a sustainable, low-cost, easily fabricated alternative to silicon in electronic or optoelectronic applications where the high-performance capabilities of silicon aren’t required.

Optoelectronics is technology working with the combined use of light and electronics, such as solar cells, and the pigment being studied is xylindein.

A June 5, 2018 Oregon State University news release by Steve Lundeberg, which originated the news item, expands on the theme,

“Xylindein is pretty, but can it also be useful? How much can we squeeze out of it?” said Oregon State University [OSU] physicist Oksana Ostroverkhova. “It functions as an electronic material but not a great one, but there’s optimism we can make it better.”

Xylindien is secreted by two wood-eating fungi in the Chlorociboria genus. Any wood that’s infected by the fungi is stained a blue-green color, and artisans have prized xylindein-affected wood for centuries.

The pigment is so stable that decorative products made half a millennium ago still exhibit its distinctive hue. It holds up against prolonged exposure to heat, ultraviolet light and electrical stress.

“If we can learn the secret for why those fungi-produced pigments are so stable, we could solve a problem that exists with organic electronics,” Ostroverkhova said. “Also, many organic electronic materials are too expensive to produce, so we’re looking to do something inexpensively in an ecologically friendly way that’s good for the economy.”

With current fabrication techniques, xylindein tends to form non-uniform films with a porous, irregular, “rocky” structure.

“There’s a lot of performance variation,” she said. “You can tinker with it in the lab, but you can’t really make a technologically relevant device out of it on a large scale. But we found a way to make it more easily processed and to get a decent film quality.”

Ostroverkhova and collaborators in OSU’s colleges of Science and Forestry blended xylindein with a transparent, non-conductive polymer, poly(methyl methacrylate), abbreviated to PMMA and sometimes known as acrylic glass. They drop-cast solutions both of pristine xylindein and a xlyindein-PMMA blend onto electrodes on a glass substrate for testing.

They found the non-conducting polymer greatly improved the film structure without a detrimental effect on xylindein’s electrical properties. And the blended films actually showed better photosensitivity.

“Exactly why that happened, and its potential value in solar cells, is something we’ll be investigating in future research,” Ostroverkhova said. “We’ll also look into replacing the polymer with a natural product – something sustainable made from cellulose. We could grow the pigment from the cellulose and be able to make a device that’s all ready to go.

“Xylindein will never beat silicon, but for many applications, it doesn’t need to beat silicon,” she said. “It could work well for depositing onto large, flexible substrates, like for making wearable electronics.”

This research, whose findings were recently published in MRS Advances, represents the first use of a fungus-produced material in a thin-film electrical device.

“And there are a lot more of the materials,” Ostroverkhova said. “This is just first one we’ve explored. It could be the beginning of a whole new class of organic electronic materials.”

Here’s a link to and a citation for the paper,

Fungi-Derived Pigments for Sustainable Organic (Opto)Electronics by Gregory Giesbers, Jonathan Van Schenck, Sarath Vega Gutierrez, Sara Robinson. MRS Advances https://doi.org/10.1557/adv.2018.446 Published online: 21 May 2018

This paper is behind a paywall.

The mystifying physics of paint-on semiconductors

I was not expecting a Canadian connection but it seems we are heavily invested in this research at the Georgia Institute of Technology (Georgia Tech), from a March 19, 2018 news item on ScienceDaily,

Some novel materials that sound too good to be true turn out to be true and good. An emergent class of semiconductors, which could affordably light up our future with nuanced colors emanating from lasers, lamps, and even window glass, could be the latest example.

These materials are very radiant, easy to process from solution, and energy-efficient. The nagging question of whether hybrid organic-inorganic perovskites (HOIPs) could really work just received a very affirmative answer in a new international study led by physical chemists at the Georgia Institute of Technology.

A March 19,. 2018 Georgia Tech news release (also on EurekAlert), which originated the news item, provides more detail,

The researchers observed in an HOIP a “richness” of semiconducting physics created by what could be described as electrons dancing on chemical underpinnings that wobble like a funhouse floor in an earthquake. That bucks conventional wisdom because established semiconductors rely upon rigidly stable chemical foundations, that is to say, quieter molecular frameworks, to produce the desired quantum properties.

“We don’t know yet how it works to have these stable quantum properties in this intense molecular motion,” said first author Felix Thouin, a graduate research assistant at Georgia Tech. “It defies physics models we have to try to explain it. It’s like we need some new physics.”

Quantum properties surprise

Their gyrating jumbles have made HOIPs challenging to examine, but the team of researchers from a total of five research institutes in four countries succeeded in measuring a prototypical HOIP and found its quantum properties on par with those of established, molecularly rigid semiconductors, many of which are graphene-based.

“The properties were at least as good as in those materials and may be even better,” said Carlos Silva, a professor in Georgia Tech’s School of Chemistry and Biochemistry. Not all semiconductors also absorb and emit light well, but HOIPs do, making them optoelectronic and thus potentially useful in lasers, LEDs, other lighting applications, and also in photovoltaics.

The lack of molecular-level rigidity in HOIPs also plays into them being more flexibly produced and applied.

Silva co-led the study with physicist Ajay Ram Srimath Kandada. Their team published the results of their study on two-dimensional HOIPs on March 8, 2018, in the journal Physical Review Materials. Their research was funded by EU Horizon 2020, the Natural Sciences and Engineering Research Council of Canada, the Fond Québécois pour la Recherche, the [National] Research Council of Canada, and the National Research Foundation of Singapore. [emphases mine]

The ‘solution solution’

Commonly, semiconducting properties arise from static crystalline lattices of neatly interconnected atoms. In silicon, for example, which is used in most commercial solar cells, they are interconnected silicon atoms. The same principle applies to graphene-like semiconductors.

“These lattices are structurally not very complex,” Silva said. “They’re only one atom thin, and they have strict two-dimensional properties, so they’re much more rigid.”

“You forcefully limit these systems to two dimensions,” said Srimath Kandada, who is a Marie Curie International Fellow at Georgia Tech and the Italian Institute of Technology. “The atoms are arranged in infinitely expansive, flat sheets, and then these very interesting and desirable optoelectronic properties emerge.”

These proven materials impress. So, why pursue HOIPs, except to explore their baffling physics? Because they may be more practical in important ways.

“One of the compelling advantages is that they’re all made using low-temperature processing from solutions,” Silva said. “It takes much less energy to make them.”

By contrast, graphene-based materials are produced at high temperatures in small amounts that can be tedious to work with. “With this stuff (HOIPs), you can make big batches in solution and coat a whole window with it if you want to,” Silva said.

Funhouse in an earthquake

For all an HOIP’s wobbling, it’s also a very ordered lattice with its own kind of rigidity, though less limiting than in the customary two-dimensional materials.

“It’s not just a single layer,” Srimath Kandada said. “There is a very specific perovskite-like geometry.” Perovskite refers to the shape of an HOIPs crystal lattice, which is a layered scaffolding.

“The lattice self-assembles,” Srimath Kandada said, “and it does so in a three-dimensional stack made of layers of two-dimensional sheets. But HOIPs still preserve those desirable 2D quantum properties.”

Those sheets are held together by interspersed layers of another molecular structure that is a bit like a sheet of rubber bands. That makes the scaffolding wiggle like a funhouse floor.

“At room temperature, the molecules wiggle all over the place. That disrupts the lattice, which is where the electrons live. It’s really intense,” Silva said. “But surprisingly, the quantum properties are still really stable.”

Having quantum properties work at room temperature without requiring ultra-cooling is important for practical use as a semiconductor.

Going back to what HOIP stands for — hybrid organic-inorganic perovskites – this is how the experimental material fit into the HOIP chemical class: It was a hybrid of inorganic layers of a lead iodide (the rigid part) separated by organic layers (the rubber band-like parts) of phenylethylammonium (chemical formula (PEA)2PbI4).

The lead in this prototypical material could be swapped out for a metal safer for humans to handle before the development of an applicable material.

Electron choreography

HOIPs are great semiconductors because their electrons do an acrobatic square dance.

Usually, electrons live in an orbit around the nucleus of an atom or are shared by atoms in a chemical bond. But HOIP chemical lattices, like all semiconductors, are configured to share electrons more broadly.

Energy levels in a system can free the electrons to run around and participate in things like the flow of electricity and heat. The orbits, which are then empty, are called electron holes, and they want the electrons back.

“The hole is thought of as a positive charge, and of course, the electron has a negative charge,” Silva said. “So, hole and electron attract each other.”

The electrons and holes race around each other like dance partners pairing up to what physicists call an “exciton.” Excitons act and look a lot like particles themselves, though they’re not really particles.

Hopping biexciton light

In semiconductors, millions of excitons are correlated, or choreographed, with each other, which makes for desirable properties, when an energy source like electricity or laser light is applied. Additionally, excitons can pair up to form biexcitons, boosting the semiconductor’s energetic properties.

“In this material, we found that the biexciton binding energies were high,” Silva said. “That’s why we want to put this into lasers because the energy you input ends up to 80 or 90 percent as biexcitons.”

Biexcitons bump up energetically to absorb input energy. Then they contract energetically and pump out light. That would work not only in lasers but also in LEDs or other surfaces using the optoelectronic material.

“You can adjust the chemistry (of HOIPs) to control the width between biexciton states, and that controls the wavelength of the light given off,” Silva said. “And the adjustment can be very fine to give you any wavelength of light.”

That translates into any color of light the heart desires.


Coauthors of this paper were Stefanie Neutzner and Annamaria Petrozza from the Italian Institute of Technology (IIT); Daniele Cortecchia from IIT and Nanyang Technological University (NTU), Singapore; Cesare Soci from the Centre for Disruptive Photonic Technologies, Singapore; Teddy Salim and Yeng Ming Lam from NTU; and Vlad Dragomir and Richard Leonelli from the University of Montreal. …

Three Canadian science funding agencies plus European and Singaporean science funding agencies but not one from the US ? That’s a bit unusual for research undertaken at a US educational institution.

In any event, here’s a link to and a citation for the paper,

Stable biexcitons in two-dimensional metal-halide perovskites with strong dynamic lattice disorder by Félix Thouin, Stefanie Neutzner, Daniele Cortecchia, Vlad Alexandru Dragomir, Cesare Soci, Teddy Salim, Yeng Ming Lam, Richard Leonelli, Annamaria Petrozza, Ajay Ram Srimath Kandada, and Carlos Silva. Phys. Rev. Materials 2, 034001 – Published 8 March 2018

This paper is behind a paywall.

Nanomushroom sensors

Schematic illustration of cells (blue mountain-like shapes) on top of nanoscale mushroom-like structures with silicone dioxide stems and gold caps, which have the potential to detect cell proliferation in real-time. Courtesy: OIST

The nanomushroom sensors depicted in the above illustration and announced in a February 23, 2018 news item on Nanowerk probably aren’t edible but they certainly make up for that deficiency with other properties,

A small rectangle of pink glass, about the size of a postage stamp, sits on Professor Amy Shen’s desk. Despite its outwardly modest appearance, this little glass slide has the potential to revolutionize a wide range of processes, from monitoring food quality to diagnosing diseases.

The slide is made of a ‘nanoplasmonic’ material — its surface is coated in millions of gold nanostructures, each just a few billionths of a square meter in size. Plasmonic materials absorb and scatter light in interesting ways, giving them unique sensing properties. Nanoplasmonic materials have attracted the attention of biologists, chemists, physicists and material scientists, with possible uses in a diverse array of fields, such as biosensing, data storage, light generation and solar cells.

A February 23, 2018 Okinawa Institute of Science and Technology Graduate University (OIST) press release (also on EurekAlert), which originated the news item, provides more detail,

In several recent papers, Prof. Shen and colleagues at the Micro/Bio/Nanofluidics Unit at the Okinawa Institute of Science and Technology (OIST), described their creation of a new biosensing material that can be used to monitor processes in living cells.

“One of the major goals of nanoplasmonics is to search for better ways to monitor processes in living cells in real time,” says Prof. Shen. Capturing such information can reveal clues about cell behavior, but creating nanomaterials on which cells can survive for long periods of time yet don’t interfere with the cellular processes being measured is a challenge, she explains.

Counting Dividing Cells

One of the team’s new biosensors is made from a nanoplasmonic material that is able to accommodate a large number of cells on a single substrate and to monitor cell proliferation, a fundamental process involving cell growth and division, in real time. Seeing this process in action can reveal important insights into the health and functions of cells and tissues.

Researchers in OIST’s Micro/Bio/Nanofluidics Unit described the sensor in a study recently published in the journal Advanced Biosystems [citation and link follow this press release].

The most attractive feature of the material is that it allows cells to survive over long time periods. “Usually, when you put live cells on a nanomaterial, that material is toxic and it kills the cells,” says Dr. Nikhil Bhalla, a postdoctoral researcher at OIST and first author of the paper. “However, using our material, cells survived for over seven days.” The nanoplasmonic material is also highly sensitive: It can detect an increase in cells as small as 16 in 1000 cells.

The material looks just like an ordinary pieces of glass. However, the surface is coated in tiny nanoplasmonic mushroom-like structures, known as nanomushrooms, with stems of silicon dioxide and caps of gold. Together, these form a biosensor capable of detecting interactions at the molecular level.

The biosensor works by using the nanomushroom caps as optical antennae. When white light passes through the nanoplasmonic slide, the nanomushrooms absorb and scatter some of the light, changing its properties. The absorbance and scattering of light is determined by the size, shape and material of the nanomaterial and, more importantly, it is also affected by any medium in close proximity to the nanomushroom, such as cells that have been placed on the slide. By measuring how the light has changed once it emerges through the other side of the slide, the researchers can detect and monitor processes occurring on the sensor surface, such as cell division.

“Normally, you have to add labels, such as dyes or molecules, to cells, to be able to count dividing cells,” says Dr. Bhalla. “However, with our method, the nanomushrooms can sense them directly.”

Scaling Up

This work builds on a new method, developed by scientists at the Micro/Bio/Nanofluidics Unit at OIST, for fabricating nanomushroom biosensors. The technique was published in the journal ACS Applied Materials and Interfaces in December 2017.

Producing large-scale nanoplasmonic materials is challenging because it is difficult to ensure uniformity across the entire material surface. For this reason, biosensors for routine clinical examinations, such as disease testing, are still lacking.

In response to this problem, the OIST researchers developed a novel printing technique to create large-scale nanomushroom biosensors. With their method, they were able to develop a material consisting of approximately one million mushroom-like structures on a 2.5cm by 7.5cm silicon dioxide substrate.

“Our technique is like taking a stamp, covering it with ink made from biological molecules, and printing onto the nanoplasmonic slide,” says Shivani Sathish, a PhD student at OIST and co-author of the paper. The biological molecules increase the sensitivity of the material, meaning it can sense extremely low concentrations of substances, such as antibodies, and thus potentially detect diseases in their earliest stages.

“Using our method, it is possible to create a highly sensitive biosensor that can detect even single molecules,” says Dr. Bhalla, first author of the paper.

Plasmonic and nanoplasmonic sensors offer important tools for many fields, from electronics to food production to medicine. For example, in December 2017, second year Ph.D student Ainash Garifullina from the Unit developed a new plasmonic material for monitoring the quality of food products during the manufacturing process. The results were published in the journal Analytical Methods.

Prof. Shen and her unit say that, in the future, nanoplasmonic materials may even be integrated with emerging technologies, such as wireless systems in microfluidic devices, allowing users to take readings remotely and thereby minimizing the risk of contamination.

Here’s a link to and a citation for the paper,

Large-Scale Nanophotonic Structures for Long-Term Monitoring of Cell Proliferation by Nikhil Bhalla, Shivani Sathish, Abhishek Sinha, and Amy Q. Shen. Advanced Biosystems Vol. 2 Issue 2 DOI: 10.1002/adbi.201700258 Version of Record online: 19 JAN 2018

© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This paper is behind a paywall.

Here’s a link to and a citation for the earlier paper,

Probing specific gravity in real-time with graphene oxide plasmonics by Ainash Garifullina, Nikhil Bhalla, and Amy Q. Shen. Anal. Methods 2018, 10, 290-297 DOI: 10.1039/C7AY02423A first published [online] on 06 Dec 2017

This paper is open access provided you have registered for a free account.

Beautiful solar cells based on insect eyes

What a gorgeous image!

The compound eye of a fly inspired Stanford researchers to create a compound solar cell consisting of perovskite microcells encapsulated in a hexagon-shaped scaffold. (Image credit: Thomas Shahan/Creative Commons)

An August 31, 2017 news item on Nanowerk describes research into solar cells being performed at Stanford University (Note: A link has been removed),

Packing tiny solar cells together, like micro-lenses in the compound eye of an insect, could pave the way to a new generation of advanced photovoltaics, say Stanford University scientists.

In a new study, the Stanford team used the insect-inspired design to protect a fragile photovoltaic material called perovskite from deteriorating when exposed to heat, moisture or mechanical stress. The results are published in the journal Energy & Environmental Science (“Scaffold-reinforced perovskite compound solar cells”).

An August 31, 2017 Stanford University news release (also on EurekAlert) by Mark Schwartz, which originated the news item,

“Perovskites are promising, low-cost materials that convert sunlight to electricity as efficiently as conventional solar cells made of silicon,” said Reinhold Dauskardt, a professor of materials science and engineering and senior author of the study. “The problem is that perovskites are extremely unstable and mechanically fragile. They would barely survive the manufacturing process, let alone be durable long term in the environment.”

Most solar devices, like rooftop panels, use a flat, or planar, design. But that approach doesn’t work well with perovskite solar cells.

“Perovskites are the most fragile materials ever tested in the history of our lab,” said graduate student Nicholas Rolston, a co-lead author of the E&ES study. “This fragility is related to the brittle, salt-like crystal structure of perovskite, which has mechanical properties similar to table salt.”

Eye of the fly

To address the durability challenge, the Stanford team turned to nature.

“We were inspired by the compound eye of the fly, which consists of hundreds of tiny segmented eyes,” Dauskardt explained. “It has a beautiful honeycomb shape with built-in redundancy: If you lose one segment, hundreds of others will operate. Each segment is very fragile, but it’s shielded by a scaffold wall around it.”

Scaffolds in a compound solar cell filled with perovskite after fracture testing.

Scaffolds in a compound solar cell filled with perovskite after fracture testing. (Image credit: Dauskardt Lab/Stanford University)

Using the compound eye as a model, the researchers created a compound solar cell consisting of a vast honeycomb of perovskite microcells, each encapsulated in a hexagon-shaped scaffold just 0.02 inches (500 microns) wide.

“The scaffold is made of an inexpensive epoxy resin widely used in the microelectronics industry,” Rolston said. “It’s resilient to mechanical stresses and thus far more resistant to fracture.”

Tests conducted during the study revealed that the scaffolding had little effect on how efficiently perovskite converted light into electricity.

“We got nearly the same power-conversion efficiencies out of each little perovskite cell that we would get from a planar solar cell,” Dauskardt said. “So we achieved a huge increase in fracture resistance with no penalty for efficiency.”


But could the new device withstand the kind of heat and humidity that conventional rooftop solar panels endure?

To find out, the researchers exposed encapsulated perovskite cells to temperatures of 185 F (85 C) and 85 percent relative humidity for six weeks. Despite these extreme conditions, the cells continued to generate electricity at relatively high rates of efficiency.

Dauskardt and his colleagues have filed a provisional patent for the new technology. To improve efficiency, they are studying new ways to scatter light from the scaffold into the perovskite core of each cell.

“We are very excited about these results,” he said. “It’s a new way of thinking about designing solar cells. These scaffold cells also look really cool, so there are some interesting aesthetic possibilities for real-world applications.”

Researchers have also made this image available,

Caption: A compound solar cell illuminated from a light source below. Hexagonal scaffolds are visible in the regions coated by a silver electrode. The new solar cell design could help scientists overcome a major roadblock to the development of perovskite photovoltaics. Credit: Dauskardt Lab/Stanford University

Not quite as weirdly beautiful as the insect eyes.

Here’s a link to and a citation for the paper,

Scaffold-reinforced perovskite compound solar cells by Brian L. Watson, Nicholas Rolston, Adam D. Printz, and Reinhold H. Dauskardt. Energy & Environmental Science 2017 DOI: 10.1039/C7EE02185B first published on 23 Aug 2017

This paper is behind a paywall.

A different type of ‘smart’ window with a new solar cell technology

I always like a ‘smart’ window story. Given my issues with summer (I don’t like the heat), anything which promises to help reduce the heat in my home at that time of year, has my vote. Unfortunately, solutions don’t seem to have made a serious impact on the marketplace. Nonetheless, there’s always hope and perhaps this development at Princeton University will be the one to break through the impasse. From a June 30, 2017 news item on ScienceDaily,

Smart windows equipped with controllable glazing can augment lighting, cooling and heating systems by varying their tint, saving up to 40 percent in an average building’s energy costs.

These smart windows require power for operation, so they are relatively complicated to install in existing buildings. But by applying a new solar cell technology, researchers at Princeton University have developed a different type of smart window: a self-powered version that promises to be inexpensive and easy to apply to existing windows. This system features solar cells that selectively absorb near-ultraviolet (near-UV) light, so the new windows are completely self-powered.

A June 30, 2017 Princeton University news release, which originated the news item, expands on the theme,

“Sunlight is a mixture of electromagnetic radiation made up of near-UV rays, visible light, and infrared energy, or heat,” said Yueh-Lin (Lynn) Loo, director of the Andlinger Center for Energy and the Environment, and the Theodora D. ’78 and William H. Walton III ’74 Professor in Engineering. “We wanted the smart window to dynamically control the amount of natural light and heat that can come inside, saving on energy cost and making the space more comfortable.”

The smart window controls the transmission of visible light and infrared heat into the building, while the new type of solar cell uses near-UV light to power the system.

“This new technology is actually smart management of the entire spectrum of sunlight,” said Loo, who is a professor of chemical and biological engineering. Loo is one of the authors of a paper, published June 30, that describes this technology, which was developed in her lab.

Because near-UV light is invisible to the human eye, the researchers set out to harness it for the electrical energy needed to activate the tinting technology.

“Using near-UV light to power these windows means that the solar cells can be transparent and occupy the same footprint of the window without competing for the same spectral range or imposing aesthetic and design constraints,” Loo added. “Typical solar cells made of silicon are black because they absorb all visible light and some infrared heat – so those would be unsuitable for this application.”

In the paper published in Nature Energy, the researchers described how they used organic semiconductors – contorted hexabenzocoronene (cHBC) derivatives – for constructing the solar cells. The researchers chose the material because its chemical structure could be modified to absorb a narrow range of wavelengths – in this case, near-UV light. To construct the solar cell, the semiconductor molecules are deposited as thin films on glass with the same production methods used by organic light-emitting diode manufacturers. When the solar cell is operational, sunlight excites the cHBC semiconductors to produce electricity.

At the same time, the researchers constructed a smart window consisting of electrochromic polymers, which control the tint, and can be operated solely using power produced by the solar cell. When near-UV light from the sun generates an electrical charge in the solar cell, the charge triggers a reaction in the electrochromic window, causing it to change from clear to dark blue. When darkened, the window can block more than 80 percent of light.

Nicholas Davy, a doctoral student in the chemical and biological engineering department and the paper’s lead author, said other researchers have already developed transparent solar cells, but those target infrared energy. However, infrared energy carries heat, so using it to generate electricity can conflict with a smart window’s function of controlling the flow of heat in or out of a building. Transparent near-UV solar cells, on the other hand, don’t generate as much power as the infrared version, but don’t impede the transmission of infrared radiation, so they complement the smart window’s task.

Davy said that the Princeton team’s aim is to create a flexible version of the solar-powered smart window system that can be applied to existing windows via lamination.

“Someone in their house or apartment could take these wireless smart window laminates – which could have a sticky backing that is peeled off – and install them on the interior of their windows,” said Davy. “Then you could control the sunlight passing into your home using an app on your phone, thereby instantly improving energy efficiency, comfort, and privacy.”

Joseph Berry, senior research scientist at the National Renewable Energy Laboratory, who studies solar cells but was not involved in the research, said the research project is interesting because the device scales well and targets a specific part of the solar spectrum.

“Integrating the solar cells into the smart windows makes them more attractive for retrofits and you don’t have to deal with wiring power,” said Berry. “And the voltage performance is quite good. The voltage they have been able to produce can drive electronic devices directly, which is technologically quite interesting.”

Davy and Loo have started a new company, called Andluca Technologies, based on the technology described in the paper, and are already exploring other applications for the transparent solar cells. They explained that the near-UV solar cell technology can also power internet-of-things sensors and other low-power consumer products.

“It does not generate enough power for a car, but it can provide auxiliary power for smaller devices, for example, a fan to cool the car while it’s parked in the hot sun,” Loo said.

Here’s a link to and a citation for the paper,

Pairing of near-ultraviolet solar cells with electrochromic windows for smart management of the solar spectrum by Nicholas C. Davy, Melda Sezen-Edmonds, Jia Gao, Xin Lin, Amy Liu, Nan Yao, Antoine Kahn, & Yueh-Lin Loo. Nature Energy 2, Article number: 17104 (2017 doi:10.1038/nenergy.2017.104 Published online: 30 June 2017

This paper is behind a paywall.

Here’s what a sample of the special glass looks like,

Graduate student Nicholas Davy holds a sample of the special window glass. (Photos by David Kelly Crow)

Stellar’s jay gives structural colo(u)r a new look

The structural colo(u)r stories I’ve posted previously identify nanostructures as the reason for why certain animals and plants display a particular set of optical properties, colours that can’t be obtained by pigment or dye. However, the Stellar’s jay structural colour story is a little different.

Caption: Bio-inspired bright structurally colored colloidal amorphous array enhanced by controlling thickness and black background. ©Yukikazu Takeoka

From a May 8, 2017 news item on ScienceDaily,

A Nagoya University-led [Japan] research team mimics the rich color of bird plumage and demonstrates new ways to control how light interacts with materials.

Bright colors in the natural world often result from tiny structures in feathers or wings that change the way light behaves when it’s reflected. So-called “structural color” is responsible for the vivid hues of birds and butterflies. Artificially harnessing this effect could allow us to engineer new materials for applications such as solar cells and chameleon-like adaptive camouflage.

Inspired by the deep blue coloration of a native North American bird, Stellar’s jay, a team at Nagoya University reproduced the color in their lab, giving rise to a new type of artificial pigment. This development was reported in Advanced Materials.

“The Stellar’s jay’s feathers provide an excellent example of angle-independent structural color,” says last author Yukikazu Takeoka, “This color is enhanced by dark materials, which in this case can be attributed to black melanin particles in the feathers.

A May 8, 2017 Nagoya University press release (also on EurekAlert), which originated the news item, expands on the theme of what makes the structural colour of a Stellar’s jay feather different,

In most cases, structural colors appear to change when viewed from different perspectives. For example, imagine the way that the colors on the underside of a CD appear to shift when the disc is viewed from a different angle. The difference in Stellar’s jay’s blue is that the structures, which interfere with light, sit on top of black particles that can absorb a part of this light. This means that at all angles, however you look at it, the color of the Stellar’s Jay does not change.

The team used a “layer-by-layer” approach to build up films of fine particles that recreated the microscopic sponge-like texture and black backing particles of the bird’s feathers.

To mimic the feathers, the researchers covered microscopic black core particles with layers of even smaller transparent particles, to make raspberry-like particles. The size of the core and the thickness of the layers controlled the color and saturation of the resulting pigments. Importantly, the color of these particles did not change with viewing angle.

“Our work represents a much more efficient way to design artificially produced angle-independent structural colors,” Takeoka adds. “We still have much to learn from biological systems, but if we can understand and successfully apply these phenomena, a whole range of new metamaterials will be accessible for all kinds of advanced applications where interactions with light are important.”

Here’s a link to and a citation for the paper,

Bio-Inspired Bright Structurally Colored Colloidal Amorphous Array Enhanced by Controlling Thickness and Black Background by Masanori Iwata, Midori Teshima, Takahiro Seki, Shinya Yoshioka, and Yukikazu Takeoka. Advanced Materials DOI: 10.1002/adma.201605050 Version of Record online: 26 APR 2017

© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This paper is behind a paywall.

Ordinarily, I’d expect to see the term ‘nano’ somewhere in the press release or in the abstract but that’s not the case here. The best I could find was a reference to ‘submicrometer-sized .. particles” in the abstract. I suppose that could refer to the nanoscale but given that a Japanese researcher (Norio Taniguchi in 1974) coined the phrase ‘nanotechnology’ to describe research at that scale it seems unlikely that Japanese researchers some forty years later wouldn’t use that term when appropriate.

Café Scientifique (Vancouver, Canada) April 25, 2017 talk: No Small Feat: Seeing Atoms and Molecules

I thought I’d been knocked off the list but finally I have a notice for an upcoming Café Scientifique talk that arrived and before the event, at that.  From an April 12, 2017 notice (received via email),

Our next café will happen on TUESDAY APRIL 25TH, 7:30PM in the back
room at YAGGER’S DOWNTOWN (433 W Pender). Our speaker for the
evening will be DR. SARAH BURKE, an Assistant Professor in the
Department of Physics and Astronomy/ Department of Chemistry at UBC [University of British Columbia]. The title of her talk is:


From solar cells to superconductivity, the properties of materials and
the devices we make from them arise from the atomic scale structure of
the atoms that make up the material, their electrons, and how they all
interact.  Seeing this takes a microscope, but not like the one you may
have had as a kid or used in a university lab, which are limited to
seeing objects on the scale of the wavelength of visible light: still
thousands of times bigger than the size of an atom.  Scanning probe
microscopes operate more like a nanoscale record player, scanning a very
sharp tip over a surface and measuring interactions between the tip and
surface to create atomically resolved images.  These techniques show us
where atoms and electrons live at surfaces, on nanostructures, and in
molecules.  I will describe how these techniques give us a powerful
glimpse into a tiny world.

I have a little more about Sarah Burke from her webpage in the UBC Physics and Astronomy webspace,

Building an understanding of important electronic and optoelectronic processes in nanoscale materials from the atomic scale up will pave the way for next generation materials and technologies.

My research interests broadly encompass the study of electronic processes where nanoscale structure influences or reveals the underlying physics. Using scanning probe microscopy (SPM) techniques, my group investigates materials for organic electronics and optoelectronics, graphene and other carbon-based nanomaterials, and other materials where a nanoscale view offers the potential for new understanding. We also work to expand the SPM toolbox; developing new methods in order to probe different aspects of materials, and working to understand leading edge techniques.

For the really curious, you can find more information about her research group, UBC Laboratory for Atomic Imaging Research (LAIR) here.

‘Brewing up’ conductive inks for printable electronics

Scientists from Duke University aren’t exactly ‘brewing’ or ‘cooking up’ the inks but they do come close according to a Jan. 3, 2017 news item on ScienceDaily,

By suspending tiny metal nanoparticles in liquids, Duke University scientists are brewing up conductive ink-jet printer “inks” to print inexpensive, customizable circuit patterns on just about any surface.

A Jan. 3, 2017 Duke University news release (also on EurekAlert), which originated the news item, explains why this technique could lead to more accessible printed electronics,

Printed electronics, which are already being used on a wide scale in devices such as the anti-theft radio frequency identification (RFID) tags you might find on the back of new DVDs, currently have one major drawback: for the circuits to work, they first have to be heated to melt all the nanoparticles together into a single conductive wire, making it impossible to print circuits on inexpensive plastics or paper.

A new study by Duke researchers shows that tweaking the shape of the nanoparticles in the ink might just eliminate the need for heat.

By comparing the conductivity of films made from different shapes of silver nanostructures, the researchers found that electrons zip through films made of silver nanowires much easier than films made from other shapes, like nanospheres or microflakes. In fact, electrons flowed so easily through the nanowire films that they could function in printed circuits without the need to melt them all together.

“The nanowires had a 4,000 times higher conductivity than the more commonly used silver nanoparticles that you would find in printed antennas for RFID tags,” said Benjamin Wiley, assistant professor of chemistry at Duke. “So if you use nanowires, then you don’t have to heat the printed circuits up to such high temperature and you can use cheaper plastics or paper.”

“There is really nothing else I can think of besides these silver nanowires that you can just print and it’s simply conductive, without any post-processing,” Wiley added.

These types of printed electronics could have applications far beyond smart packaging; researchers envision using the technology to make solar cells, printed displays, LEDS, touchscreens, amplifiers, batteries and even some implantable bio-electronic devices. The results appeared online Dec. 16 [2016] in ACS Applied Materials and Interfaces.

Silver has become a go-to material for making printed electronics, Wiley said, and a number of studies have recently appeared measuring the conductivity of films with different shapes of silver nanostructures. However, experimental variations make direct comparisons between the shapes difficult, and few reports have linked the conductivity of the films to the total mass of silver used, an important factor when working with a costly material.

“We wanted to eliminate any extra materials from the inks and simply hone in on the amount of silver in the films and the contacts between the nanostructures as the only source of variability,” said Ian Stewart, a recent graduate student in Wiley’s lab and first author on the ACS paper.

Stewart used known recipes to cook up silver nanostructures with different shapes, including nanoparticles, microflakes, and short and long nanowires, and mixed these nanostructures with distilled water to make simple “inks.” He then invented a quick and easy way to make thin films using equipment available in just about any lab — glass slides and double-sided tape.

“We used a hole punch to cut out wells from double-sided tape and stuck these to glass slides,” Stewart said. By adding a precise volume of ink into each tape “well” and then heating the wells — either to relatively low temperature to simply evaporate the water or to higher temperatures to begin melting the structures together — he created a variety of films to test.

The team say they weren’t surprised that the long nanowire films had the highest conductivity. Electrons usually flow easily through individual nanostructures but get stuck when they have to jump from one structure to the next, Wiley explained, and long nanowires greatly reduce the number of times the electrons have to make this “jump”.

But they were surprised at just how drastic the change was. “The resistivity of the long silver nanowire films is several orders of magnitude lower than silver nanoparticles and only 10 times greater than pure silver,” Stewart said.

The team is now experimenting with using aerosol jets to print silver nanowire inks in usable circuits. Wiley says they also want to explore whether silver-coated copper nanowires, which are significantly cheaper to produce than pure silver nanowires, will give the same effect.

Here’s a link to and a citation for the paper,

Effect of Morphology on the Electrical Resistivity of Silver Nanostructure Films by Ian E. Stewart, Myung Jun Kim, and Benjamin J. Wiley. ACS Appl. Mater. Interfaces, Article ASAP
DOI: 10.1021/acsami.6b12289 Publication Date (Web): December 16, 2016

Copyright © 2016 American Chemical Society

This paper is behind a paywall but there is an image of the silver nanowires, which is not exactly compensation but is interesting,

Caption: Duke University chemists have found that silver nanowire films like these conduct electricity well enough to form functioning circuits without applying high temperatures, enabling printable electronics on heat-sensitive materials like paper or plastic.
Credit: Ian Stewart and Benjamin Wiley

Trying to push past the 30% energy conversion ceiling for solar cells

A Nov. 21, 2016 news item on Nanowerk describes some work in Japan which suggests that more energy conversion for solar cells is possible,

Solar energy could provide a renewable, sustainable source of power for our daily needs. However, even the most state-of-the-art solar cells struggle to achieve energy conversion efficiency of higher than 30%. While current solar-powered water heaters fare better in terms of energy efficiency, there are still improvements to be made if the systems are to be used more widely.

One potential candidate for inclusion in solar water heaters is “nanofluid,” that is, a liquid containing specially-designed nanoparticles that are capable of absorbing sunlight and transforming it into thermal energy in order to heat water directly.

A Nov. 20, 2016 (Japan) International Center for Materials Nanoarchitectonics (WPI-MANA) press release (received via email), explains further,

Nanoparticle Boost for Solar-powered Water Heating

Now, Satoshi Ishii and his co-workers at the International Center for Materials Nanoarchitectonics (WPI-MANA) and the Japan Science and Technology Agency have developed a new nanofluid containing titanium nitride (TiN) nanoparticles, which demonstrates high efficiency in heating water and generating water vapor.

The team analytically studied the optical absorption efficiency of a TiN nanoparticle and found that it has a broad and strong absorption peak thanks to lossy plasmonic resonances. Surprisingly, the sunlight absorption efficiency of a TiN nanoparticle outperforms that of a carbon nanoparticle and a gold nanoparticle.

They then exposed each nanofluid to sunlight and measured its ability to heat pure water. The TiN nanofluid had the highest water heating properties, stemming from the resonant sunlight absorption. It also generated more vapor than its carbon‒based counterpart. The efficiency of the TiN nanofluid reached nearly 90 %. Crucially, the TiN particles were not consumed during the process, meaning a TiN‒based heating system could essentially be self‒sustaining over time.

TiN nanofluids show great promise in solar heat applications, with high potential for use in everyday appliances such as showers. The new design could even contribute to methods for decontaminating water through vaporization.

90% is a very exiting conversion rate. Of course, now they need to make sure they can achieve those results consistently, get those results outside the laboratory, and scale up to industrial standards.

Here’s a link to and a citation for the paper,

Titanium Nitride Nanoparticles as Plasmonic Solar Heat Transducers by Satoshi Ishii, Ramu Pasupathi Sugavaneshwar, and Tadaaki Nagao. J. Phys. Chem. C, 2016, 120 (4), pp 2343–2348 DOI: 10.1021/acs.jpcc.5b09604 Publication Date (Web): December 21, 2015

Copyright © 2015 American Chemical Society

This paper is behind a paywall and it’s almost a year old. I wonder what occasioned the push for publicity.