Tag Archives: South Africa

International Women’s Day March 8, 2017 and UNESCO/L’Oréal’s For Women in Science (Rising Talents)

Before getting to the science, here’s a little music in honour of March 8, 2017 International Women’s Day,

There is is a Wikipedia entry devoted to Rise Up (Parachute Club song), Note: Links have been removed<

“Rise Up” is a pop song recorded by the Canadian group Parachute Club on their self-titled 1983 album. It was produced and engineered by Daniel Lanois, and written by Parachute Club members Billy Bryans, Lauri Conger, Lorraine Segato and Steve Webster with lyrics contributed by filmmaker Lynne Fernie.

An upbeat call for peace, celebration, and “freedom / to love who we please,” the song was a national hit in Canada, and was hailed as a unique achievement in Canadian pop music:

“ Rarely does one experience a piece of music in white North America where the barrier between participant and observer breaks down. Rise Up rises right up and breaks down the wall.[1] ”

According to Segato, the song was not written with any one individual group in mind, but as a universal anthem of freedom and equality;[2] Fernie described the song’s lyrics as having been inspired in part by West Coast First Nations rituals in which young girls would “rise up” at dawn to adopt their adult names as a rite of passage.[3]

It remains the band’s most famous song, and has been adopted as an activist anthem for causes as diverse as gay rights, feminism, anti-racism and the New Democratic Party.[4] As well, the song’s reggae and soca-influenced rhythms made it the first significant commercial breakthrough for Caribbean music in Canada.

L’Oréal UNESCO For Women in Science

From a March 8, 2017 UNESCO press release (received via email),

Fifteen outstanding young women researchers, selected
among more than 250 candidates in the framework of the 19th edition of
the L’Oréal-UNESCO For Women in Science awards, will receive the
International Rising Talent fellowship during a gala on 21 March at the
hotel Pullman Tour Eiffel de Paris. By recognizing their achievements at
a key moment in their careers, the _For Women in Science programme aims
to help them pursue their research.

Since 1998, the L’Oréal-UNESCO _For Women in Science programme [1]
has highlighted the achievements of outstanding women scientists and
supported promising younger women who are in the early stages of their
scientific careers. Selected among the best national and regional
L’Oréal-UNESCO fellows, the International Rising Talents come from
all regions of the world (Africa and Arab States, Asia-Pacific, Europe,
Latin America and North America).

Together with the five laureates of the 2017 L’Oreal-UNESCO For Women
in Science awards [2], they will participate in a week of events,
training and exchanges that will culminate with the award ceremony on 23
March 2017 at the Mutualité in Paris.

The 2017 International Rising Talent are recognized for their work in
the following five categories:

WATCHING THE BRAIN AT WORK

* DOCTOR LORINA NACI, Canada
Fundamental medicine
In a coma: is the patient conscious or unconscious?     * ASSOCIATE
PROFESSOR MUIREANN IRISH, Australia

Clinical medicine
Recognizing Alzheimer’s before the first signs appear.

ON THE ROAD TO CONCEIVING NEW MEDICAL TREATMENTS

* DOCTOR HYUN LEE, Germany
Biological Sciences
Neurodegenerative diseases: untangling aggregated proteins.
* DOCTOR NAM-KYUNG YU, Republic of Korea
Biological Sciences
Rett syndrome: neuronal cells come under fire
* DOCTOR STEPHANIE FANUCCHI, South Africa
Biological Sciences
Better understanding the immune system.
* DOCTOR JULIA ETULAIN, Argentina
Biological Sciences
Better tissue healing.

Finding potential new sources of drugs

* DOCTOR RYM BEN SALLEM, Tunisia
Biological Sciences
New antibiotics are right under our feet.
* DOCTOR HAB JOANNA SULKOWSKA, Poland
Biological Sciences
Unraveling the secrets of entangled proteins.

GETTING TO THE HEART OF MATTER

* MS NAZEK EL-ATAB, United Arab Emirates
Electrical, Electronic and Computer Engineering
Miniaturizing electronics without losing memory.
* DOCTOR BILGE DEMIRKOZ, Turkey
Physics
Piercing the secrets of cosmic radiation.
* DOCTOR TAMARA ELZEIN, Lebanon
Material Sciences
Trapping radioactivity.
* DOCTOR RAN LONG, China
Chemistry
Unlocking the potential of energy resources with nanochemistry.

EXAMINING THE PAST TO SHED LIGHT ON THE FUTURE – OR VICE VERSA

* DOCTOR FERNANDA WERNECK, Brazil
Biological Sciences
Predicting how animal biodiversity will evolve.
* DOCTOR SAM GILES, United Kingdom
Biological Sciences
Taking another look at the evolution of vertebrates thanks to their
braincases.
* DOCTOR ÁGNES KÓSPÁL, Hungary
Astronomy and Space Sciences
Looking at the birth of distant suns and planets to better understand
the solar system.

Congratulations to all of the winners!

You can find out more about these awards and others on the 2017 L’Oréal-UNESCO For Women in Science Awards webpage or on the For Women In Science website. (Again in honour of the 2017 International Women’s Day, I was the 92758th signer of the For Women in Science Manifesto.)

International Women’s Day origins

Thank you to Wikipedia (Note: Links have been removed),

International Women’s Day (IWD), originally called International Working Women’s Day, is celebrated on March 8 every year.[2] It commemorates the movement for women’s rights.

The earliest Women’s Day observance was held on February 28, 1909, in New York and organized by the Socialist Party of America.[3] On March 8, 1917, in the capital of the Russian Empire, Petrograd, a demonstration of women textile workers began, covering the whole city. This was the beginning of the Russian Revolution.[4] Seven days later, the Emperor of Russia Nicholas II abdicated and the provisional Government granted women the right to vote.[3] March 8 was declared a national holiday in Soviet Russia in 1917. The day was predominantly celebrated by the socialist movement and communist countries until it was adopted in 1975 by the United Nations.

It seems only fitting to bookend this post with another song (Happy International Women’s Day March 8, 2017),

While the lyrics are unabashedly romantic, the video is surprisingly moody with a bit of a ‘stalker vive’ although it does end up with her holding centre stage while singing and bouncing around in time to Walking on Sunshine.

Technology, athletics, and the ‘new’ human

There is a tension between Olympic athletes and Paralympic athletes as it is felt by some able-bodied athletes that paralympic athletes may have an advantage due to their prosthetics. Roger Pielke Jr. has written a fascinating account of the tensions as a means of asking what it all means. From Pielke Jr.’s Aug. 3, 2016 post on the Guardian Science blogs (Note: Links have been removed),

Athletes are humans too, and they sometimes look for a performance improvement through technological enhancements. In my forthcoming book, The Edge: The War Against Cheating and Corruption in the Cutthroat World of Elite Sports, I discuss a range of technological augmentations to both people and to sports, and the challenges that they pose for rule making. In humans, such improvements can be the result of surgery to reshape (like laser eye surgery) or strengthen (such as replacing a ligament with a tendon) the body to aid performance, or to add biological or non-biological parts that the individual wasn’t born with.

One well-known case of technological augmentation involved the South African sprinter Oscar Pistorius, who ran in the 2012 Olympic Games on prosthetic “blades” below his knees (during happier days for the athlete who is currently jailed in South Africa for the killing of his girlfriend, Reeva Steenkamp). Years before the London Games Pistorius began to have success on the track running against able-bodied athletes. As a consequence of this success and Pistorius’s interest in competing at the Olympic games, the International Association of Athletics Federations (or IAAF, which oversees elite track and field competitions) introduced a rule in 2007, focused specifically on Pistorius, prohibiting the “use of any technical device that incorporates springs, wheels, or any other element that provides the user with an advantage over another athlete not using such a device.” Under this rule, Pistorius was determined by the IAAF to be ineligible to compete against able-bodied athletes.

Pistorius appealed the decision to the Court of Arbitration for Sport. The appeal hinged on answering a metaphysical question—how fast would Pistorius have run had he been born with functioning legs below the knee? In other words, did the blades give him an advantage over other athletes that the hypothetical, able-bodied Oscar Pistorius would not have had? Because there never was an able-bodied Pistorius, the CAS looked to scientists to answer the question.

CAS concluded that the IAAF was in fact fixing the rules to prevent Pistorius from competing and that “at least some IAAF officials had determined that they did not want Mr. Pistorius to be acknowledged as eligible to compete in international IAAF-sanctioned events, regardless of the results that properly conducted scientific studies might demonstrate.” CAS determined that it was the responsibility of the IAAF to show “on the balance of probabilities” that Pistorius gained an advantage by running on his blades. CAS concluded that the research commissioned by the IAAF did not show conclusively such an advantage.

As a result, CAS ruled that Pistorius was able to compete in the London Games, where he reached the semifinals of the 400 meters. CAS concluded that resolving such disputes “must be viewed as just one of the challenges of 21st Century life.”

The story does not end with Oscar Pistorius as Pielke, Jr. notes. There has been another challenge, this time by Markus Rehm, a German long-jumper who leaps off a prosthetic leg. Interestingly, the rules have changed since Oscar Pistorius won his case (Note: Links have been removed),

In the Pistorius case, under the rules for inclusion in the Olympic games the burden of proof had been on the IAAF, not the athlete, to demonstrate the presence of an advantage provided by technology.

This precedent was overturned in 2015, when the IAAF quietly introduced a new rule that in such cases reverses the burden of proof. The switch placed the burden of proof on the athlete instead of the governing body. The new rule—which we might call the Rehm Rule, given its timing—states that an athlete with a prosthetic limb (specifically, any “mechanical aid”) cannot participate in IAAF events “unless the athlete can establish on the balance of probabilities that the use of an aid would not provide him with an overall competitive advantage over an athlete not using such aid.” This new rule effectively slammed the door to participation by Paralympians with prosthetics from participating in Olympic Games.
Advertisement

Even if an athlete might have the resources to enlist researchers to carefully study his or her performance, the IAAF requires the athlete to do something that is very difficult, and often altogether impossible—to prove a negative.

If you have the time, I encourage you to read Pielke Jr.’s piece in its entirety as he notes the secrecy with which the Rehm rule was implemented and the implications for the future. Here’s one last excerpt (Note: A link has been removed),

We may be seeing only the beginning of debates over technological augmentation and sport. Silvia Camporesi, an ethicist at King’s College London, observed: “It is plausible to think that in 50 years, or maybe less, the ‘natural’ able-bodied athletes will just appear anachronistic.” She continues: “As our concept of what is ‘natural’ depends on what we are used to, and evolves with our society and culture, so does our concept of ‘purity’ of sport.”

I have written many times about human augmentation and the possibility that what is now viewed as a ‘normal’ body may one day be viewed as subpar or inferior is not all that farfetched. David Epstein’s 2014 TED talk “Are athletes really getting faster, better, stronger?” points out that in addition to sports technology innovations athletes’ bodies have changed considerably since the beginning of the 20th century. He doesn’t discuss body augmentation but it seems increasingly likely not just for athletes but for everyone.

As for athletes and augmentation, Epstein has an Aug. 7, 2016 Scientific American piece published on Salon.com in time for the 2016 Summer Olympics in Rio de Janeiro,

I knew Eero Mäntyranta had magic blood, but I hadn’t expected to see it in his face. I had tracked him down above the Arctic Circle in Finland where he was — what else? — a reindeer farmer.

He was all red. Not just the crimson sweater with knitted reindeer crossing his belly, but his actual skin. It was cardinal dappled with violet, his nose a bulbous purple plum. In the pictures I’d seen of him in Sports Illustrated in the 1960s — when he’d won three Olympic gold medals in cross-country skiing — he was still white. But now, as an older man, his special blood had turned him red.

Mäntyranta had about 50 percent more red blood cells than a normal man. If Armstrong [Lance Armstrong, cyclist] had as many red blood cells as Mäntyranta, cycling rules would have barred him from even starting a race, unless he could prove it was a natural condition.

During his career, Mäntyranta was accused of doping after his high red blood cell count was discovered. Two decades after he retired, Finnish scientists found his family’s mutation. …

Epstein also covers the Pistorius story, albeit with more detail about the science and controversy of determining whether someone with prosthetics may have an advantage over an able-bodied athlete. Scientists don’t agree about whether or not there is an advantage.

I have many other posts on the topic of augmentation. You can find them under the Human Enhancement category and you can also try the tag, machine/flesh.

Nanotechnology-enhanced roads in South Africa and in Kerala, India

It’s all about road infrastructure in these two news bits.

Road building and maintenance in sub-Saharan Africa

A July 7, 2016 news item on mybroadband.co.za describes hopes that nanotechnology-enabled products will make roads easier to build and maintain,

The solution for affordable road infrastructure development could lie in the use of nanotechnology, according to a paper presented at the 35th annual Southern African Transport Conference in Pretoria.

The cost of upgrading, maintaining and rehabilitating road infrastructure with limited funds makes it impossible for sub-Saharan Africa to become competitive in the world market, according to Professor Gerrit Jordaan of the University of Pretoria, a speaker at the conference.

The affordability of road infrastructure depends on the materials used, the environment in which the road will be built and the traffic that will be using the road, explained Professor James Maina of the department of civil engineering at the University of Pretoria.

Hauling materials to a construction site contributes hugely to costs, which planners try to minimise by getting materials closer to the site. But if there aren’t good quality materials near the site, another option is to modify poor quality materials for construction purposes. This is where nanotechnology comes in, he explained.

For example, if the material is clay soil, it has a high affinity to water so when it absorbs water it expands, and when it dries out it contracts. Nanotechnology can make the soil water repellent. “Essentially, nanotechnology changes the properties to work for the construction process,” he said.

These nanotechnology-based products have been used successfully in many parts of the world, including India, the USA and in the West African region.

There have also been concerns about road building and maintenance in Kerala, India.

Nanotechnology for city roads in Kochi

A March 23, 2015 news item in the Times of India describes an upcoming test of a nanotechnology-enabled all weather road,

Citizens can now look forward to better roads with the local self-government department planning to use nanotechnology to construct all-weather roads.

For the district trial run, the department has selected a 300-metre stretch of a panchayat road in Edakkattuvayal panchayat. The trial would experiment with nanotechnology to build moisture resistant, long-lasting and maintenance-free roads.

“Like the public, the department is also fed up with the poor condition of roads in the state. Crores of rupees are spent every year for repairing and resurfacing the roads. This is because of heavy rains in the state that weakens the soil base of roads, resulting in potholes that affect the ride-quality of the road surface,” said KT Sajan, assistant executive engineer, LSGD, who is supervising the work.

The nanotechnology has been developed by Zydex Technologies, a Gujarat-headquartered firm. The company’s technology has already been used by major private contract firms that build national highways in India and in other major projects in European and African countries.

Oddly, you can’t find out more about the Zydex products mentioned in the article on its Roads Solution webpage , where you are provided a general description of the technology,

Revolutionary nanotechnology for building moisture resistant, long lasting & maintenance free roads through innovative adaptation of Organosilane chemistry.

Zydex Nanotechnology: A Game Changer

Zydex Nanotechnology has a value propositions for all layers of the road

SOIL LAYERS
Zydex Nanotechnology makes the soil moisture resistant, reduces expansiveness and stabilizes the soil to improve its bearing strength manifold. If used with 1% cement, it can stabilize almost any type of soil, by improving the California Bearing Ratio (CBR) to even 100 or above.

Here is the real change in game, as stronger soil bases would now allow optimization of road section thicknesses, potentially saving 10-15% road construction cost.

BOND COATS
Prime & Tack coats become 100 % waterproofed, due to penetration and chemical bonding. This also ensures uniform load transfer. And all this at lower residual bitumen.

ASPHALTIC LAYERS
Chemical bonding between aggregates and asphalt eliminates moisture induced damage of asphaltic layers.

Final comment

I hadn’t meant to wait so long to publish the bit about Kerala’s road but serendipity has allowed me to link it to a piece about South Africa ‘s roads and to note a resemblance to the problems encountered in both regions.

South Africa, energy, and nanotechnology

South African academics Nosipho Moloto, Associate Professor, Department of Chemistry, University of the Witwatersrand and Siyabonga P. Ngubane, Lecturer in Chemistry, University of the Witwatersrand have written a Feb. 17, 2016 article for The Conversation (also available on the South African Broadcasting Corporation website) about South Africa’s energy needs and its nanotechnology efforts (Note: Links have been removed),

Energy is an economic driver of both developed and developing countries. South Africa over the past few years has faced an energy crisis with rolling blackouts between 2008 and 2015. Part of the problem has been attributed to mismanagement by the state-owned utility company Eskom, particularly the shortcomings of maintenance plans on several plants.

But South Africa has two things going for it that could help it out of its current crisis. By developing a strong nanotechnology capability and applying this to its rich mineral reserves the country is well-placed to develop new energy technologies.

Nanotechnology has already shown that it has the potential to alleviate energy problems. …

It can also yield materials with new properties and the miniaturisation of devices. For example, since the discovery of graphene, a single atomic layer of graphite, several applications in biological engineering, electronics and composite materials have been identified. These include economic and efficient devices like solar cells and lithium ion secondary batteries.

Nanotechnology has seen an incredible increase in commercialisation. Nearly 10,000 patents have been filed by large corporations since its beginning in 1991. There are already a number of nanotechnology products and solutions on the market. Examples include Miller’s beer bottling composites, Armor’s N-Force line bulletproof vests and printed solar cells produced by Nanosolar – as well as Samsung’s nanotechnology television.

The advent of nanotechnology in South Africa began with the South African Nanotechnology Initiative in 2002. This was followed by the a [sic] national nanotechnology strategy in 2003.

The government has spent more than R450 million [Rand] in nanotechnology and nanosciences research since 2006. For example, two national innovation centres have been set up and funding has been made available for equipment. There has also been flagship funding.

The country could be globally competitive in this field due to the infancy of the technology. As such, there are plenty of opportunities to make novel discoveries in South Africa.

Mineral wealth

There is another major advantage South Africa has that could help diversify its energy supply. It has an abundance of mineral wealth with an estimated value of US$2.5 trillion. The country has the world’s largest reserves of manganese and platinum group metals. It also has massive reserves of gold, diamonds, chromite ore and vanadium.

Through beneficiation and nanotechnology these resources could be used to cater for the development of new energy technologies. Research in beneficiation of minerals for energy applications is gaining momentum. For example, Anglo American and the Department of Science and Technology have embarked on a partnership to convert hydrogen into electricity.

The Council for Scientific and Industrial research also aims to develop low cost lithium ion batteries and supercapacitors using locally mined manganese and titanium ores. There is collaborative researchto use minerals like gold to synthesize nanomaterials for application in photovoltaics.

The current photovoltaic market relies on importing solar cells or panels from Europe, Asia and the US for local assembly to produce arrays. South African UV index is one of the highest in the world which reduces the lifespan of solar panels. The key to a thriving and profitable photovoltaic sector therefore lies in local production and research and development to support the sector.

It’s worth reading the article in its entirety if you’re interested in a perspective on South Africa’s energy and nanotechnology efforts.

Afrofuturism in the UK’s Guardian newspaper and as a Future Tense Dec. 2015 event

My introduction to the term, Afrofuturism was in a March 11, 2015 posting by Jessica Bland for the Guardian in the Technology/Political Science section. It was written on the occasion of a then upcoming FutureFest event,

This is unapologetically connected to FutureFest, the festival Nesta (where I work) is holding this weekend in London Bridge. These thoughts represent the ideas that piqued my interest while curating talks and exhibits based on the thought experiment of a future African city-superpower. George Clinton, Spoek Mathambo, Tegan Bristow and Fabian-Carlos Guhl (from Ampion Venture Bus) will be speaking during the weekend. Thomas Aquilina is displaying photographs from his trip and the architects of the Lagos 2060 project will take part in a debate on whether their fiction can lead to a different kind of future.

In anticipation of the March 2015 FutureFest event, Bland had  written a roundup piece about “New sounds from South Africa and Nigeria’s urban science fiction [that] could change the future of technology and the city.” Here are some excerpts from her piece (Note: Links have been removed),

Strong stories or visions of the future stick around. The 1920s sci-fi fantasy of a jetpack commute still pops up in discussions about the future of technology, not to mention as an option on the Citymapper travel app. By co-opting or creating new visions of the future, it seems possible to influence the development of new products and services – from consumer tech to urban infrastructure. A new generation of African artists is taking over the mantle of Afrofuturist arts from a US-centred crowd. They could bring a welcome change to how technology is developed in the region, as well as a challenge to the dominance of imported plans for urban development.

Last Thursday’s London gig from Fantasma was sweaty and boisterous. It was also very different from the remix of Joy Division’s She’s Lost Control that brought front man Spoek Mathambo to the attention of a global audience a couple of years ago. Fantasma is a group of South African musicians with different backgrounds. Guitarist Bhekisenzo Cele started the gig with three of his own songs, introducing the traditional Zulu maskandi music that they went on to mix with shangaan electro, hiphop, punk, electronica and everything in between.

The gig had a buzz about it. But the performance was from a new collective trying things out; it wasn’t as genre-smashing as expected. And expectations ride high for Spoek. In 2011, he titled a collection from his back catalogue ‘Beyond Afrofuturism’. He took on, at least in name, a whole Afro-American cultural movement: embodied by musicians like Sun Ra, George Clinton and Drexciya. A previous post on this blog by Chardine Taylor-Stone describes the roots of Afrofuturism in science fiction that centres on space travel and human enhancement. But she goes on to say: “Afrofuturism also goes beyond spaceships, androids and aliens, and encompasses African mythology and cosmology with an aim to connect those from across the Black Diaspora to their forgotten African ancestry.” Spoek shares what he calls a cultural lineage with this movement. But he is not Afro-American. He also shares a cultural lineage with the sounds of South African musicians he grew up listening to.

Other forms of art are taking an increasingly activist role in the future of technology. Lydia Nicholas’s description of the relationship between Douglas Adam’s fictional Hitchhiker’s Guide and the real life development of the iPad shows how science fiction can effortlessly influence the development of new technology.

The science fiction collection Lagos 2060 is a more purposeful intervention. Published in 2013, it speculates about what it will be like to live in Lagos 100 years after Nigeria gained independence from the UK. It was born out of a creative writing workshop initiated by DADA books in Lagos. Foundation director of DADA, Ayodele Arigbabu, described the collection and other similar video and visual art work (in an email): “Far more than aesthetic indulgence, these renditions are a calibration of the changes deemed necessary in today’s political, technical and cultural infrastructure.”

Bland also explores a history of this movement,

Gaston Berger was the Senegalese founder of the academic journal Prospectiv in 1957. To many, he was the first futurist, or at least one of the first people to describe themselves as one. He founded promotes the practice of playing out the human consequences of today’s action. This is about avoiding a fatalistic approach to the future: about being proactive and provoking change, as much as anticipating it.

Berger’s early work spawned a generation, and then another and another, of professional futurists. They work in different ways and different places. Some are in government, enticing and frightening politicians with the prospect of a different transport system, healthcare sector or national security regime. Some are consultants to large companies, offering advice on the way that trends like 3D printing or flying robots will change their sector. An article from 1996 does a good job of summarising the principles of this movement: don’t act like an ostrich and ignore the future by putting your head in the sand; don’t act like a fireman and just respond to threats to your future; and don’t focus just on insurance against for the future.

Bland has written an interesting and sprawling piece, which in some way reflects the subject. Africa is a huge and sprawling continent.

Slate, a US online magazine, is hosting along with New America and Arizona State University a Future Tense event on Afrofuturism but this seems to be quite US-centric. From the Future Tense Afrofuturism event webpage on the Slate website (Note: Links have been removed),

Future Tense is hosting a conversation about Afrofuturism in New York City on December 3rd, 2015 from 6:30-8:30 p.m.

Afrofuturism emphasizes the intersection of black cultures with questions of imagination, liberation, and technology. Rooted in works like those of science fiction author Octavia Butler, avant-garde jazz legend Sun Ra, and George Clinton, Afrofuturism explores concepts of race, space and time in order to ask the existential question posed by critic Mark Dery: “Can a community whose past has been deliberately erased imagine possible futures?”

Will the alternative futures and realities Afrofuturism describes transform and reshape the concept of black identity? Join Future Tense for a discussion on Afrofuturism and its unique vantage on the challenges faced by black Americans and others throughout the African diaspora.

During the event, enjoy an Afrofuturist inspired drink from 67 Orange Street. Follow the discussion online using #Afrofuturism and by following @NewAmericaNYC and @FutureTenseNow.

Click here to RSVP. Space is limited so register now!

PARTICIPANTS

Michael Bennett
Principal Investigator, School for the Future of Innovation in Society, Arizona State University
@MGBennett

Ytasha Womack
Author, Afrofuturism: The World of Black Sci-Fi and Fantasy Culture and Post Black: How A New Generation is Redefining African American Identity
@ytashawomack

Juliana Huxtable
DJ and Artist
@HUXTABLEJULIANA

Walé Oyéjidé
Designer and Creative Director, Ikire Jones
@IkireJones

Aisha Harris
Staff writer, Slate
@craftingmystyle

It seems we have one word, Afrofuturism, and two definitions. One where Africa is referenced and one where African-American experience is referenced.

For anyone curious about Nesta, where Jessica Bland works and the Future Fest host (from its Wikipedia entry),

Nesta (formerly NESTA, National Endowment for Science, Technology and the Arts) is an independent charity that works to increase the innovation capacity of the UK.

The organisation acts through a combination of practical programmes, investment, policy and research, and the formation of partnerships to promote innovation across a broad range of sectors.

That’s it for now.

Spanning north to south and French to English on the African continent with nanotechnology

A Sept. 27, 2015 news item on the Algérie Presse Service (rough translation: Algerian Press Agency) describes plans for a new nanotechnology centre shared by Algeria and South Africa,

Un projet de réalisation d’un centre de recherche algéro-sud-africain dédié à la synthèse et la caractérisation des nanomatériaux (structures à l’échelle de l’atome) pour différentes applications, a été annoncé dimanche à Alger lors d’un workshop sur les nanotechnologies.

Le lieu d’implantation du centre et le programme qui lui sera dédié seront décidés par le ministre de l’Enseignement supérieur et de la Recherche scientifique et son homologue sud-africain lors d’une réunion prévue en octobre prochain en Afrique du Sud, a indiqué Pr. Hafid Aourag, DG de la Recherche scientifique et du développement technologique qui présidait ce workshop entre experts algériens et sud africains sur les nanotechnologies.

The announcement about the new centre was made during a nanotechnology workshop being held in Algiers this last weekend (Sept. 26-27, 2015). The proposed nanotechnology center’s location and other details will be decided by the Algerian Minister of Higher Education and Scientific Research and his South African counterpart during an October 2015 meeting in South Africa according to Hafid Aourag, professor and Director General of Scientific Research and Technological Development in Algeria.

Aourag noted that Algeria and South Africa have a long and successful history of science collaboration,

“La coopération de l’Algérie avec l’Afrique du Sud a atteint un stade très avancé”, a-t-il estimé, révélant l’existence de “beaucoup de projets entre les laboratoires de recherche des deux pays”.

Pr. Aourag a rappelé que les deux pays avaient déjà “cofinancé plus de 25 projets” ayant donné des résultats concrets comme la publication de 35 travaux dans des revues et la réalisation de produits innovants issus des nanotechnologies.

“Il s’agit essentiellement de produits issus des nanomatériaux dans les domaines de l’agriculture et du traitement de l’eau”, a-t-il précisé.

There have been some 25 joint nanotechnology projects ranging from agricultural applications to water treatment.

Aourag added,

Il a relevé que la première centrale technologique en Algérie, dédiée à la fabrication des semi-conducteurs et spécialisée en nanotechnologie, “est déjà fonctionnelle et sera inaugurée, en octobre prochain”.

If I understand this rightly, Aourag is saying that Algeria has focussed on the semiconductor industry and the fabrication of parts at the nanoscale and this will be inaugurated October 2015.

It’s not clear to me  if this business about the semiconductors is part of the nanotechnology centre initiative or if it’s an incidental, related announcement.

As I found this north-south collaboration intriguing, I ran a search and found this on the University of South Africa website in a Sept. 10, 2013 news release,

Professor Malik Maaza, incumbent of the UNESCO-Unisa Africa Chair in Nanoscience and Nanotechnology, continues to represent the continent on the global nano stage. He was recently elected as the only African member of the advisory board of the Royal Society of Chemistry’s Journal of Materials Chemistry A, a prestigious materials journal.

With about 20 years of experience in nanosciences, Algerian born and an adoptive South African [emphasis mine] Professor Malik Maaza is an ideal incumbent for the UNESCO-Unisa Africa Chair in Nanoscience and Nanotechnology. He has undergraduate degrees in Solid State Physics and Photonics from the University of Oran, Algeria, and University of Paris VI, France. His PhD in Neutron Optics was obtained from the University of Paris VI.

He is a man passionate about voicing Africa’s nanoscience and nanotechnology knowledge production progress and contributions. Parallel to the initiation of the South African Nanotechnology Initiative (SANi) launched in 2006, which Maaza instigated with Dr Philemon Mjwara, current Director General of the national department of science and technology, in 2005, in Trieste-Italy, under the patronage of [The World Academy of Sciences] TWAS, [Abdus Salam International Centre for Theoretical Physics] ICTP and [United Nations Industrial Development Organization] UNIDO, he initiated the Nanosciences African Network (NANOAFNET), which has its headquarters at the iThemba LABS-NRF in Cape Town.

That’s all I’ve got on Algeria-South Africa science-themed relations and connections.

Should anyone have a better translation than I’ve been able to offer or more details about any aspect of this initiative, please do leave a comment.

Global overview of nano-enabled food and agriculture regulation

First off, this post features an open access paper summarizing global regulation of nanotechnology in agriculture and food production. From a Sept. 11, 2015 news item on Nanowerk,

An overview of regulatory solutions worldwide on the use of nanotechnology in food and feed production shows a differing approach: only the EU and Switzerland have nano-specific provisions incorporated in existing legislation, whereas other countries count on non-legally binding guidance and standards for industry. Collaboration among countries across the globe is required to share information and ensure protection for people and the environment, according to the paper …

A Sept. 11, 2015 European Commission Joint Research Centre press release (also on EurekAlert*), which originated the news item, summarizes the paper in more detail (Note: Links have been removed),

The paper “Regulatory aspects of nanotechnology in the agri/feed/food sector in EU and non-EU countries” reviews how potential risks or the safety of nanotechnology are managed in different countries around the world and recognises that this may have implication on the international market of nano-enabled agricultural and food products.

Nanotechnology offers substantial prospects for the development of innovative products and applications in many industrial sectors, including agricultural production, animal feed and treatment, food processing and food contact materials. While some applications are already marketed, many other nano-enabled products are currently under research and development, and may enter the market in the near future. Expected benefits of such products include increased efficacy of agrochemicals through nano-encapsulation, enhanced bioavailability of nutrients or more secure packaging material through microbial nanoparticles.

As with any other regulated product, applicants applying for market approval have to demonstrate the safe use of such new products without posing undue safety risks to the consumer and the environment. Some countries have been more active than others in examining the appropriateness of their regulatory frameworks for dealing with the safety of nanotechnologies. As a consequence, different approaches have been adopted in regulating nano-based products in the agri/feed/food sector.

The analysis shows that the EU along with Switzerland are the only ones which have introduced binding nanomaterial definitions and/or specific provisions for some nanotechnology applications. An example would be the EU labelling requirements for food ingredients in the form of ‘engineered nanomaterials’. Other regions in the world regulate nanomaterials more implicitly mainly by building on non-legally binding guidance and standards for industry.

The overview of existing legislation and guidances published as an open access article in the Journal Regulatory Toxicology and Pharmacology is based on information gathered by the JRC, RIKILT-Wageningen and the European Food Safety Agency (EFSA) through literature research and a dedicated survey.

Here’s a link to and a citation for the paper,

Regulatory aspects of nanotechnology in the agri/feed/food sector in EU and non-EU countries by Valeria Amenta, Karin Aschberger, , Maria Arena, Hans Bouwmeester, Filipa Botelho Moniz, Puck Brandhoff, Stefania Gottardo, Hans J.P. Marvin, Agnieszka Mech, Laia Quiros Pesudo, Hubert Rauscher, Reinhilde Schoonjans, Maria Vittoria Vettori, Stefan Weigel, Ruud J. Peters. Regulatory Toxicology and Pharmacology Volume 73, Issue 1, October 2015, Pages 463–476 doi:10.1016/j.yrtph.2015.06.016

This is the most inclusive overview I’ve seen yet. The authors cover Asian countries, South America, Africa, and the MIddle East, as well as, the usual suspects in Europe and North America.

Given I’m a Canadian blogger I feel obliged to include their summary of the Canadian situation (Note: Links have been removed),

4.2. Canada

The Canadian Food Inspection Agency (CFIA) and Public Health Agency of Canada (PHAC), who have recently joined the Health Portfolio of Health Canada, are responsible for food regulation in Canada. No specific regulation for nanotechnology-based food products is available but such products are regulated under the existing legislative and regulatory frameworks.11 In October 2011 Health Canada published a “Policy Statement on Health Canada’s Working Definition for Nanomaterials” (Health Canada, 2011), the document provides a (working) definition of NM which is focused, similarly to the US definition, on the nanoscale dimensions, or on the nanoscale properties/phenomena of the material (see Annex I). For what concerns general chemicals regulation in Canada, the New Substances (NS) program must ensure that new substances, including substances that are at the nano-scale (i.e. NMs), are assessed in order to determine their toxicological profile ( Environment Canada, 2014). The approach applied involves a pre-manufacture and pre-import notification and assessment process. In 2014, the New Substances program published a guidance aimed at increasing clarity on which NMs are subject to assessment in Canada ( Environment Canada, 2014).

Canadian and US regulatory agencies are working towards harmonising the regulatory approaches for NMs under the US-Canada Regulatory Cooperation Council (RCC) Nanotechnology Initiative.12 Canada and the US recently published a Joint Forward Plan where findings and lessons learnt from the RCC Nanotechnology Initiative are discussed (Canada–United States Regulatory Cooperation Council (RCC) 2014).

Based on their summary of the Canadian situation, with which I am familiar, they’ve done a good job of summarizing. Here are a few of the countries whose regulatory instruments have not been mentioned here before (Note: Links have been removed),

In Turkey a national or regional policy for the responsible development of nanotechnology is under development (OECD, 2013b). Nanotechnology is considered as a strategic technological field and at present 32 nanotechnology research centres are working in this field. Turkey participates as an observer in the EFSA Nano Network (Section 3.6) along with other EU candidate countries Former Yugoslav Republic of Macedonia, and Montenegro (EFSA, 2012). The Inventory and Control of Chemicals Regulation entered into force in Turkey in 2008, which represents a scale-down version of the REACH Regulation (Bergeson et al. 2010). Moreover, the Ministry of Environment and Urban Planning published a Turkish version of CLP Regulation (known as SEA in Turkish) to enter into force as of 1st June 2016 (Intertek).

The Russian legislation on food safety is based on regulatory documents such as the Sanitary Rules and Regulations (“SanPiN”), but also on national standards (known as “GOST”) and technical regulations (Office of Agricultural Affairs of the USDA, 2009). The Russian policy on nanotechnology in the industrial sector has been defined in some national programmes (e.g. Nanotechnology Industry Development Program) and a Russian Corporation of Nanotechnologies was established in 2007.15 As reported by FAO/WHO (FAO/WHO, 2013), 17 documents which deal with the risk assessment of NMs in the food sector were released within such federal programs. Safe reference levels on nanoparticles impact on the human body were developed and implemented in the sanitary regulation for the nanoforms of silver and titanium dioxide and, single wall carbon nanotubes (FAO/WHO, 2013).

Other countries included in this overview are Brazil, India, Japan, China, Malaysia, Iran, Thailand, Taiwan, Australia, New Zealand, US, South Africa, South Korea, Switzerland, and the countries of the European Union.

*EurekAlert link added Sept. 14, 2015.

2015 Science & You, a science communication conference in France

Science communicators can choose to celebrate June 2015 in Nancy, France and acquaint themselves with the latest and greatest in communication at the Science & You conference being held from June 1 – 6, 2015. Here’s the conference teaser being offered by the organizers,

The 2015 conference home page (ETA May 5, 2015 1045 hours PDT: the home page features change) offers this sampling of the workshops on offer,

No less than 180 communicators will be lined up to hold workshop sessions, from the 2nd to the 5th June in Nancy’s Centre Prouvé. In the meantime, here is an exclusive peek at some of the main themes which will be covered:

– Science communication and journalism. Abdellatif Bensfia will focus on the state of science communication in a country where major social changes are playing out, Morocco, while Olivier Monod will be speaking about “Chercheurs d’actu” (News Researchers), a system linking science with the news. Finally, Matthieu Ravaud and Fabrice Impériali from the CNRS (Centre National de Recherche Scientifique) will be presenting “CNRS Le journal”, the new on-line media for the general public.

– Using animals in biomedical research. This round-table, chaired by Victor Demaria-Pesce, from the Groupement Interprofessionnel de Réflexion et de Communication sur la Recherche (Gircor) will provide an opportunity to spotlight one of society’s great debates: the use of animals in research. Different actors working in biomedical research will present their point of view on the subject, and the results of an analysis of public perception of animal experimentation will be presented. What are the norms in this field? What are the living conditions of the animals in laboratories? How is this research to be made legitimate? This session will centre on all these questions.

– Science communication and the arts. This session will cover questions such as the relational interfaces between art and science, with in particular the presentation of “Pulse Project” with Michelle Lewis-King, and the Semaine du Cerveau (Brain Week) in Grenoble (Isabelle Le Brun).
Music will also be there with the talk by Milla Karvonen from the University of Oulu, who will be speaking about the interaction between science and music, while Philippe Berthelot will talk about the art of telling the story of science as a communication tool.

– Science on television. This workshop will also be in the form of a round table, with representatives from TVV (Vigyan Prasar, Inde), and Irene Lapuente (La Mandarina de Newton), Mico Tatalovic and Elizabeth Vidal (University of Cordoba), discussing how the world of science is represented on a mass media like television. Many questions will be debated, as for example the changing image of science on television, its historical context, or again, the impact these programmes have on audiences’ perceptions of science.

To learn more, you will find the detailed list of all the workshops and plenaries in the provisional programme on-line.

Science & You seems to be an ‘umbrella brand’ for the “Journées Hubert Curien” conference with plenaries and workshops and the “Science and Culture” forum, which may explain the variety of dates (June 1 – 6, June 2 – 5, and June 2 – 6) on the Science & You home page.

Here’s information about the Science & You organizers and more conference dates (from the Patrons page),

At the invitation of the President of the Université de Lorraine, the professors Etienne Klein, Cédric Villani and Brigitte Kieffer accepted to endorse Science & You. It is an honour to be able to associate them with this major event in science communication, in which they are particularly involved.

Cédric Villani, Fields Medal 2010

Cédric Villani is a French mathematician, the Director of the Institut Henri Poincaré and a professor at the Université Claude Bernard Lyon 1.
His main research interests are in kinetic theory (Boltzmann and Vlasov equations and their variants), and optimal transport and its applications (Monge equation).
He has received several national and international awards for his research, in particular the Fields Medal, which he received from the hands of the President of India at the 2010 International Congress of Mathematicians in Hyderabad (India). Since then he has played the role of spokesperson for the French mathematical community in media and political circles.
Cédric Villani regularly invests in science communication aiming at various audiences: conferences in schools, public conferences in France and abroad, regular participation in broadcasts and current affairs programmes and in science festivals.


Etienne Klein, physicist and philosopher

Etienne Klein is a French physicist, Director of Research at the CEA (Commissariat à l’énergie atomique et aux énergies alternatives – Alternative Energies and Atomic Energy Commission) and has a Ph.D. in philosophy of science. He teaches at the Ecole Centrale in Paris and is head of the Laboratoire de Recherche sur les Sciences de la Matière (LARSIM) at the CEA.

He has taken part in several major projects, such as developing a method of isotope separation involving the use of lasers, and the study of a particle accelerator with superconducting cavities. He was involved in the design of the Large Hadron Collider (LHC) at CERN.
He taught quantum physics and particle physics at Ecole Centrale in Paris for several years and currently teaches philosophy of science. He is a specialist on time in physics and is the author of a number of essays.
He is also a member of the OPECST (Conseil de l’Office parlementaire d’évaluation des choix scientifiques et technologiques – Parliamentary Office for the Evaluation of Scientific and Technological Choices), of the French Academy of Technologies, and of the Conseil d’Orientation (Advisory Board) of the Institut Diderot.
Until June 2014, he presented a weekly radio chronicle, Le Monde selon Etienne Klein, on the French national radio France Culture.

Photo by Philippe Matsas © Flammarion


Brigitte Kieffer, Campaigner for women in science

B. L. Kieffer is Professor at McGill University and at the Université de Strasbourg France. She is also Visiting Professor at UCLA (Los Angeles, USA). She develops her research activity at IGBMC, one of the leading European centres of biomedical research. She is recipient of the Jules Martin (French Academy of Science, 2001) and the Lounsbery (French and US Academies of Science, 2004) Awards, and has become an EMBO Member in 2009.
In 2012 she received the Lamonica Award of Neurology (French Academy of Science) and was nominated Chevalier de la Légion d’honneur. In December 2013 she was elected as a member of the French Academy of Sciences.
In March 2014, she received the International L’OREAL-UNESCO Award for Women in Science (European Laureate). She started as the Scientific Director of the Douglas Hospital Research Centre, affiliated to McGill University in January 2014, and remains Professor at the University of Strasbourg, France.

Photo by Julian Dufort

Here’s more about the conference at the heart of Science & You (from The Journées Hubert Curien International Conference webpage),

Following on the 2012 conference, this project will bring together all those interested in science communication: researchers, PhD students, science communicators, journalists, professionals from associations and museums, business leaders, politicians… A high-level scientific committee has been set up for this international conference, chaired by Professor Joëlle Le Marec, University of Paris 7, and counting among its members leading figures in science communication such as Bernard Schiele (Canada) or Hester du Plessis (South Africa).

The JHC Conference will take place from June 2nd to 6th at the Centre Prouvé, Nancy. These four days will be dedicated to a various programme of plenary conferences and workshops on the theme of science communication today and tomorrow.

You can find the Registration webpage here where you can get more information about the process and access the registration form.

Green nanotechnology centre (meaningful science for helping humanity) launched in South Africa

On July 14, 2014, South Africa’s University of the Western Cape (UWC) launched its Centre for Green Nanotechnology. A July 23, 2014 news item on Nanowerk makes readers feel as if they were present,

The establishment of University of the Western Cape (UWC)’s Centre for Green Nanotechnology was made a reality through a positive partnership between the University of Missouri (UM) and UWC that has spanned approximately 30 years.

[Speakers at the launch of the Centre included Prof Brian O’Connell, Rector of UWC; Prof Richard Bowen Loftin, Chancellor of UM; Prof Ken Dean, Provost of UM; and Prof Ramesh Bharuthram, Deputy Vice-Chancellor of UWC.]

Green nanotechnology is a relatively new science which aims to create environmentally friendly technologies in an effort to tackle real problems. Nanotechnology has improved the design and performance of products in various areas such as electronics, medicine and medical devices, food and agriculture, cosmetics, chemicals, materials, coatings, energy and so forth. According to Prof Bharuthram, “Green nanotechnology provides an opportunity to combine the strengths of nanobioscience, nanochemistry and nanophysics towards innovative solutions for societal benefit.”

Another keynote speaker at the launch included Professor Kattesh Katti, who has been hailed as the “father of green nanotechnology” and cited as one of the 25 most influential scientists in molecular imaging in the world. Prof Katti will divide his time between the University of Missouri (where he heads up their Green Nanotechnology Centre) and UWC, where he will spend approximately 3-6 months of the year.

Prof Katti noted that nanotechnology involves various role players – including scientists, biologists and chemists – working together. During his lecture, he focused on the use of green nanotechnologies to treat cancer. While the treatment of cancer utilising green nanotechnologies is still at experimental stages, he illustrated how the use of nanotechnologies could be the treatment of the future. He explained that current drugs used to treat cancers don’t always have the desired effect as the drugs don’t always penetrate tumours effectively due to their large size and approximately 60% of drugs go away from the intended target (tumour). Nanotechnology particles, due to their small size and their functioning, have the ability to penetrate tumours much more effectively.

A July 14, 2014 UWC news release, which originated the news item, provides background about events leading to the inception of this new centre and provides insight into its purpose,

The establishment of the Centre for Green Nanotechnology started in 2008/09 when UWC embarked on developing a five-year institutional strategic plan for 2010-2014. The Institutional Operational Plan (IOP) identified eight institutional goals, which included: Goal 2 – Teaching & Learning; and Goal 3 – Research & Innovation. Prof Bharuthram explained, “The IOP articulated the need for UWC to identify emerging and established research niche areas that will not only contribute to high output in the form of research publications and graduating masters and doctoral students, but equally importantly give the University a set of distinctions that will set UWC apart from the other higher education institutions – a calculated move towards becoming a research intensive university. It is indeed fascinating that at the time UWC was engaged in this exercise, the University of Missouri was undertaking a similar comprehensive initiative which resulted in the identification and development of the five MIZZOU Advantage thematic areas. These two parallel undertakings helped to elevate the partnership between UWC and UM to hitherto unknown heights.”

UWC’s Centre for Green Nanotechnology aims to promote:

·    The development of fundamental sciences as they relate to chemistry, physics and biomedical and alternative energy aspects of green nanotechnology.

·   Research and application on indigenous phyto-chemicals and phyto-mediated technologies for the production of green nanotechnologies with applications in medicine, energy and allied disciplines.

· New green nanotechnological synthetic processes and their feasibilities at laboratory levels, pilot scale and industrial scale for mass manufacturing.

·    Green nanoparticles and green nanotechnologies in the design and development of new medical diagnostic/therapeutic agents, biological sensors, chemical sensors, smart electronic materials, nanoscale robots, environmentally benign breathing devices.

Furthermore the Centre aims to provide formal training to students at the undergraduate, graduate and post-doctoral levels in all aspects of green nanotechnology from blue sky to applied, including impact on socioeconomic development, policy development and revision.

UWC is exceptionally excited about this new venture and is proud that it continues to show great developmental strides in all academic spheres. At the launch of the Centre, Prof O’Connell said, “When there is robust engagement there is change. Knowledge and change goes together. The more ways of knowing is a more efficient way to tackle problems.”

There was a general consensus that education is the key factor in shaping our future. Prof Loftin, Chancellor of UM said, “We think of resources in terms of tangible things, but the most precious resource is human capital.

The strides that UM and UWC have made in staying current with regard to offering course studies that are new illustrates that these institutions are investing heavily in human capital and are committed to providing solutions for future challenges.

​As Prof O’Connell noted, “UWC is a metaphor for Africa. Despite being excluded and coming from a disadvantaged past, we are here to show that we can use our brain to push the boundaries.”

I wish them all the best.