Tag Archives: South Korea

AI x 2: the Amnesty International and Artificial Intelligence story

Amnesty International and artificial intelligence seem like an unexpected combination but it all makes sense when you read a June 13, 2018 article by Steven Melendez for Fast Company (Note: Links have been removed),

If companies working on artificial intelligence don’t take steps to safeguard human rights, “nightmare scenarios” could unfold, warns Rasha Abdul Rahim, an arms control and artificial intelligence researcher at Amnesty International in a blog post. Those scenarios could involve armed, autonomous systems choosing military targets with little human oversight, or discrimination caused by biased algorithms, she warns.

Rahim pointed at recent reports of Google’s involvement in the Pentagon’s Project Maven, which involves harnessing AI image recognition technology to rapidly process photos taken by drones. Google recently unveiled new AI ethics policies and has said it won’t continue with the project once its current contract expires next year after high-profile employee dissent over the project. …

“Compliance with the laws of war requires human judgement [sic] –the ability to analyze the intentions behind actions and make complex decisions about the proportionality or necessity of an attack,” Rahim writes. “Machines and algorithms cannot recreate these human skills, and nor can they negotiate, produce empathy, or respond to unpredictable situations. In light of these risks, Amnesty International and its partners in the Campaign to Stop Killer Robots are calling for a total ban on the development, deployment, and use of fully autonomous weapon systems.”

Rasha Abdul Rahim’s June 14, 2018 posting (I’m putting the discrepancy in publication dates down to timezone differences) on the Amnesty International website (Note: Links have been removed),

Last week [June 7, 2018] Google released a set of principles to govern its development of AI technologies. They include a broad commitment not to design or deploy AI in weaponry, and come in the wake of the company’s announcement that it will not renew its existing contract for Project Maven, the US Department of Defense’s AI initiative, when it expires in 2019.

The fact that Google maintains its existing Project Maven contract for now raises an important question. Does Google consider that continuing to provide AI technology to the US government’s drone programme is in line with its new principles? Project Maven is a litmus test that allows us to see what Google’s new principles mean in practice.

As details of the US drone programme are shrouded in secrecy, it is unclear precisely what role Google plays in Project Maven. What we do know is that US drone programme, under successive administrations, has been beset by credible allegations of unlawful killings and civilian casualties. The cooperation of Google, in any capacity, is extremely troubling and could potentially implicate it in unlawful strikes.

As AI technology advances, the question of who will be held accountable for associated human rights abuses is becoming increasingly urgent. Machine learning, and AI more broadly, impact a range of human rights including privacy, freedom of expression and the right to life. It is partly in the hands of companies like Google to safeguard these rights in relation to their operations – for us and for future generations. If they don’t, some nightmare scenarios could unfold.

Warfare has already changed dramatically in recent years – a couple of decades ago the idea of remote controlled bomber planes would have seemed like science fiction. While the drones currently in use are still controlled by humans, China, France, Israel, Russia, South Korea, the UK and the US are all known to be developing military robots which are getting smaller and more autonomous.

For example, the UK is developing a number of autonomous systems, including the BAE [Systems] Taranis, an unmanned combat aircraft system which can fly in autonomous mode and automatically identify a target within a programmed area. Kalashnikov, the Russian arms manufacturer, is developing a fully automated, high-calibre gun that uses artificial neural networks to choose targets. The US Army Research Laboratory in Maryland, in collaboration with BAE Systems and several academic institutions, has been developing micro drones which weigh less than 30 grams, as well as pocket-sized robots that can hop or crawl.

Of course, it’s not just in conflict zones that AI is threatening human rights. Machine learning is already being used by governments in a wide range of contexts that directly impact people’s lives, including policing [emphasis mine], welfare systems, criminal justice and healthcare. Some US courts use algorithms to predict future behaviour of defendants and determine their sentence lengths accordingly. The potential for this approach to reinforce power structures, discrimination or inequalities is huge.

In july 2017, the Vancouver Police Department announced its use of predictive policing software, the first such jurisdiction in Canada to make use of the technology. My Nov. 23, 2017 posting featured the announcement.

The almost too aptly named Campaign to Stop Killer Robots can be found here. Their About Us page provides a brief history,

Formed by the following non-governmental organizations (NGOs) at a meeting in New York on 19 October 2012 and launched in London in April 2013, the Campaign to Stop Killer Robots is an international coalition working to preemptively ban fully autonomous weapons. See the Chronology charting our major actions and achievements to date.

Steering Committee

The Steering Committee is the campaign’s principal leadership and decision-making body. It is comprised of five international NGOs, a regional NGO network, and four national NGOs that work internationally:

Human Rights Watch
Article 36
Association for Aid and Relief Japan
International Committee for Robot Arms Control
Mines Action Canada
Nobel Women’s Initiative
PAX (formerly known as IKV Pax Christi)
Pugwash Conferences on Science & World Affairs
Seguridad Humana en América Latina y el Caribe (SEHLAC)
Women’s International League for Peace and Freedom

For more information, see this Overview. A Terms of Reference is also available on request, detailing the committee’s selection process, mandate, decision-making, meetings and communication, and expected commitments.

For anyone who may be interested in joining Amnesty International, go here.

The Hedy Lamarr of international research: Canada’s Third assessment of The State of Science and Technology and Industrial Research and Development in Canada (2 of 2)

Taking up from where I left off with my comments on Competing in a Global Innovation Economy: The Current State of R and D in Canada or as I prefer to call it the Third assessment of Canadas S&T (science and technology) and R&D (research and development). (Part 1 for anyone who missed it).

Is it possible to get past Hedy?

Interestingly (to me anyway), one of our R&D strengths, the visual and performing arts, features sectors where a preponderance of people are dedicated to creating culture in Canada and don’t spend a lot of time trying to make money so they can retire before the age of 40 as so many of our start-up founders do. (Retiring before the age of 40 just reminded me of Hollywood actresses {Hedy] who found and still do find that work was/is hard to come by after that age. You may be able but I’m not sure I can get past Hedy.) Perhaps our business people (start-up founders) could take a leaf out of the visual and performing arts handbook? Or, not. There is another question.

Does it matter if we continue to be a ‘branch plant’ economy? Somebody once posed that question to me when I was grumbling that our start-ups never led to larger businesses and acted more like incubators (which could describe our R&D as well),. He noted that Canadians have a pretty good standard of living and we’ve been running things this way for over a century and it seems to work for us. Is it that bad? I didn’t have an  answer for him then and I don’t have one now but I think it’s a useful question to ask and no one on this (2018) expert panel or the previous expert panel (2013) seems to have asked.

I appreciate that the panel was constrained by the questions given by the government but given how they snuck in a few items that technically speaking were not part of their remit, I’m thinking they might have gone just a bit further. The problem with answering the questions as asked is that if you’ve got the wrong questions, your answers will be garbage (GIGO; garbage in, garbage out) or, as is said, where science is concerned, it’s the quality of your questions.

On that note, I would have liked to know more about the survey of top-cited researchers. I think looking at the questions could have been quite illuminating and I would have liked some information on from where (geographically and area of specialization) they got most of their answers. In keeping with past practice (2012 assessment published in 2013), there is no additional information offered about the survey questions or results. Still, there was this (from the report released April 10, 2018; Note: There may be some difference between the formatting seen here and that seen in the document),

3.1.2 International Perceptions of Canadian Research
As with the 2012 S&T report, the CCA commissioned a survey of top-cited researchers’ perceptions of Canada’s research strength in their field or subfield relative to that of other countries (Section 1.3.2). Researchers were asked to identify the top five countries in their field and subfield of expertise: 36% of respondents (compared with 37% in the 2012 survey) from across all fields of research rated Canada in the top five countries in their field (Figure B.1 and Table B.1 in the appendix). Canada ranks fourth out of all countries, behind the United States, United Kingdom, and Germany, and ahead of France. This represents a change of about 1 percentage point from the overall results of the 2012 S&T survey. There was a 4 percentage point decrease in how often France is ranked among the top five countries; the ordering of the top five countries, however, remains the same.

When asked to rate Canada’s research strength among other advanced countries in their field of expertise, 72% (4,005) of respondents rated Canadian research as “strong” (corresponding to a score of 5 or higher on a 7-point scale) compared with 68% in the 2012 S&T survey (Table 3.4). [pp. 40-41 Print; pp. 78-70 PDF]

Before I forget, there was mention of the international research scene,

Growth in research output, as estimated by number of publications, varies considerably for the 20 top countries. Brazil, China, India, Iran, and South Korea have had the most significant increases in publication output over the last 10 years. [emphases mine] In particular, the dramatic increase in China’s output means that it is closing the gap with the United States. In 2014, China’s output was 95% of that of the United States, compared with 26% in 2003. [emphasis mine]

Table 3.2 shows the Growth Index (GI), a measure of the rate at which the research output for a given country changed between 2003 and 2014, normalized by the world growth rate. If a country’s growth in research output is higher than the world average, the GI score is greater than 1.0. For example, between 2003 and 2014, China’s GI score was 1.50 (i.e., 50% greater than the world average) compared with 0.88 and 0.80 for Canada and the United States, respectively. Note that the dramatic increase in publication production of emerging economies such as China and India has had a negative impact on Canada’s rank and GI score (see CCA, 2016).

As long as I’ve been blogging (10 years), the international research community (in particular the US) has been looking over its shoulder at China.

Patents and intellectual property

As an inventor, Hedy got more than one patent. Much has been made of the fact that  despite an agreement, the US Navy did not pay her or her partner (George Antheil) for work that would lead to significant military use (apparently, it was instrumental in the Bay of Pigs incident, for those familiar with that bit of history), GPS, WiFi, Bluetooth, and more.

Some comments about patents. They are meant to encourage more innovation by ensuring that creators/inventors get paid for their efforts .This is true for a set time period and when it’s over, other people get access and can innovate further. It’s not intended to be a lifelong (or inheritable) source of income. The issue in Lamarr’s case is that the navy developed the technology during the patent’s term without telling either her or her partner so, of course, they didn’t need to compensate them despite the original agreement. They really should have paid her and Antheil.

The current patent situation, particularly in the US, is vastly different from the original vision. These days patents are often used as weapons designed to halt innovation. One item that should be noted is that the Canadian federal budget indirectly addressed their misuse (from my March 16, 2018 posting),

Surprisingly, no one else seems to have mentioned a new (?) intellectual property strategy introduced in the document (from Chapter 2: Progress; scroll down about 80% of the way, Note: The formatting has been changed),

Budget 2018 proposes measures in support of a new Intellectual Property Strategy to help Canadian entrepreneurs better understand and protect intellectual property, and get better access to shared intellectual property.

What Is a Patent Collective?
A Patent Collective is a way for firms to share, generate, and license or purchase intellectual property. The collective approach is intended to help Canadian firms ensure a global “freedom to operate”, mitigate the risk of infringing a patent, and aid in the defence of a patent infringement suit.

Budget 2018 proposes to invest $85.3 million over five years, starting in 2018–19, with $10 million per year ongoing, in support of the strategy. The Minister of Innovation, Science and Economic Development will bring forward the full details of the strategy in the coming months, including the following initiatives to increase the intellectual property literacy of Canadian entrepreneurs, and to reduce costs and create incentives for Canadian businesses to leverage their intellectual property:

  • To better enable firms to access and share intellectual property, the Government proposes to provide $30 million in 2019–20 to pilot a Patent Collective. This collective will work with Canada’s entrepreneurs to pool patents, so that small and medium-sized firms have better access to the critical intellectual property they need to grow their businesses.
  • To support the development of intellectual property expertise and legal advice for Canada’s innovation community, the Government proposes to provide $21.5 million over five years, starting in 2018–19, to Innovation, Science and Economic Development Canada. This funding will improve access for Canadian entrepreneurs to intellectual property legal clinics at universities. It will also enable the creation of a team in the federal government to work with Canadian entrepreneurs to help them develop tailored strategies for using their intellectual property and expanding into international markets.
  • To support strategic intellectual property tools that enable economic growth, Budget 2018 also proposes to provide $33.8 million over five years, starting in 2018–19, to Innovation, Science and Economic Development Canada, including $4.5 million for the creation of an intellectual property marketplace. This marketplace will be a one-stop, online listing of public sector-owned intellectual property available for licensing or sale to reduce transaction costs for businesses and researchers, and to improve Canadian entrepreneurs’ access to public sector-owned intellectual property.

The Government will also consider further measures, including through legislation, in support of the new intellectual property strategy.

Helping All Canadians Harness Intellectual Property
Intellectual property is one of our most valuable resources, and every Canadian business owner should understand how to protect and use it.

To better understand what groups of Canadians are benefiting the most from intellectual property, Budget 2018 proposes to provide Statistics Canada with $2 million over three years to conduct an intellectual property awareness and use survey. This survey will help identify how Canadians understand and use intellectual property, including groups that have traditionally been less likely to use intellectual property, such as women and Indigenous entrepreneurs. The results of the survey should help the Government better meet the needs of these groups through education and awareness initiatives.

The Canadian Intellectual Property Office will also increase the number of education and awareness initiatives that are delivered in partnership with business, intermediaries and academia to ensure Canadians better understand, integrate and take advantage of intellectual property when building their business strategies. This will include targeted initiatives to support underrepresented groups.

Finally, Budget 2018 also proposes to invest $1 million over five years to enable representatives of Canada’s Indigenous Peoples to participate in discussions at the World Intellectual Property Organization related to traditional knowledge and traditional cultural expressions, an important form of intellectual property.

It’s not wholly clear what they mean by ‘intellectual property’. The focus seems to be on  patents as they are the only intellectual property (as opposed to copyright and trademarks) singled out in the budget. As for how the ‘patent collective’ is going to meet all its objectives, this budget supplies no clarity on the matter. On the plus side, I’m glad to see that indigenous peoples’ knowledge is being acknowledged as “an important form of intellectual property” and I hope the discussions at the World Intellectual Property Organization are fruitful.

As for the patent situation in Canada (from the report released April 10, 2018),

Over the past decade, the Canadian patent flow in all technical sectors has consistently decreased. Patent flow provides a partial picture of how patents in Canada are exploited. A negative flow represents a deficit of patented inventions owned by Canadian assignees versus the number of patented inventions created by Canadian inventors. The patent flow for all Canadian patents decreased from about −0.04 in 2003 to −0.26 in 2014 (Figure 4.7). This means that there is an overall deficit of 26% of patent ownership in Canada. In other words, fewer patents were owned by Canadian institutions than were invented in Canada.

This is a significant change from 2003 when the deficit was only 4%. The drop is consistent across all technical sectors in the past 10 years, with Mechanical Engineering falling the least, and Electrical Engineering the most (Figure 4.7). At the technical field level, the patent flow dropped significantly in Digital Communication and Telecommunications. For example, the Digital Communication patent flow fell from 0.6 in 2003 to −0.2 in 2014. This fall could be partially linked to Nortel’s US$4.5 billion patent sale [emphasis mine] to the Rockstar consortium (which included Apple, BlackBerry, Ericsson, Microsoft, and Sony) (Brickley, 2011). Food Chemistry and Microstructural [?] and Nanotechnology both also showed a significant drop in patent flow. [p. 83 Print; p. 121 PDF]

Despite a fall in the number of parents for ‘Digital Communication’, we’re still doing well according to statistics elsewhere in this report. Is it possible that patents aren’t that big a deal? Of course, it’s also possible that we are enjoying the benefits of past work and will miss out on future work. (Note: A video of the April 10, 2018 report presentation by Max Blouw features him saying something like that.)

One last note, Nortel died many years ago. Disconcertingly, this report, despite more than one reference to Nortel, never mentions the company’s demise.

Boxed text

While the expert panel wasn’t tasked to answer certain types of questions, as I’ve noted earlier they managed to sneak in a few items.  One of the strategies they used was putting special inserts into text boxes including this (from the report released April 10, 2018),

Box 4.2
The FinTech Revolution

Financial services is a key industry in Canada. In 2015, the industry accounted for 4.4%

of Canadia jobs and about 7% of Canadian GDP (Burt, 2016). Toronto is the second largest financial services hub in North America and one of the most vibrant research hubs in FinTech. Since 2010, more than 100 start-up companies have been founded in Canada, attracting more than $1 billion in investment (Moffatt, 2016). In 2016 alone, venture-backed investment in Canadian financial technology companies grew by 35% to $137.7 million (Ho, 2017). The Toronto Financial Services Alliance estimates that there are approximately 40,000 ICT specialists working in financial services in Toronto alone.

AI, blockchain, [emphasis mine] and other results of ICT research provide the basis for several transformative FinTech innovations including, for example, decentralized transaction ledgers, cryptocurrencies (e.g., bitcoin), and AI-based risk assessment and fraud detection. These innovations offer opportunities to develop new markets for established financial services firms, but also provide entry points for technology firms to develop competing service offerings, increasing competition in the financial services industry. In response, many financial services companies are increasing their investments in FinTech companies (Breznitz et al., 2015). By their own account, the big five banks invest more than $1 billion annually in R&D of advanced software solutions, including AI-based innovations (J. Thompson, personal communication, 2016). The banks are also increasingly investing in university research and collaboration with start-up companies. For instance, together with several large insurance and financial management firms, all big five banks have invested in the Vector Institute for Artificial Intelligence (Kolm, 2017).

I’m glad to see the mention of blockchain while AI (artificial intelligence) is an area where we have innovated (from the report released April 10, 2018),

AI has attracted researchers and funding since the 1960s; however, there were periods of stagnation in the 1970s and 1980s, sometimes referred to as the “AI winter.” During this period, the Canadian Institute for Advanced Research (CIFAR), under the direction of Fraser Mustard, started supporting AI research with a decade-long program called Artificial Intelligence, Robotics and Society, [emphasis mine] which was active from 1983 to 1994. In 2004, a new program called Neural Computation and Adaptive Perception was initiated and renewed twice in 2008 and 2014 under the title, Learning in Machines and Brains. Through these programs, the government provided long-term, predictable support for high- risk research that propelled Canadian researchers to the forefront of global AI development. In the 1990s and early 2000s, Canadian research output and impact on AI were second only to that of the United States (CIFAR, 2016). NSERC has also been an early supporter of AI. According to its searchable grant database, NSERC has given funding to research projects on AI since at least 1991–1992 (the earliest searchable year) (NSERC, 2017a).

The University of Toronto, the University of Alberta, and the Université de Montréal have emerged as international centres for research in neural networks and deep learning, with leading experts such as Geoffrey Hinton and Yoshua Bengio. Recently, these locations have expanded into vibrant hubs for research in AI applications with a diverse mix of specialized research institutes, accelerators, and start-up companies, and growing investment by major international players in AI development, such as Microsoft, Google, and Facebook. Many highly influential AI researchers today are either from Canada or have at some point in their careers worked at a Canadian institution or with Canadian scholars.

As international opportunities in AI research and the ICT industry have grown, many of Canada’s AI pioneers have been drawn to research institutions and companies outside of Canada. According to the OECD, Canada’s share of patents in AI declined from 2.4% in 2000 to 2005 to 2% in 2010 to 2015. Although Canada is the sixth largest producer of top-cited scientific publications related to machine learning, firms headquartered in Canada accounted for only 0.9% of all AI-related inventions from 2012 to 2014 (OECD, 2017c). Canadian AI researchers, however, remain involved in the core nodes of an expanding international network of AI researchers, most of whom continue to maintain ties with their home institutions. Compared with their international peers, Canadian AI researchers are engaged in international collaborations far more often than would be expected by Canada’s level of research output, with Canada ranking fifth in collaboration. [p. 97-98 Print; p. 135-136 PDF]

The only mention of robotics seems to be here in this section and it’s only in passing. This is a bit surprising given its global importance. I wonder if robotics has been somehow hidden inside the term artificial intelligence, although sometimes it’s vice versa with robot being used to describe artificial intelligence. I’m noticing this trend of assuming the terms are synonymous or interchangeable not just in Canadian publications but elsewhere too.  ’nuff said.

Getting back to the matter at hand, t he report does note that patenting (technometric data) is problematic (from the report released April 10, 2018),

The limitations of technometric data stem largely from their restricted applicability across areas of R&D. Patenting, as a strategy for IP management, is similarly limited in not being equally relevant across industries. Trends in patenting can also reflect commercial pressures unrelated to R&D activities, such as defensive or strategic patenting practices. Finally, taxonomies for assessing patents are not aligned with bibliometric taxonomies, though links can be drawn to research publications through the analysis of patent citations. [p. 105 Print; p. 143 PDF]

It’s interesting to me that they make reference to many of the same issues that I mention but they seem to forget and don’t use that information in their conclusions.

There is one other piece of boxed text I want to highlight (from the report released April 10, 2018),

Box 6.3
Open Science: An Emerging Approach to Create New Linkages

Open Science is an umbrella term to describe collaborative and open approaches to
undertaking science, which can be powerful catalysts of innovation. This includes
the development of open collaborative networks among research performers, such
as the private sector, and the wider distribution of research that usually results when
restrictions on use are removed. Such an approach triggers faster translation of ideas
among research partners and moves the boundaries of pre-competitive research to
later, applied stages of research. With research results freely accessible, companies
can focus on developing new products and processes that can be commercialized.

Two Canadian organizations exemplify the development of such models. In June
2017, Genome Canada, the Ontario government, and pharmaceutical companies
invested $33 million in the Structural Genomics Consortium (SGC) (Genome Canada,
2017). Formed in 2004, the SGC is at the forefront of the Canadian open science
movement and has contributed to many key research advancements towards new
treatments (SGC, 2018). McGill University’s Montréal Neurological Institute and
Hospital has also embraced the principles of open science. Since 2016, it has been
sharing its research results with the scientific community without restriction, with
the objective of expanding “the impact of brain research and accelerat[ing] the
discovery of ground-breaking therapies to treat patients suffering from a wide range
of devastating neurological diseases” (neuro, n.d.).

This is exciting stuff and I’m happy the panel featured it. (I wrote about the Montréal Neurological Institute initiative in a Jan. 22, 2016 posting.)

More than once, the report notes the difficulties with using bibliometric and technometric data as measures of scientific achievement and progress and open science (along with its cousins, open data and open access) are contributing to the difficulties as James Somers notes in his April 5, 2018 article ‘The Scientific Paper is Obsolete’ for The Atlantic (Note: Links have been removed),

The scientific paper—the actual form of it—was one of the enabling inventions of modernity. Before it was developed in the 1600s, results were communicated privately in letters, ephemerally in lectures, or all at once in books. There was no public forum for incremental advances. By making room for reports of single experiments or minor technical advances, journals made the chaos of science accretive. Scientists from that point forward became like the social insects: They made their progress steadily, as a buzzing mass.

The earliest papers were in some ways more readable than papers are today. They were less specialized, more direct, shorter, and far less formal. Calculus had only just been invented. Entire data sets could fit in a table on a single page. What little “computation” contributed to the results was done by hand and could be verified in the same way.

The more sophisticated science becomes, the harder it is to communicate results. Papers today are longer than ever and full of jargon and symbols. They depend on chains of computer programs that generate data, and clean up data, and plot data, and run statistical models on data. These programs tend to be both so sloppily written and so central to the results that it’s [sic] contributed to a replication crisis, or put another way, a failure of the paper to perform its most basic task: to report what you’ve actually discovered, clearly enough that someone else can discover it for themselves.

Perhaps the paper itself is to blame. Scientific methods evolve now at the speed of software; the skill most in demand among physicists, biologists, chemists, geologists, even anthropologists and research psychologists, is facility with programming languages and “data science” packages. And yet the basic means of communicating scientific results hasn’t changed for 400 years. Papers may be posted online, but they’re still text and pictures on a page.

What would you get if you designed the scientific paper from scratch today? A little while ago I spoke to Bret Victor, a researcher who worked at Apple on early user-interface prototypes for the iPad and now runs his own lab in Oakland, California, that studies the future of computing. Victor has long been convinced that scientists haven’t yet taken full advantage of the computer. “It’s not that different than looking at the printing press, and the evolution of the book,” he said. After Gutenberg, the printing press was mostly used to mimic the calligraphy in bibles. It took nearly 100 years of technical and conceptual improvements to invent the modern book. “There was this entire period where they had the new technology of printing, but they were just using it to emulate the old media.”Victor gestured at what might be possible when he redesigned a journal article by Duncan Watts and Steven Strogatz, “Collective dynamics of ‘small-world’ networks.” He chose it both because it’s one of the most highly cited papers in all of science and because it’s a model of clear exposition. (Strogatz is best known for writing the beloved “Elements of Math” column for The New York Times.)

The Watts-Strogatz paper described its key findings the way most papers do, with text, pictures, and mathematical symbols. And like most papers, these findings were still hard to swallow, despite the lucid prose. The hardest parts were the ones that described procedures or algorithms, because these required the reader to “play computer” in their head, as Victor put it, that is, to strain to maintain a fragile mental picture of what was happening with each step of the algorithm.Victor’s redesign interleaved the explanatory text with little interactive diagrams that illustrated each step. In his version, you could see the algorithm at work on an example. You could even control it yourself….

For anyone interested in the evolution of how science is conducted and communicated, Somers’ article is a fascinating and in depth look at future possibilities.

Subregional R&D

I didn’t find this quite as compelling as the last time and that may be due to the fact that there’s less information and I think the 2012 report was the first to examine the Canadian R&D scene with a subregional (in their case, provinces) lens. On a high note, this report also covers cities (!) and regions, as well as, provinces.

Here’s the conclusion (from the report released April 10, 2018),

Ontario leads Canada in R&D investment and performance. The province accounts for almost half of R&D investment and personnel, research publications and collaborations, and patents. R&D activity in Ontario produces high-quality publications in each of Canada’s five R&D strengths, reflecting both the quantity and quality of universities in the province. Quebec lags Ontario in total investment, publications, and patents, but performs as well (citations) or better (R&D intensity) by some measures. Much like Ontario, Quebec researchers produce impactful publications across most of Canada’s five R&D strengths. Although it invests an amount similar to that of Alberta, British Columbia does so at a significantly higher intensity. British Columbia also produces more highly cited publications and patents, and is involved in more international research collaborations. R&D in British Columbia and Alberta clusters around Vancouver and Calgary in areas such as physics and ICT and in clinical medicine and energy, respectively. [emphasis mine] Smaller but vibrant R&D communities exist in the Prairies and Atlantic Canada [also referred to as the Maritime provinces or Maritimes] (and, to a lesser extent, in the Territories) in natural resource industries.

Globally, as urban populations expand exponentially, cities are likely to drive innovation and wealth creation at an increasing rate in the future. In Canada, R&D activity clusters around five large cities: Toronto, Montréal, Vancouver, Ottawa, and Calgary. These five cities create patents and high-tech companies at nearly twice the rate of other Canadian cities. They also account for half of clusters in the services sector, and many in advanced manufacturing.

Many clusters relate to natural resources and long-standing areas of economic and research strength. Natural resource clusters have emerged around the location of resources, such as forestry in British Columbia, oil and gas in Alberta, agriculture in Ontario, mining in Quebec, and maritime resources in Atlantic Canada. The automotive, plastics, and steel industries have the most individual clusters as a result of their economic success in Windsor, Hamilton, and Oshawa. Advanced manufacturing industries tend to be more concentrated, often located near specialized research universities. Strong connections between academia and industry are often associated with these clusters. R&D activity is distributed across the country, varying both between and within regions. It is critical to avoid drawing the wrong conclusion from this fact. This distribution does not imply the existence of a problem that needs to be remedied. Rather, it signals the benefits of diverse innovation systems, with differentiation driven by the needs of and resources available in each province. [pp.  132-133 Print; pp. 170-171 PDF]

Intriguingly, there’s no mention that in British Columbia (BC), there are leading areas of research: Visual & Performing Arts, Psychology & Cognitive Sciences, and Clinical Medicine (according to the table on p. 117 Print, p. 153 PDF).

As I said and hinted earlier, we’ve got brains; they’re just not the kind of brains that command respect.

Final comments

My hat’s off to the expert panel and staff of the Council of Canadian Academies. Combining two previous reports into one could not have been easy. As well, kudos to their attempts to broaden the discussion by mentioning initiative such as open science and for emphasizing the problems with bibliometrics, technometrics, and other measures. I have covered only parts of this assessment, (Competing in a Global Innovation Economy: The Current State of R&D in Canada), there’s a lot more to it including a substantive list of reference materials (bibliography).

While I have argued that perhaps the situation isn’t quite as bad as the headlines and statistics may suggest, there are some concerning trends for Canadians but we have to acknowledge that many countries have stepped up their research game and that’s good for all of us. You don’t get better at anything unless you work with and play with others who are better than you are. For example, both India and Italy surpassed us in numbers of published research papers. We slipped from 7th place to 9th. Thank you, Italy and India. (And, Happy ‘Italian Research in the World Day’ on April 15, 2018, the day’s inaugural year. In Italian: Piano Straordinario “Vivere all’Italiana” – Giornata della ricerca Italiana nel mondo.)

Unfortunately, the reading is harder going than previous R&D assessments in the CCA catalogue. And in the end, I can’t help thinking we’re just a little bit like Hedy Lamarr. Not really appreciated in all of our complexities although the expert panel and staff did try from time to time. Perhaps the government needs to find better ways of asking the questions.

***ETA April 12, 2018 at 1500 PDT: Talking about missing the obvious! I’ve been ranting on about how research strength in visual and performing arts and in philosophy and theology, etc. is perfectly fine and could lead to ‘traditional’ science breakthroughs without underlining the point by noting that Antheil was a musician, Lamarr was as an actress and they set the foundation for work by electrical engineers (or people with that specialty) for their signature work leading to WiFi, etc.***

There is, by the way, a Hedy-Canada connection. In 1998, she sued Canadian software company Corel, for its unauthorized use of her image on their Corel Draw 8 product packaging. She won.

More stuff

For those who’d like to see and hear the April 10, 2017 launch for “Competing in a Global Innovation Economy: The Current State of R&D in Canada” or the Third Assessment as I think of it, go here.

The report can be found here.

For anyone curious about ‘Bombshell: The Hedy Lamarr Story’ to be broadcast on May 18, 2018 as part of PBS’s American Masters series, there’s this trailer,

For the curious, I did find out more about the Hedy Lamarr and Corel Draw. John Lettice’s December 2, 1998 article The Rgister describes the suit and her subsequent victory in less than admiring terms,

Our picture doesn’t show glamorous actress Hedy Lamarr, who yesterday [Dec. 1, 1998] came to a settlement with Corel over the use of her image on Corel’s packaging. But we suppose that following the settlement we could have used a picture of Corel’s packaging. Lamarr sued Corel earlier this year over its use of a CorelDraw image of her. The picture had been produced by John Corkery, who was 1996 Best of Show winner of the Corel World Design Contest. Corel now seems to have come to an undisclosed settlement with her, which includes a five-year exclusive (oops — maybe we can’t use the pack-shot then) licence to use “the lifelike vector illustration of Hedy Lamarr on Corel’s graphic software packaging”. Lamarr, bless ‘er, says she’s looking forward to the continued success of Corel Corporation,  …

There’s this excerpt from a Sept. 21, 2015 posting (a pictorial essay of Lamarr’s life) by Shahebaz Khan on The Blaze Blog,

6. CorelDRAW:
For several years beginning in 1997, the boxes of Corel DRAW’s software suites were graced by a large Corel-drawn image of Lamarr. The picture won Corel DRAW’s yearly software suite cover design contest in 1996. Lamarr sued Corel for using the image without her permission. Corel countered that she did not own rights to the image. The parties reached an undisclosed settlement in 1998.

There’s also a Nov. 23, 1998 Corel Draw 8 product review by Mike Gorman on mymac.com, which includes a screenshot of the packaging that precipitated the lawsuit. Once they settled, it seems Corel used her image at least one more time.

The Hedy Lamarr of international research: Canada’s Third assessment of The State of Science and Technology and Industrial Research and Development in Canada (1 of 2)

Before launching into the assessment, a brief explanation of my theme: Hedy Lamarr was considered to be one of the great beauties of her day,

“Ziegfeld Girl” Hedy Lamarr 1941 MGM *M.V.
Titles: Ziegfeld Girl
People: Hedy Lamarr
Image courtesy mptvimages.com [downloaded from https://www.imdb.com/title/tt0034415/mediaviewer/rm1566611456]

Aside from starring in Hollywood movies and, before that, movies in Europe, she was also an inventor and not just any inventor (from a Dec. 4, 2017 article by Laura Barnett for The Guardian), Note: Links have been removed,

Let’s take a moment to reflect on the mercurial brilliance of Hedy Lamarr. Not only did the Vienna-born actor flee a loveless marriage to a Nazi arms dealer to secure a seven-year, $3,000-a-week contract with MGM, and become (probably) the first Hollywood star to simulate a female orgasm on screen – she also took time out to invent a device that would eventually revolutionise mobile communications.

As described in unprecedented detail by the American journalist and historian Richard Rhodes in his new book, Hedy’s Folly, Lamarr and her business partner, the composer George Antheil, were awarded a patent in 1942 for a “secret communication system”. It was meant for radio-guided torpedoes, and the pair gave to the US Navy. It languished in their files for decades before eventually becoming a constituent part of GPS, Wi-Fi and Bluetooth technology.

(The article goes on to mention other celebrities [Marlon Brando, Barbara Cartland, Mark Twain, etc] and their inventions.)

Lamarr’s work as an inventor was largely overlooked until the 1990’s when the technology community turned her into a ‘cultish’ favourite and from there her reputation grew and acknowledgement increased culminating in Rhodes’ book and the documentary by Alexandra Dean, ‘Bombshell: The Hedy Lamarr Story (to be broadcast as part of PBS’s American Masters series on May 18, 2018).

Canada as Hedy Lamarr

There are some parallels to be drawn between Canada’s S&T and R&D (science and technology; research and development) and Ms. Lamarr. Chief amongst them, we’re not always appreciated for our brains. Not even by people who are supposed to know better such as the experts on the panel for the ‘Third assessment of The State of Science and Technology and Industrial Research and Development in Canada’ (proper title: Competing in a Global Innovation Economy: The Current State of R&D in Canada) from the Expert Panel on the State of Science and Technology and Industrial Research and Development in Canada.

A little history

Before exploring the comparison to Hedy Lamarr further, here’s a bit more about the history of this latest assessment from the Council of Canadian Academies (CCA), from the report released April 10, 2018,

This assessment of Canada’s performance indicators in science, technology, research, and innovation comes at an opportune time. The Government of Canada has expressed a renewed commitment in several tangible ways to this broad domain of activity including its Innovation and Skills Plan, the announcement of five superclusters, its appointment of a new Chief Science Advisor, and its request for the Fundamental Science Review. More specifically, the 2018 Federal Budget demonstrated the government’s strong commitment to research and innovation with historic investments in science.

The CCA has a decade-long history of conducting evidence-based assessments about Canada’s research and development activities, producing seven assessments of relevance:

The State of Science and Technology in Canada (2006) [emphasis mine]
•Innovation and Business Strategy: Why Canada Falls Short (2009)
•Catalyzing Canada’s Digital Economy (2010)
•Informing Research Choices: Indicators and Judgment (2012)
The State of Science and Technology in Canada (2012) [emphasis mine]
The State of Industrial R&D in Canada (2013) [emphasis mine]
•Paradox Lost: Explaining Canada’s Research Strength and Innovation Weakness (2013)

Using similar methods and metrics to those in The State of Science and Technology in Canada (2012) and The State of Industrial R&D in Canada (2013), this assessment tells a similar and familiar story: Canada has much to be proud of, with world-class researchers in many domains of knowledge, but the rest of the world is not standing still. Our peers are also producing high quality results, and many countries are making significant commitments to supporting research and development that will position them to better leverage their strengths to compete globally. Canada will need to take notice as it determines how best to take action. This assessment provides valuable material for that conversation to occur, whether it takes place in the lab or the legislature, the bench or the boardroom. We also hope it will be used to inform public discussion. [p. ix Print, p. 11 PDF]

This latest assessment succeeds the general 2006 and 2012 reports, which were mostly focused on academic research, and combines it with an assessment of industrial research, which was previously separate. Also, this third assessment’s title (Competing in a Global Innovation Economy: The Current State of R&D in Canada) makes what was previously quietly declared in the text, explicit from the cover onwards. It’s all about competition, despite noises such as the 2017 Naylor report (Review of fundamental research) about the importance of fundamental research.

One other quick comment, I did wonder in my July 1, 2016 posting (featuring the announcement of the third assessment) how combining two assessments would impact the size of the expert panel and the size of the final report,

Given the size of the 2012 assessment of science and technology at 232 pp. (PDF) and the 2013 assessment of industrial research and development at 220 pp. (PDF) with two expert panels, the imagination boggles at the potential size of the 2016 expert panel and of the 2016 assessment combining the two areas.

I got my answer with regard to the panel as noted in my Oct. 20, 2016 update (which featured a list of the members),

A few observations, given the size of the task, this panel is lean. As well, there are three women in a group of 13 (less than 25% representation) in 2016? It’s Ontario and Québec-dominant; only BC and Alberta rate a representative on the panel. I hope they will find ways to better balance this panel and communicate that ‘balanced story’ to the rest of us. On the plus side, the panel has representatives from the humanities, arts, and industry in addition to the expected representatives from the sciences.

The imbalance I noted then was addressed, somewhat, with the selection of the reviewers (from the report released April 10, 2018),

The CCA wishes to thank the following individuals for their review of this report:

Ronald Burnett, C.M., O.B.C., RCA, Chevalier de l’ordre des arts et des
lettres, President and Vice-Chancellor, Emily Carr University of Art and Design
(Vancouver, BC)

Michelle N. Chretien, Director, Centre for Advanced Manufacturing and Design
Technologies, Sheridan College; Former Program and Business Development
Manager, Electronic Materials, Xerox Research Centre of Canada (Brampton,

Lisa Crossley, CEO, Reliq Health Technologies, Inc. (Ancaster, ON)
Natalie Dakers, Founding President and CEO, Accel-Rx Health Sciences
Accelerator (Vancouver, BC)

Fred Gault, Professorial Fellow, United Nations University-MERIT (Maastricht,

Patrick D. Germain, Principal Engineering Specialist, Advanced Aerodynamics,
Bombardier Aerospace (Montréal, QC)

Robert Brian Haynes, O.C., FRSC, FCAHS, Professor Emeritus, DeGroote
School of Medicine, McMaster University (Hamilton, ON)

Susan Holt, Chief, Innovation and Business Relationships, Government of
New Brunswick (Fredericton, NB)

Pierre A. Mohnen, Professor, United Nations University-MERIT and Maastricht
University (Maastricht, Netherlands)

Peter J. M. Nicholson, C.M., Retired; Former and Founding President and
CEO, Council of Canadian Academies (Annapolis Royal, NS)

Raymond G. Siemens, Distinguished Professor, English and Computer Science
and Former Canada Research Chair in Humanities Computing, University of
Victoria (Victoria, BC) [pp. xii- xiv Print; pp. 15-16 PDF]

The proportion of women to men as reviewers jumped up to about 36% (4 of 11 reviewers) and there are two reviewers from the Maritime provinces. As usual, reviewers external to Canada were from Europe. Although this time, they came from Dutch institutions rather than UK or German institutions. Interestingly and unusually, there was no one from a US institution. When will they start using reviewers from other parts of the world?

As for the report itself, it is 244 pp. (PDF). (For the really curious, I have a  December 15, 2016 post featuring my comments on the preliminary data for the third assessment.)

To sum up, they had a lean expert panel tasked with bringing together two inquiries and two reports. I imagine that was daunting. Good on them for finding a way to make it manageable.

Bibliometrics, patents, and a survey

I wish more attention had been paid to some of the issues around open science, open access, and open data, which are changing how science is being conducted. (I have more about this from an April 5, 2018 article by James Somers for The Atlantic but more about that later.) If I understand rightly, they may not have been possible due to the nature of the questions posed by the government when requested the assessment.

As was done for the second assessment, there is an acknowledgement that the standard measures/metrics (bibliometrics [no. of papers published, which journals published them; number of times papers were cited] and technometrics [no. of patent applications, etc.] of scientific accomplishment and progress are not the best and new approaches need to be developed and adopted (from the report released April 10, 2018),

It is also worth noting that the Panel itself recognized the limits that come from using traditional historic metrics. Additional approaches will be needed the next time this assessment is done. [p. ix Print; p. 11 PDF]

For the second assessment and as a means of addressing some of the problems with metrics, the panel decided to take a survey which the panel for the third assessment has also done (from the report released April 10, 2018),

The Panel relied on evidence from multiple sources to address its charge, including a literature review and data extracted from statistical agencies and organizations such as Statistics Canada and the OECD. For international comparisons, the Panel focused on OECD countries along with developing countries that are among the top 20 producers of peer-reviewed research publications (e.g., China, India, Brazil, Iran, Turkey). In addition to the literature review, two primary research approaches informed the Panel’s assessment:
•a comprehensive bibliometric and technometric analysis of Canadian research publications and patents; and,
•a survey of top-cited researchers around the world.

Despite best efforts to collect and analyze up-to-date information, one of the Panel’s findings is that data limitations continue to constrain the assessment of R&D activity and excellence in Canada. This is particularly the case with industrial R&D and in the social sciences, arts, and humanities. Data on industrial R&D activity continue to suffer from time lags for some measures, such as internationally comparable data on R&D intensity by sector and industry. These data also rely on industrial categories (i.e., NAICS and ISIC codes) that can obscure important trends, particularly in the services sector, though Statistics Canada’s recent revisions to how this data is reported have improved this situation. There is also a lack of internationally comparable metrics relating to R&D outcomes and impacts, aside from those based on patents.

For the social sciences, arts, and humanities, metrics based on journal articles and other indexed publications provide an incomplete and uneven picture of research contributions. The expansion of bibliometric databases and methodological improvements such as greater use of web-based metrics, including paper views/downloads and social media references, will support ongoing, incremental improvements in the availability and accuracy of data. However, future assessments of R&D in Canada may benefit from more substantive integration of expert review, capable of factoring in different types of research outputs (e.g., non-indexed books) and impacts (e.g., contributions to communities or impacts on public policy). The Panel has no doubt that contributions from the humanities, arts, and social sciences are of equal importance to national prosperity. It is vital that such contributions are better measured and assessed. [p. xvii Print; p. 19 PDF]

My reading: there’s a problem and we’re not going to try and fix it this time. Good luck to those who come after us. As for this line: “The Panel has no doubt that contributions from the humanities, arts, and social sciences are of equal importance to national prosperity.” Did no one explain that when you use ‘no doubt’, you are introducing doubt? It’s a cousin to ‘don’t take this the wrong way’ and ‘I don’t mean to be rude but …’ .

Good news

This is somewhat encouraging (from the report released April 10, 2018),

Canada’s international reputation for its capacity to participate in cutting-edge R&D is strong, with 60% of top-cited researchers surveyed internationally indicating that Canada hosts world-leading infrastructure or programs in their fields. This share increased by four percentage points between 2012 and 2017. Canada continues to benefit from a highly educated population and deep pools of research skills and talent. Its population has the highest level of educational attainment in the OECD in the proportion of the population with
a post-secondary education. However, among younger cohorts (aged 25 to 34), Canada has fallen behind Japan and South Korea. The number of researchers per capita in Canada is on a par with that of other developed countries, andincreased modestly between 2004 and 2012. Canada’s output of PhD graduates has also grown in recent years, though it remains low in per capita terms relative to many OECD countries. [pp. xvii-xviii; pp. 19-20]

Don’t let your head get too big

Most of the report observes that our international standing is slipping in various ways such as this (from the report released April 10, 2018),

In contrast, the number of R&D personnel employed in Canadian businesses
dropped by 20% between 2008 and 2013. This is likely related to sustained and
ongoing decline in business R&D investment across the country. R&D as a share
of gross domestic product (GDP) has steadily declined in Canada since 2001,
and now stands well below the OECD average (Figure 1). As one of few OECD
countries with virtually no growth in total national R&D expenditures between
2006 and 2015, Canada would now need to more than double expenditures to
achieve an R&D intensity comparable to that of leading countries.

Low and declining business R&D expenditures are the dominant driver of this
trend; however, R&D spending in all sectors is implicated. Government R&D
expenditures declined, in real terms, over the same period. Expenditures in the
higher education sector (an indicator on which Canada has traditionally ranked
highly) are also increasing more slowly than the OECD average. Significant
erosion of Canada’s international competitiveness and capacity to participate
in R&D and innovation is likely to occur if this decline and underinvestment

Between 2009 and 2014, Canada produced 3.8% of the world’s research
publications, ranking ninth in the world. This is down from seventh place for
the 2003–2008 period. India and Italy have overtaken Canada although the
difference between Italy and Canada is small. Publication output in Canada grew
by 26% between 2003 and 2014, a growth rate greater than many developed
countries (including United States, France, Germany, United Kingdom, and
Japan), but below the world average, which reflects the rapid growth in China
and other emerging economies. Research output from the federal government,
particularly the National Research Council Canada, dropped significantly
between 2009 and 2014.(emphasis mine)  [p. xviii Print; p. 20 PDF]

For anyone unfamiliar with Canadian politics,  2009 – 2014 were years during which Stephen Harper’s Conservatives formed the government. Justin Trudeau’s Liberals were elected to form the government in late 2015.

During Harper’s years in government, the Conservatives were very interested in changing how the National Research Council of Canada operated and, if memory serves, the focus was on innovation over research. Consequently, the drop in their research output is predictable.

Given my interest in nanotechnology and other emerging technologies, this popped out (from the report released April 10, 2018),

When it comes to research on most enabling and strategic technologies, however, Canada lags other countries. Bibliometric evidence suggests that, with the exception of selected subfields in Information and Communication Technologies (ICT) such as Medical Informatics and Personalized Medicine, Canada accounts for a relatively small share of the world’s research output for promising areas of technology development. This is particularly true for Biotechnology, Nanotechnology, and Materials science [emphasis mine]. Canada’s research impact, as reflected by citations, is also modest in these areas. Aside from Biotechnology, none of the other subfields in Enabling and Strategic Technologies has an ARC rank among the top five countries. Optoelectronics and photonics is the next highest ranked at 7th place, followed by Materials, and Nanoscience and Nanotechnology, both of which have a rank of 9th. Even in areas where Canadian researchers and institutions played a seminal role in early research (and retain a substantial research capacity), such as Artificial Intelligence and Regenerative Medicine, Canada has lost ground to other countries.

Arguably, our early efforts in artificial intelligence wouldn’t have garnered us much in the way of ranking and yet we managed some cutting edge work such as machine learning. I’m not suggesting the expert panel should have or could have found some way to measure these kinds of efforts but I’m wondering if there could have been some acknowledgement in the text of the report. I’m thinking a couple of sentences in a paragraph about the confounding nature of scientific research where areas that are ignored for years and even decades then become important (e.g., machine learning) but are not measured as part of scientific progress until after they are universally recognized.

Still, point taken about our diminishing returns in ’emerging’ technologies and sciences (from the report released April 10, 2018),

The impression that emerges from these data is sobering. With the exception of selected ICT subfields, such as Medical Informatics, bibliometric evidence does not suggest that Canada excels internationally in most of these research areas. In areas such as Nanotechnology and Materials science, Canada lags behind other countries in levels of research output and impact, and other countries are outpacing Canada’s publication growth in these areas — leading to declining shares of world publications. Even in research areas such as AI, where Canadian researchers and institutions played a foundational role, Canadian R&D activity is not keeping pace with that of other countries and some researchers trained in Canada have relocated to other countries (Section 4.4.1). There are isolated exceptions to these trends, but the aggregate data reviewed by this Panel suggest that Canada is not currently a world leader in research on most emerging technologies.

The Hedy Lamarr treatment

We have ‘good looks’ (arts and humanities) but not the kind of brains (physical sciences and engineering) that people admire (from the report released April 10, 2018),

Canada, relative to the world, specializes in subjects generally referred to as the
humanities and social sciences (plus health and the environment), and does
not specialize as much as others in areas traditionally referred to as the physical
sciences and engineering. Specifically, Canada has comparatively high levels
of research output in Psychology and Cognitive Sciences, Public Health and
Health Services, Philosophy and Theology, Earth and Environmental Sciences,
and Visual and Performing Arts. [emphases mine] It accounts for more than 5% of world researchin these fields. Conversely, Canada has lower research output than expected
in Chemistry, Physics and Astronomy, Enabling and Strategic Technologies,
Engineering, and Mathematics and Statistics. The comparatively low research
output in core areas of the natural sciences and engineering is concerning,
and could impair the flexibility of Canada’s research base, preventing research
institutions and researchers from being able to pivot to tomorrow’s emerging
research areas. [p. xix Print; p. 21 PDF]

Couldn’t they have used a more buoyant tone? After all, science was known as ‘natural philosophy’ up until the 19th century. As for visual and performing arts, let’s include poetry as a performing and literary art (both have been the case historically and cross-culturally) and let’s also note that one of the great physics texts, (De rerum natura by Lucretius) was a multi-volume poem (from Lucretius’ Wikipedia entry; Note: Links have been removed).

His poem De rerum natura (usually translated as “On the Nature of Things” or “On the Nature of the Universe”) transmits the ideas of Epicureanism, which includes Atomism [the concept of atoms forming materials] and psychology. Lucretius was the first writer to introduce Roman readers to Epicurean philosophy.[15] The poem, written in some 7,400 dactylic hexameters, is divided into six untitled books, and explores Epicurean physics through richly poetic language and metaphors. Lucretius presents the principles of atomism; the nature of the mind and soul; explanations of sensation and thought; the development of the world and its phenomena; and explains a variety of celestial and terrestrial phenomena. The universe described in the poem operates according to these physical principles, guided by fortuna, “chance”, and not the divine intervention of the traditional Roman deities.[16]

Should you need more proof that the arts might have something to contribute to physical sciences, there’s this in my March 7, 2018 posting,

It’s not often you see research that combines biologically inspired engineering and a molecular biophysicist with a professional animator who worked at Peter Jackson’s (Lord of the Rings film trilogy, etc.) Park Road Post film studio. An Oct. 18, 2017 news item on ScienceDaily describes the project,

Like many other scientists, Don Ingber, M.D., Ph.D., the Founding Director of the Wyss Institute, [emphasis mine] is concerned that non-scientists have become skeptical and even fearful of his field at a time when technology can offer solutions to many of the world’s greatest problems. “I feel that there’s a huge disconnect between science and the public because it’s depicted as rote memorization in schools, when by definition, if you can memorize it, it’s not science,” says Ingber, who is also the Judah Folkman Professor of Vascular Biology at Harvard Medical School and the Vascular Biology Program at Boston Children’s Hospital, and Professor of Bioengineering at the Harvard Paulson School of Engineering and Applied Sciences (SEAS). [emphasis mine] “Science is the pursuit of the unknown. We have a responsibility to reach out to the public and convey that excitement of exploration and discovery, and fortunately, the film industry is already great at doing that.”

“Not only is our physics-based simulation and animation system as good as other data-based modeling systems, it led to the new scientific insight [emphasis mine] that the limited motion of the dynein hinge focuses the energy released by ATP hydrolysis, which causes dynein’s shape change and drives microtubule sliding and axoneme motion,” says Ingber. “Additionally, while previous studies of dynein have revealed the molecule’s two different static conformations, our animation visually depicts one plausible way that the protein can transition between those shapes at atomic resolution, which is something that other simulations can’t do. The animation approach also allows us to visualize how rows of dyneins work in unison, like rowers pulling together in a boat, which is difficult using conventional scientific simulation approaches.”

It comes down to how we look at things. Yes, physical sciences and engineering are very important. If the report is to be believed we have a very highly educated population and according to PISA scores our students rank highly in mathematics, science, and reading skills. (For more information on Canada’s latest PISA scores from 2015 see this OECD page. As for PISA itself, it’s an OECD [Organization for Economic Cooperation and Development] programme where 15-year-old students from around the world are tested on their reading, mathematics, and science skills, you can get some information from my Oct. 9, 2013 posting.)

Is it really so bad that we choose to apply those skills in fields other than the physical sciences and engineering? It’s a little bit like Hedy Lamarr’s problem except instead of being judged for our looks and having our inventions dismissed, we’re being judged for not applying ourselves to physical sciences and engineering and having our work in other closely aligned fields dismissed as less important.

Canada’s Industrial R&D: an oft-told, very sad story

Bemoaning the state of Canada’s industrial research and development efforts has been a national pastime as long as I can remember. Here’s this from the report released April 10, 2018,

There has been a sustained erosion in Canada’s industrial R&D capacity and competitiveness. Canada ranks 33rd among leading countries on an index assessing the magnitude, intensity, and growth of industrial R&D expenditures. Although Canada is the 11th largest spender, its industrial R&D intensity (0.9%) is only half the OECD average and total spending is declining (−0.7%). Compared with G7 countries, the Canadian portfolio of R&D investment is more concentrated in industries that are intrinsically not as R&D intensive. Canada invests more heavily than the G7 average in oil and gas, forestry, machinery and equipment, and finance where R&D has been less central to business strategy than in many other industries. …  About 50% of Canada’s industrial R&D spending is in high-tech sectors (including industries such as ICT, aerospace, pharmaceuticals, and automotive) compared with the G7 average of 80%. Canadian Business Enterprise Expenditures on R&D (BERD) intensity is also below the OECD average in these sectors. In contrast, Canadian investment in low and medium-low tech sectors is substantially higher than the G7 average. Canada’s spending reflects both its long-standing industrial structure and patterns of economic activity.

R&D investment patterns in Canada appear to be evolving in response to global and domestic shifts. While small and medium-sized enterprises continue to perform a greater share of industrial R&D in Canada than in the United States, between 2009 and 2013, there was a shift in R&D from smaller to larger firms. Canada is an increasingly attractive place to conduct R&D. Investment by foreign-controlled firms in Canada has increased to more than 35% of total R&D investment, with the United States accounting for more than half of that. [emphasis mine]  Multinational enterprises seem to be increasingly locating some of their R&D operations outside their country of ownership, possibly to gain proximity to superior talent. Increasing foreign-controlled R&D, however, also could signal a long-term strategic loss of control over intellectual property (IP) developed in this country, ultimately undermining the government’s efforts to support high-growth firms as they scale up. [pp. xxii-xxiii Print; pp. 24-25 PDF]

Canada has been known as a ‘branch plant’ economy for decades. For anyone unfamiliar with the term, it means that companies from other countries come here, open up a branch and that’s how we get our jobs as we don’t have all that many large companies here. Increasingly, multinationals are locating R&D shops here.

While our small to medium size companies fund industrial R&D, it’s large companies (multinationals) which can afford long-term and serious investment in R&D. Luckily for companies from other countries, we have a well-educated population of people looking for jobs.

In 2017, we opened the door more widely so we can scoop up talented researchers and scientists from other countries, from a June 14, 2017 article by Beckie Smith for The PIE News,

Universities have welcomed the inclusion of the work permit exemption for academic stays of up to 120 days in the strategy, which also introduces expedited visa processing for some highly skilled professions.

Foreign researchers working on projects at a publicly funded degree-granting institution or affiliated research institution will be eligible for one 120-day stay in Canada every 12 months.

And universities will also be able to access a dedicated service channel that will support employers and provide guidance on visa applications for foreign talent.

The Global Skills Strategy, which came into force on June 12 [2017], aims to boost the Canadian economy by filling skills gaps with international talent.

As well as the short term work permit exemption, the Global Skills Strategy aims to make it easier for employers to recruit highly skilled workers in certain fields such as computer engineering.

“Employers that are making plans for job-creating investments in Canada will often need an experienced leader, dynamic researcher or an innovator with unique skills not readily available in Canada to make that investment happen,” said Ahmed Hussen, Minister of Immigration, Refugees and Citizenship.

“The Global Skills Strategy aims to give those employers confidence that when they need to hire from abroad, they’ll have faster, more reliable access to top talent.”

Coincidentally, Microsoft, Facebook, Google, etc. have announced, in 2017, new jobs and new offices in Canadian cities. There’s a also Chinese multinational telecom company Huawei Canada which has enjoyed success in Canada and continues to invest here (from a Jan. 19, 2018 article about security concerns by Matthew Braga for the Canadian Broadcasting Corporation (CBC) online news,

For the past decade, Chinese tech company Huawei has found no shortage of success in Canada. Its equipment is used in telecommunications infrastructure run by the country’s major carriers, and some have sold Huawei’s phones.

The company has struck up partnerships with Canadian universities, and say it is investing more than half a billion dollars in researching next generation cellular networks here. [emphasis mine]

While I’m not thrilled about using patents as an indicator of progress, this is interesting to note (from the report released April 10, 2018),

Canada produces about 1% of global patents, ranking 18th in the world. It lags further behind in trademark (34th) and design applications (34th). Despite relatively weak performance overall in patents, Canada excels in some technical fields such as Civil Engineering, Digital Communication, Other Special Machines, Computer Technology, and Telecommunications. [emphases mine] Canada is a net exporter of patents, which signals the R&D strength of some technology industries. It may also reflect increasing R&D investment by foreign-controlled firms. [emphasis mine] [p. xxiii Print; p. 25 PDF]

Getting back to my point, we don’t have large companies here. In fact, the dream for most of our high tech startups is to build up the company so it’s attractive to buyers, sell, and retire (hopefully before the age of 40). Strangely, the expert panel doesn’t seem to share my insight into this matter,

Canada’s combination of high performance in measures of research output and impact, and low performance on measures of industrial R&D investment and innovation (e.g., subpar productivity growth), continue to be viewed as a paradox, leading to the hypothesis that barriers are impeding the flow of Canada’s research achievements into commercial applications. The Panel’s analysis suggests the need for a more nuanced view. The process of transforming research into innovation and wealth creation is a complex multifaceted process, making it difficult to point to any definitive cause of Canada’s deficit in R&D investment and productivity growth. Based on the Panel’s interpretation of the evidence, Canada is a highly innovative nation, but significant barriers prevent the translation of innovation into wealth creation. The available evidence does point to a number of important contributing factors that are analyzed in this report. Figure 5 represents the relationships between R&D, innovation, and wealth creation.

The Panel concluded that many factors commonly identified as points of concern do not adequately explain the overall weakness in Canada’s innovation performance compared with other countries. [emphasis mine] Academia-business linkages appear relatively robust in quantitative terms given the extent of cross-sectoral R&D funding and increasing academia-industry partnerships, though the volume of academia-industry interactions does not indicate the nature or the quality of that interaction, nor the extent to which firms are capitalizing on the research conducted and the resulting IP. The educational system is high performing by international standards and there does not appear to be a widespread lack of researchers or STEM (science, technology, engineering, and mathematics) skills. IP policies differ across universities and are unlikely to explain a divergence in research commercialization activity between Canadian and U.S. institutions, though Canadian universities and governments could do more to help Canadian firms access university IP and compete in IP management and strategy. Venture capital availability in Canada has improved dramatically in recent years and is now competitive internationally, though still overshadowed by Silicon Valley. Technology start-ups and start-up ecosystems are also flourishing in many sectors and regions, demonstrating their ability to build on research advances to develop and deliver innovative products and services.

You’ll note there’s no mention of a cultural issue where start-ups are designed for sale as soon as possible and this isn’t new. Years ago, there was an accounting firm that published a series of historical maps (the last one I saw was in 2005) of technology companies in the Vancouver region. Technology companies were being developed and sold to large foreign companies from the 19th century to present day.

Part 2

Canada’s ‘Smart Cities’ will need new technology (5G wireless) and, maybe, graphene

I recently published [March 20, 2018] a piece on ‘smart cities’ both an art/science event in Toronto and a Canadian government initiative without mentioning the necessity of new technology to support all of the grand plans. On that note, it seems the Canadian federal government and two provincial (Québec and Ontario) governments are prepared to invest in one of the necessary ‘new’ technologies, 5G wireless. The Canadian Broadcasting Corporation’s (CBC) Shawn Benjamin reports about Canada’s 5G plans in suitably breathless (even in text only) tones of excitement in a March 19, 2018 article,

The federal, Ontario and Quebec governments say they will spend $200 million to help fund research into 5G wireless technology, the next-generation networks with download speeds 100 times faster than current ones can handle.

The so-called “5G corridor,” known as ENCQOR, will see tech companies such as Ericsson, Ciena Canada, Thales Canada, IBM and CGI kick in another $200 million to develop facilities to get the project up and running.

The idea is to set up a network of linked research facilities and laboratories that these companies — and as many as 1,000 more across Canada — will be able to use to test products and services that run on 5G networks.

Benjamin’s description of 5G is focused on what it will make possible in the future,

If you think things are moving too fast, buckle up, because a new 5G cellular network is just around the corner and it promises to transform our lives by connecting nearly everything to a new, much faster, reliable wireless network.

The first networks won’t be operational for at least a few years, but technology and telecom companies around the world are already planning to spend billions to make sure they aren’t left behind, says Lawrence Surtees, a communications analyst with the research firm IDC.

The new 5G is no tentative baby step toward the future. Rather, as Surtees puts it, “the move from 4G to 5G is a quantum leap.”

In a downtown Toronto soundstage, Alan Smithson recently demonstrated a few virtual reality and augmented reality projects that his company MetaVRse is working on.

The potential for VR and AR technology is endless, he said, in large part for its potential to help hurdle some of the walls we are already seeing with current networks.

Virtual Reality technology on the market today is continually increasing things like frame rates and screen resolutions in a constant quest to make their devices even more lifelike.

… They [current 4G networks] can’t handle the load. But 5G can do so easily, Smithson said, so much so that the current era of bulky augmented reality headsets could be replaced buy a pair of normal looking glasses.

In a 5G world, those internet-connected glasses will automatically recognize everyone you meet, and possibly be able to overlay their name in your field of vision, along with a link to their online profile. …

Benjamin also mentions ‘smart cities’,

In a University of Toronto laboratory, Professor Alberto Leon-Garcia researches connected vehicles and smart power grids. “My passion right now is enabling smart cities — making smart cities a reality — and that means having much more immediate and detailed sense of the environment,” he said.

Faster 5G networks will assist his projects in many ways, by giving planners more, instant data on things like traffic patterns, energy consumption, variou carbon footprints and much more.

Leon-Garcia points to a brightly lit map of Toronto [image embedded in Benjamin’s article] in his office, and explains that every dot of light represents a sensor transmitting real time data.

Currently, the network is hooked up to things like city buses, traffic cameras and the city-owned fleet of shared bicycles. He currently has thousands of data points feeding him info on his map, but in a 5G world, the network will support about a million sensors per square kilometre.

Very exciting but where is all this data going? What computers will be processing the information? Where are these sensors located? Benjamin does not venture into those waters nor does The Economist in a February 13, 2018 article about 5G, the Olympic Games in Pyeonchang, South Korea, but the magazine does note another barrier to 5G implementation,

“FASTER, higher, stronger,” goes the Olympic motto. So it is only appropriate that the next generation of wireless technology, “5G” for short, should get its first showcase at the Winter Olympics  under way in Pyeongchang, South Korea. Once fully developed, it is supposed to offer download speeds of at least 20 gigabits per second (4G manages about half that at best) and response times (“latency”) of below 1 millisecond. So the new networks will be able to transfer a high-resolution movie in two seconds and respond to requests in less than a hundredth of the time it takes to blink an eye. But 5G is not just about faster and swifter wireless connections.

The technology is meant to enable all sorts of new services. One such would offer virtual- or augmented-reality experiences. At the Olympics, for example, many contestants are being followed by 360-degree video cameras. At special venues sports fans can don virtual-reality goggles to put themselves right into the action. But 5G is also supposed to become the connective tissue for the internet of things, to link anything from smartphones to wireless sensors and industrial robots to self-driving cars. This will be made possible by a technique called “network slicing”, which allows operators quickly to create bespoke networks that give each set of devices exactly the connectivity they need.

Despite its versatility, it is not clear how quickly 5G will take off. The biggest brake will be economic. [emphasis mine] When the GSMA, an industry group, last year asked 750 telecoms bosses about the most salient impediment to delivering 5G, more than half cited the lack of a clear business case. People may want more bandwidth, but they are not willing to pay for it—an attitude even the lure of the fanciest virtual-reality applications may not change. …

That may not be the only brake, Dexter Johnson in a March 19, 2018 posting on his Nanoclast blog (on the IEEE [Institute of Electrical and Electronics Engineers] website), covers some of the others (Note: Links have been removed),

Graphene has been heralded as a “wonder material” for well over a decade now, and 5G has been marketed as the next big thing for at least the past five years. Analysts have suggested that 5G could be the golden ticket to virtual reality and artificial intelligence, and promised that graphene could improve technologies within electronics and optoelectronics.

But proponents of both graphene and 5G have also been accused of stirring up hype. There now seems to be a rising sense within industry circles that these glowing technological prospects will not come anytime soon.

At Mobile World Congress (MWC) in Barcelona last month [February 2018], some misgivings for these long promised technologies may have been put to rest, though, thanks in large part to each other.

In a meeting at MWC with Jari Kinaret, a professor at Chalmers University in Sweden and director of the Graphene Flagship, I took a guided tour around the Pavilion to see some of the technologies poised to have an impact on the development of 5G.

Being invited back to the MWC for three years is a pretty clear indication of how important graphene is to those who are trying to raise the fortunes of 5G. But just how important became more obvious to me in an interview with Frank Koppens, the leader of the quantum nano-optoelectronic group at Institute of Photonic Sciences (ICFO) just outside of Barcelona, last year.

He said: “5G cannot just scale. Some new technology is needed. And that’s why we have several companies in the Graphene Flagship that are putting a lot of pressure on us to address this issue.”

In a collaboration led by CNIT—a consortium of Italian universities and national laboratories focused on communication technologies—researchers from AMO GmbH, Ericsson, Nokia Bell Labs, and Imec have developed graphene-based photodetectors and modulators capable of receiving and transmitting optical data faster than ever before.

The aim of all this speed for transmitting data is to support the ultrafast data streams with extreme bandwidth that will be part of 5G. In fact, at another section during MWC, Ericsson was presenting the switching of a 100 Gigabits per second (Gbps) channel based on the technology.

“The fact that Ericsson is demonstrating another version of this technology demonstrates that from Ericsson’s point of view, this is no longer just research” said Kinaret.

It’s no mystery why the big mobile companies are jumping on this technology. Not only does it provide high-speed data transmission, but it also does it 10 times more efficiently than silicon or doped silicon devices, and will eventually do it more cheaply than those devices, according to Vito Sorianello, senior researcher at CNIT.

Interestingly, Ericsson is one of the tech companies mentioned with regard to Canada’s 5G project, ENCQOR and Sweden’s Chalmers University, as Dexter Johnson notes, is the lead institution for the Graphene Flagship.. One other fact to note, Canada’s resources include graphite mines with ‘premium’ flakes for producing graphene. Canada’s graphite mines are located (as far as I know) in only two Canadian provinces, Ontario and Québec, which also happen to be pitching money into ENCQOR. My March 21, 2018 posting describes the latest entry into the Canadian graphite mining stakes.

As for the questions I posed about processing power, etc. It seems the South Koreans have found answers of some kind but it’s hard to evaluate as I haven’t found any additional information about 5G and its implementation in South Korea. If anyone has answers, please feel free to leave them in the ‘comments’. Thank you.

(Merry Christmas!) Japanese tree frogs inspire hardware for the highest of tech: a swarmalator

First, the frog,

[Japanese Tree Frog] By 池田正樹 (talk)masaki ikeda – Own work, Public Domain, https://commons.wikimedia.org/w/index.php?curid=4593224

I wish they had a recording of the mating calls for Japanese tree frogs since they were the inspiration for mathematicians at Cornell University (New York state, US) according to a November 17, 2017 news item on ScienceDaily,

How does the Japanese tree frog figure into the latest work of noted mathematician Steven Strogatz? As it turns out, quite prominently.

“We had read about these funny frogs that hop around and croak,” said Strogatz, the Jacob Gould Schurman Professor of Applied Mathematics. “They form patterns in space and time. Usually it’s about reproduction. And based on how the other guy or guys are croaking, they don’t want to be around another one that’s croaking at the same time as they are, because they’ll jam each other.”

A November 15, 2017 Cornell University news release (also on EurekAlert but dated November 17, 2017) by Tom Fleischman, which originated the news item, details how the calls led to ‘swarmalators’ (Note: Links have been removed),

Strogatz and Kevin O’Keeffe, Ph.D. ’17, used the curious mating ritual of male Japanese tree frogs as inspiration for their exploration of “swarmalators” – their term for systems in which both synchronization and swarming occur together.

Specifically, they considered oscillators whose phase dynamics and spatial dynamics are coupled. In the instance of the male tree frogs, they attempt to croak in exact anti-phase (one croaks while the other is silent) while moving away from a rival so as to be heard by females.

This opens up “a new class of math problems,” said Strogatz, a Stephen H. Weiss Presidential Fellow. “The question is, what do we expect to see when people start building systems like this or observing them in biology?”

Their paper, “Oscillators That Sync and Swarm,” was published Nov. 13 [2017] in Nature Communications. Strogatz and O’Keeffe – now a postdoctoral researcher with the Senseable City Lab at the Massachusetts Institute of Technology – collaborated with Hyunsuk Hong from Chonbuk National University in Jeonju, South Korea.

Swarming and synchronization both involve large, self-organizing groups of individuals interacting according to simple rules, but rarely have they been studied together, O’Keeffe said.

“No one had connected these two areas, in spite of the fact that there were all these parallels,” he said. “That was the theoretical idea that sort of seduced us, I suppose. And there were also a couple of concrete examples, which we liked – including the tree frogs.”

Studies of swarms focus on how animals move – think of birds flocking or fish schooling – while neglecting the dynamics of their internal states. Studies of synchronization do the opposite: They focus on oscillators’ internal dynamics. Strogatz long has been fascinated by fireflies’ synchrony and other similar phenomena, giving a TED Talk on the topic in 2004, but not on their motion.

“[Swarming and synchronization] are so similar, and yet they were never connected together, and it seems so obvious,” O’Keeffe said. “It’s a whole new landscape of possible behaviors that hadn’t been explored before.”

Using a pair of governing equations that assume swarmalators are free to move about, along with numerical simulations, the group found that a swarmalator system settles into one of five states:

  • Static synchrony – featuring circular symmetry, crystal-like distribution, fully synchronized in phase;
  • Static asynchrony – featuring uniform distribution, meaning that every phase occurs everywhere;
  • Static phase wave – swarmalators settle near others in a phase similar to their own, and phases are frozen at their initial values;
  • Splintered phase wave – nonstationary, disconnected clusters of distinct phases; and
  • Active phase wave – similar to bidirectional states found in biological swarms, where populations split into counter-rotating subgroups; also similar to vortex arrays formed by groups of sperm.

Through the study of simple models, the group found that the coupling of “sync” and “swarm” leads to rich patterns in both time and space, and could lead to further study of systems that exhibit this dual behavior.

“This opens up a lot of questions for many parts of science – there are a lot of things to try that people hadn’t thought of trying,” Strogatz said. “It’s science that opens doors for science. It’s inaugurating science, rather than culminating science.”

Here’s a link to and a citation for the paper,

Oscillators that sync and swarm by Kevin P. O’Keeffe, Hyunsuk Hong, & Steven H. Strogatz. Nature Communications 8, Article number: 1504 (2017) doi:10.1038/s41467-017-01190-3 Published online: 15 November 2017

This paper is open access.

One last thing, these frogs have also inspired WiFi improvements (from the Japanese tree frog Wikipedia entry; Note: Links have been removed),

Journalist Toyohiro Akiyama carried some Japanese tree frogs with him during his trip to the Mir space station in December 1990.[citation needed] Calling behavior of the species was used to create an algorithm for optimizing Wi-Fi networks.[3]

While it’s not clear in the Wikipedia entry, the frogs were part of an experiment. Here’s a link to and a citation for the paper about the experiment, along with an abstract,

The Frog in Space (FRIS) experiment onboard Space Station Mir: final report and follow-on studies by Yamashita, M.; Izumi-Kurotani, A.; Mogami, Y.; Okuno,k M.; Naitoh, T.; Wassersug, R. J. Biol Sci Space. 1997 Dec 11(4):313-20.


The “Frog in Space” (FRIS) experiment marked a major step for Japanese space life science, on the occasion of the first space flight of a Japanese cosmonaut. At the core of FRIS were six Japanese tree frogs, Hyla japonica, flown on Space Station Mir for 8 days in 1990. The behavior of these frogs was observed and recorded under microgravity. The frogs took up a “parachuting” posture when drifting in a free volume on Mir. When perched on surfaces, they typically sat with their heads bent backward. Such a peculiar posture, after long exposure to microgravity, is discussed in light of motion sickness in amphibians. Histological examinations and other studies were made on the specimens upon recovery. Some organs, such as the liver and the vertebra, showed changes as a result of space flight; others were unaffected. Studies that followed FRIS have been conducted to prepare for a second FRIS on the International Space Station. Interspecific diversity in the behavioral reactions of anurans to changes in acceleration is the major focus of these investigations. The ultimate goal of this research is to better understand how organisms have adapted to gravity through their evolution on earth.

The paper is open access.

A pumpkin-shaped molecule for the first real-time methamphetamine and amphetamine sensor

A Sept. 28,2017 news item on Nanowerk announces a portable, inexpensive sensor for drugs (Note: A link has been renewed),

Speed, uppers, chalk, glass, crystal, or whatever you prefer to call them, can be instantly detected from biological fluids with a new portable kit that costs as little as $50. Scientists at the Center for Self-Assembly and Complexity, within the Institute for Basic Science (IBS, South Korea), in collaboration with Pohang University of Science and Technology (POSTECH), have devised the first methamphetamine and amphetamine sensor that can detect minute concentrations of these drugs from a single drop of urine in real-time.

Published in the journal Chem (“Point-of-Use Detection of Amphetamine-Type Stimulants with Host-Molecule-Functionalized Organic Transistors”), this simple and flexible sensor, which can be attached to a wristband and connected to an Android app via Bluetooth, could move drug screening from the labs to the streets.

A Sept. 28 (?), 2017 IBS press release by Letizia Diamante (also on EurekAlert), which originated the news item, expands on the theme,

Easy to synthesize and cheaper than heroin or cocaine, amphetamine-based drugs are the most abused drugs in the world, after cannabis. Conventional drug detection methods require a long time, as the sample must be taken into a lab for the analysis. It also needs experts to run the expensive equipment. The technology reported in this study is instead small, portable, cheap, fast and easy to use.

The idea for this technology came from the IBS chemist HWANG Ilha: “I was watching a TV news report on the usage of illegal drugs, and I thought to check what the chemical structure of methamphetamine looks like.” Soon after, the scientist anticipated that the drug would form a tight complex with a family of hollow pumpkin-shaped molecules, called cucurbituril (CB) members. The team then discovered that cucurbit[7]uril (CB[7])’s empty cavity binds well with amphetamine-based drugs and can be used as the drug recognition unit of a sensor. Cucurbiturils’ hollow chamber has already been studied for various technological uses, but this is the first device application in amphetamine-based drug detection.

▲ Figure 1: Wireless sensor for amphetamine-based drug detection.The kit is made of an organic field-effect transistor (OFET) device, an electric circuit board with a rechargeable battery and an antenna. The OFET device surface is coated with CB[7], whose function is to bind amphetamine and methamphetamine drugs in solution. The binding event is instantly converted to current, whose magnitude is proportional to the concentration of the drug. The app on the smartphone shows a peak as soon as a drop of urine with the drug is applied to the device. Moreover the entire kit can fit in a handy wristband.

▲ Video 1: The detector in action.
[Click text not image]
As soon as a drop of water with 0.0001 ng/mL (1 pM) of amphetamine is applied to the kit, the app shows a peak in current proportional to the concentration of drug. When the liquid is removed, the current level goes back to baseline, and the sensor can be reused. (Modified from Jang et al, Chem 2017)

Combining a transistor coated with CB[7], flexible materials, rechargeable batteries and a Bluetooth antenna, the research team developed a detector wristband connected to an app. In the presence of the drug, the molecular recognition between CB[7] and the drug molecule triggers an electrical signal which appears as a peak on the smartphone screen.

Current drug detection based on immunoassay or liquid chromatography/mass spectrometry techniques has a detection limit of about 10 ng/mL. On the contrary, the sensitivity of this new sensor is about 0.0001 ng/mL in water and 0.1 ng/mL in urine. Therefore, it is expected that this method will allow the detection of drug molecules in biological fluids, like urine and sweat, for a longer time after drug consumption.

▲ Figure 2: Graphic representation of the drug detection platform.Binding of drug molecules to the hollow cucurbit[7]uril (CB[7])’s cavity changes the current signal flowing in the transistor and therefore can be used as a detection system. The molecular structure of amphetamine and methamphetamine bound to cucurbit[7]uril (CB[7]) was confirmed with X-ray crystallography. Each color indicates a different atom (blue: nitrogen, red: oxygen, gray: carbon, and white: hydrogen). CB[7]’s hydrogen atoms have been omitted for clarity.

▲ Figure 3: Humorous view of the pumpkin-shaped molecule, cucurbit[7]uril (CB[7]), able to bind and detect amphetamine and methamphetamine molecules.(Credits: Modified from Titusurya – Freepik.com)

“Real time detection of amphetamine drugs on location would bring a big change to society,” explains another corresponding author KIM Kimoon. “In the same way as police can use a breathalyzer to detect alcohol on the spot, we aim to achieve the same with this device.”

False positives cannot be excluded yet, as urine contains a rich mixture of proteins and other metabolites that could affect the reading. Therefore, before commercializing it, clinical trials with drug users’ biological fluids are necessary. The researchers have patented the technology and they will continue to do further research in the near future.s

“Combining basic science with the latest technology, we can expect that this research will also lead to other new sensors, useful for our daily life,” concludes the third corresponding author OH Joon Hak. Indeed, the team is also keen on developing sensors for other kinds of drugs, as well as kits for the detection of dangerous substances, environmental monitoring, healthcare and safety.

Here’s a link to and a citation for the paper,

Point-of-Use Detection of Amphetamine-Type Stimulants with Host-Molecule-Functionalized Organic Transistors by Yoonjung Jang, Moonjeong Jang, Hyoeun Kim, Sang Jin Lee, Eunyeong Jin, Jin Young Koo, In-Chul Hwang, Yonghwi Kim, Young Ho Ko, Ilha Hwang., Joon Hak Oh, Kimoon Kim. Chem (2017). DOI: 10.1016/j.chempr.2017.08.015 Publication stage: In Press Corrected Proof

This paper appears to be behind a paywall.

Yarns that harvest and generate energy

The researchers involved in this work are confident enough about their prospects that they will be  patenting their research into yarns. From an August 25, 2017 news item on Nanowerk,

An international research team led by scientists at The University of Texas at Dallas and Hanyang University in South Korea has developed high-tech yarns that generate electricity when they are stretched or twisted.

In a study published in the Aug. 25 [2017] issue of the journal Science (“Harvesting electrical energy from carbon nanotube yarn twist”), researchers describe “twistron” yarns and their possible applications, such as harvesting energy from the motion of ocean waves or from temperature fluctuations. When sewn into a shirt, these yarns served as a self-powered breathing monitor.

“The easiest way to think of twistron harvesters is, you have a piece of yarn, you stretch it, and out comes electricity,” said Dr. Carter Haines, associate research professor in the Alan G. MacDiarmid NanoTech Institute at UT Dallas and co-lead author of the article. The article also includes researchers from South Korea, Virginia Tech, Wright-Patterson Air Force Base and China.

An August 25, 2017 University of Texas at Dallas news release, which originated the news item, expands on the theme,

Yarns Based on Nanotechnology

The yarns are constructed from carbon nanotubes, which are hollow cylinders of carbon 10,000 times smaller in diameter than a human hair. The researchers first twist-spun the nanotubes into high-strength, lightweight yarns. To make the yarns highly elastic, they introduced so much twist that the yarns coiled like an over-twisted rubber band.

In order to generate electricity, the yarns must be either submerged in or coated with an ionically conducting material, or electrolyte, which can be as simple as a mixture of ordinary table salt and water.

“Fundamentally, these yarns are supercapacitors,” said Dr. Na Li, a research scientist at the NanoTech Institute and co-lead author of the study. “In a normal capacitor, you use energy — like from a battery — to add charges to the capacitor. But in our case, when you insert the carbon nanotube yarn into an electrolyte bath, the yarns are charged by the electrolyte itself. No external battery, or voltage, is needed.”

When a harvester yarn is twisted or stretched, the volume of the carbon nanotube yarn decreases, bringing the electric charges on the yarn closer together and increasing their energy, Haines said. This increases the voltage associated with the charge stored in the yarn, enabling the harvesting of electricity.

Stretching the coiled twistron yarns 30 times a second generated 250 watts per kilogram of peak electrical power when normalized to the harvester’s weight, said Dr. Ray Baughman, director of the NanoTech Institute and a corresponding author of the study.

“Although numerous alternative harvesters have been investigated for many decades, no other reported harvester provides such high electrical power or energy output per cycle as ours for stretching rates between a few cycles per second and 600 cycles per second.”

Lab Tests Show Potential Applications

In the lab, the researchers showed that a twistron yarn weighing less than a housefly could power a small LED, which lit up each time the yarn was stretched.

To show that twistrons can harvest waste thermal energy from the environment, Li connected a twistron yarn to a polymer artificial muscle that contracts and expands when heated and cooled. The twistron harvester converted the mechanical energy generated by the polymer muscle to electrical energy.

“There is a lot of interest in using waste energy to power the Internet of Things, such as arrays of distributed sensors,” Li said. “Twistron technology might be exploited for such applications where changing batteries is impractical.”

The researchers also sewed twistron harvesters into a shirt. Normal breathing stretched the yarn and generated an electrical signal, demonstrating its potential as a self-powered respiration sensor.

“Electronic textiles are of major commercial interest, but how are you going to power them?” Baughman said. “Harvesting electrical energy from human motion is one strategy for eliminating the need for batteries. Our yarns produced over a hundred times higher electrical power per weight when stretched compared to other weavable fibers reported in the literature.”

Electricity from Ocean Waves

“In the lab we showed that our energy harvesters worked using a solution of table salt as the electrolyte,” said Baughman, who holds the Robert A. Welch Distinguished Chair in Chemistry in the School of Natural Sciences and Mathematics. “But we wanted to show that they would also work in ocean water, which is chemically more complex.”

In a proof-of-concept demonstration, co-lead author Dr. Shi Hyeong Kim, a postdoctoral researcher at the NanoTech Institute, waded into the frigid surf off the east coast of South Korea to deploy a coiled twistron in the sea. He attached a 10 centimeter-long yarn, weighing only 1 milligram (about the weight of a mosquito), between a balloon and a sinker that rested on the seabed.

Every time an ocean wave arrived, the balloon would rise, stretching the yarn up to 25 percent, thereby generating measured electricity.

Even though the investigators used very small amounts of twistron yarn in the current study, they have shown that harvester performance is scalable, both by increasing twistron diameter and by operating many yarns in parallel.

“If our twistron harvesters could be made less expensively, they might ultimately be able to harvest the enormous amount of energy available from ocean waves,” Baughman said. “However, at present these harvesters are most suitable for powering sensors and sensor communications. Based on demonstrated average power output, just 31 milligrams of carbon nanotube yarn harvester could provide the electrical energy needed to transmit a 2-kilobyte packet of data over a 100-meter radius every 10 seconds for the Internet of Things.”

Researchers from the UT Dallas Erik Jonsson School of Engineering and Computer Science and Lintec of America’s Nano-Science & Technology Center also participated in the study.

The investigators have filed a patent on the technology.

In the U.S., the research was funded by the Air Force, the Air Force Office of Scientific Research, NASA, the Office of Naval Research and the Robert A. Welch Foundation. In Korea, the research was supported by the Korea-U.S. Air Force Cooperation Program and the Creative Research Initiative Center for Self-powered Actuation of the National Research Foundation and the Ministry of Science.

Here’s a link to and a citation for the paper,

Harvesting electrical energy from carbon nanotube yarn twist by Shi Hyeong Kim, Carter S. Haines, Na Li, Keon Jung Kim, Tae Jin Mun, Changsoon Choi, Jiangtao Di, Young Jun Oh, Juan Pablo Oviedo, Julia Bykova, Shaoli Fang, Nan Jiang, Zunfeng Liu, Run Wang, Prashant Kumar, Rui Qiao, Shashank Priya, Kyeongjae Cho, Moon Kim, Matthew Steven Lucas, Lawrence F. Drummy, Benji Maruyama, Dong Youn Lee, Xavier Lepró, Enlai Gao, Dawood Albarq, Raquel Ovalle-Robles, Seon Jeong Kim, Ray H. Baughman. Science 25 Aug 2017: Vol. 357, Issue 6353, pp. 773-778 DOI: 10.1126/science.aam8771

This paper is behind a paywall.

Dexter Johnson in an Aug. 25, 2017 posting on his Nanoclast blog (on the IEEE [Institute of Electrical and Electronics Engineers] website) delves further into the research,

“Basically what’s happening is when we stretch the yarn, we’re getting a change in capacitance of the yarn. It’s that change that allows us to get energy out,” explains Carter Haines, associate research professor at UT Dallas and co-lead author of the paper describing the research, in an interview with IEEE Spectrum.

This makes it similar in many ways to other types of energy harvesters. For instance, in other research, it has been demonstrated—with sheets of rubber with coated electrodes on both sides—that you can increase the capacitance of a material when you stretch it and it becomes thinner. As a result, if you have charge on that capacitor, you can change the voltage associated with that charge.

“We’re more or less exploiting the same effect but what we’re doing differently is we’re using an electric chemical cell to do this,” says Haines. “So we’re not changing double layer capacitance in normal parallel plate capacitors. But we’re actually changing the electric chemical capacitance on the surface of a super capacitor yarn.”

While there are other capacitance-based energy harvesters, those other devices require extremely high voltages to work because they’re using parallel plate capacitors, according to Haines.

Dexter asks good questions and his post is very informative.

Korean researchers extend food shelf *life* with nanomicrobial coating

These Korean scientists have applied their new coating to food and to shoe insoles as they test various uses for their technology. From an Aug. 11, 2017 news item on Nanowerk,

The edible coating on produce has drawn a great deal of attention in the food and agricultural industry. It could not only prolong postharvest shelf life of produce against external changes in the environment but also provide additional nutrients to be useful for human health. However, most versions of the coating have had intrinsic limitations in their practical application.

First, highly specific interactions between coating materials and target surfaces are required for a stable and durable coating. Even further, the coating of bulk substrates, such as fruits, is time consuming or is not achievable in the conventional solution-based coating. In this respect, material-independent and rapid coating strategies are highly demanded.

The research team led by Professor Insung Choi of the Department of Chemistry developed a sprayable nanocoating technique using plant-derived polyphenol that can be applied to any surface.

An Aug. 10, 2017 KAIST (Korea Advanced Institute of Science and Technology) press release, which originated the news item, expands on the theme,

Polyphenols, a metabolite of photosynthesis, possess several hydroxyl groups and are found in a large number of plants showing excellent antioxidant properties. They have been widely used as a nontoxic food additive and are known to exhibit antibacterial, as well as potential anti-carcinogenic capabilities. Polyphenols can also be used with iron ions, which are naturally found in the body, to form an adhesive complex, which has been used in leather tanning, ink, etc.

The research team combined these chemical properties of polyphenol-iron complexes with spray techniques to develop their nanocoating technology. Compared to conventional immersion coating methods, which dip substrates in specialized coating solutions, this spray technique can coat the select areas more quickly. The spray also prevents cross contamination, which is a big concern for immersion methods. The research team has showcased the spray’s ability to coat a variety of different materials, including metals, plastics, glass, as well as textile fabrics. The polyphenol complex has been used to form antifogging films on corrective lenses, as well as antifungal treatments for shoe soles, demonstrating the versatility of their technique.

Furthermore, the spray has been used to coat produce with a naturally antibacterial, edible film. The coatings significantly improved the shelf life of tangerines and strawberries, preserving freshness beyond 28 days and 58 hours, respectively. (Uncoated fruit decomposed and became moldy under the same conditions). See the image below.


a –I, II: Uncoated and coated tangerines incubated for 14 and 28 days in daily-life settings

b –I: Uncoated and coated strawberries incubated for 58 hours in daily-life settings

b –II: Statistical investigation of the resulting edibility.

Professor Choi said, “Nanocoating technologies are still in their infancy, but they have untapped potential for exciting applications. As we have shown, nanocoatings can be easily adapted for several different uses, and the creative combination of existing nanomaterials and coating methods can synergize to unlock this potential.”

Here’s a link to and a citation for the paper,

Antimicrobial spray nanocoating of supramolecular Fe(III)-tannic acid metal-organic coordination complex: applications to shoe insoles and fruits by Ji Park, Sohee Choi, Hee Moon, Hyelin Seo, Ji Kim, Seok-Pyo Hong, Bong Lee, Eunhye Kang, Jinho Lee, Dong Ryu, & Insung S. Choi. Scientific Reports 7, Article number: 6980 (2017) doi:10.1038/s41598-017-07257-x Published online: 01 August 2017

This paper is open access.

*’life’ added to correct headline on Sept. 4, 2017.

Ceria-zirconia nanoparticles for sepsis treatment

South Korean researchers are looking at a new way of dealing with infections (sepsis) according to a July 6, 2017 news item on phys.org,

During sepsis, cells are swamped with reactive oxygen species generated in an aberrant response of the immune system to a local infection. If this fatal inflammatory path could be interfered, new treatment schemes could be developed. Now, Korean scientists report in the journal Angewandte Chemie that zirconia-doped ceria nanoparticles act as effective scavengers of these oxygen radicals, promoting a greatly enhanced surviving rate in sepsis model organisms.

A July 6, 2017 Wiley (Publishers) press release, which originated the news item, provides more detail,

Sepsis proceeds as a vicious cycle of inflammatory reactions of the immune system to a local infection. Fatal consequences can be falling blood pressure and the collapse of organ function. As resistance against antibiotics is growing, scientists turn to the inflammatory pathway as an alternative target for new treatment strategies. Taeghwan Heyon from Seoul National University, Seung-Hoon Lee at Seoul National University Hospital, South Korea, and collaborators explore ceria nanoparticles for their ability to scavenge reactive oxygen species, which play a key role in the inflammatory process. By quickly converting between two oxidation states, the cerium ion can quench typical oxygen radical species like the superoxide anion, the hydroxyl radical anion, or even hydrogen peroxide. But in the living cell, this can only happen if two conditions are met.

The first condition is the size and nature of the particles. Small, two-nanometer-sized particles were coated by a hydrophilic shell of poly(ethylene glycol)-connected phospholipids to make them soluble so that they can enter the cell and remain there. Second, the cerium ion responsible for the quenching (Ce3+) should be accessible on the surface of the nanoparticles, and it must be regenerated after the reactions. Here, the scientists found out that a certain amount of zirconium ions in the structure helped, because “the Zr4+ ions control the Ce3+-to-Ce4+ ratio as well as the rate of conversion between the two oxidation states,” they argued.

The prepared nanoparticles were then tested for their ability to detoxify reactive oxygen species, not only in the test tube, but also in live animal models. The results were clear, as the authors stated: “A single dose of ceria-zirconia nanoparticles successfully attenuated the vicious cycle of inflammatory responses in two sepsis models.” The nanoparticles accumulated in organs where severe immune responses occurred, and they were successful in the eradication of reactive oxygen species, as evidenced with fluorescence microscopy and several other techniques. And importantly, the treated mice and rats had a far higher survival rate.

This work demonstrates that other approaches in sepsis treatment than killing bacteria with antibiotics are possible. Targeting the inflammatory signal pathways in macrophages is a very promising option, and the authors have shown that effective scavenging of reactive oxygen species and stopping inflammation is possible with a suitably designed chemical system like this cerium ion redox system provided by nanoparticles.

Here’s a link to and a citation for the paper,

Ceria–Zirconia Nanoparticles as an Enhanced Multi-Antioxidant for Sepsis Treatment by Min Soh, Dr. Dong-Wan Kang, Dr. Han-Gil Jeong, Dr. Dokyoon Kim, Dr. Do Yeon Kim, Dr. Wookjin Yang, Changyeong Song, Seungmin Baik, In-Young Choi, Seul-Ki Ki, Hyek Jin Kwon, Dr. Taeho Kim, Prof. Dr. Chi Kyung Kim, Prof. Dr. Seung-Hoon Lee, and Prof. Dr. Taeghwan Hyeon. Angewandte Chemie DOI: 10.1002/anie.201704904 Version of Record online: 5 JUL 2017

© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

This paper is behind a paywall.

In scientific race US sees China coming up from rear

Sometime it seems as if scientific research is like a race with everyone competing for first place. As in most sports, there are multiple competitions for various sub-groups but only one important race. The US has held the lead position for decades although always with some anxiety. These days the anxiety is focused on China. A June 15, 2017 news item on ScienceDaily suggests that US dominance is threatened in at least one area of research—the biomedical sector,

American scientific teams still publish significantly more biomedical research discoveries than teams from any other country, a new study shows, and the U.S. still leads the world in research and development expenditures.

But American dominance is slowly shrinking, the analysis finds, as China’s skyrocketing investing on science over the last two decades begins to pay off. Chinese biomedical research teams now rank fourth in the world for total number of new discoveries published in six top-tier journals, and the country spent three-quarters what the U.S. spent on research and development during 2015.

Meanwhile, the analysis shows, scientists from the U.S. and other countries increasingly make discoveries and advancements as part of teams that involve researchers from around the world.

A June 15, 2017 Michigan Medicine University of Michigan news release (also on EurekAlert), which originated the news item, details the research team’s insights,

The last 15 years have ushered in an era of “team science” as research funding in the U.S., Great Britain and other European countries, as well as Canada and Australia, stagnated. The number of authors has also grown over time. For example, in 2000 only two percent of the research papers the new study looked include 21 or more authors — a number that increased to 12.5 percent in 2015.

The new findings, published in JCI Insight by a team of University of Michigan researchers, come at a critical time for the debate over the future of U.S. federal research funding. The study is based on a careful analysis of original research papers published in six top-tier and four mid-tier journals from 2000 to 2015, in addition to data on R&D investment from those same years.

The study builds on other work that has also warned of America’s slipping status in the world of science and medical research, and the resulting impact on the next generation of aspiring scientists.

“It’s time for U.S. policy-makers to reflect and decide whether the year-to-year uncertainty in National Institutes of Health budget and the proposed cuts are in our societal and national best interest,” says Bishr Omary, M.D., Ph.D., senior author of the new data-supported opinion piece and chief scientific officer of Michigan Medicine, U-M’s academic medical center. “If we continue on the path we’re on, it will be harder to maintain our lead and, even more importantly, we could be disenchanting the next generation of bright and passionate biomedical scientists who see a limited future in pursuing a scientist or physician-investigator career.”

The analysis charts South Korea’s entry into the top 10 countries for publications, as well as China’s leap from outside the top 10 in 2000 to fourth place in 2015. They also track the major increases in support for research in South Korea and Singapore since the start of the 21st Century.

Meticulous tracking

First author of the study, U-M informationist Marisa Conte, and Omary co-led a team that looked carefully at the currency of modern science: peer-reviewed basic science and clinical research papers describing new findings, published in journals with long histories of accepting among the world’s most significant discoveries.

They reviewed every issue of six top-tier international journals (JAMA, Lancet, the New England Journal of Medicine, Cell, Nature and Science), and four mid-ranking journals (British Medical Journal, JAMA Internal Medicine, Journal of Cell Science, FASEB Journal), chosen to represent the clinical and basic science aspects of research.

The analysis included only papers that reported new results from basic research experiments, translational studies, clinical trials, metanalyses, and studies of disease outcomes. Author affiliations for corresponding authors and all other authors were recorded by country.

The rise in global cooperation is striking. In 2000, 25 percent of papers in the six top-tier journals were by teams that included researchers from at least two countries. In 2015, that figure was closer to 50 percent. The increasing need for multidisciplinary approaches to make major advances, coupled with the advances of Internet-based collaboration tools, likely have something to do with this, Omary says.

The authors, who also include Santiago Schnell, Ph.D. and Jing Liu, Ph.D., note that part of their group’s interest in doing the study sprang from their hypothesis that a flat NIH budget is likely to have negative consequences but they wanted to gather data to test their hypothesis.

They also observed what appears to be an increasing number of Chinese-born scientists who had trained in the U.S. going back to China after their training, where once most of them would have sought to stay in the U.S. In addition, Singapore has been able to recruit several top notch U.S. and other international scientists due to their marked increase in R&D investments.

The same trends appear to be happening in Great Britain, Australia, Canada, France, Germany and other countries the authors studied – where research investing has stayed consistent when measured as a percentage of the U.S. total over the last 15 years.

The authors note that their study is based on data up to 2015, and that in the current 2017 federal fiscal year, funding for NIH has increased thanks to bipartisan Congressional appropriations. The NIH contributes to most of the federal support for medical and basic biomedical research in the U.S. But discussion of cuts to research funding that hinders many federal agencies is in the air during the current debates for the 2018 budget. Meanwhile, the Chinese R&D spending is projected to surpass the U.S. total by 2022.

“Our analysis, albeit limited to a small number of representative journals, supports the importance of financial investment in research,” Omary says. “I would still strongly encourage any child interested in science to pursue their dream and passion, but I hope that our current and future investment in NIH and other federal research support agencies will rise above any branch of government to help our next generation reach their potential and dreams.”

Here’s a link to and a citation for the paper,

Globalization and changing trends of biomedical research output by Marisa L. Conte, Jing Liu, Santiago Schnell, and M. Bishr Omary. JCI Insight. 2017;2(12):e95206 doi:10.1172/jci.insight.95206 Volume 2, Issue 12 (June 15, 2017)

Copyright © 2017, American Society for Clinical Investigation

This paper is open access.

The notion of a race and looking back to see who, if anyone, is gaining on you reminded me of a local piece of sports lore, the Roger Banister-John Landy ‘Miracle Mile’. In the run up to the 1954 Commonwealth Games held in Vancouver, Canada, two runners were known to have broken the 4-minute mile limit (previously thought to have been impossible) and this meeting was considered an historic meeting. Here’s more from the miraclemile1954.com website,

On August 7, 1954 during the British Empire and Commonwealth Games in Vancouver, B.C., England’s Roger Bannister and Australian John Landy met for the first time in the one mile run at the newly constructed Empire Stadium.

Both men had broken the four minute barrier previously that year. Bannister was the first to break the mark with a time of 3:59.4 on May 6th in Oxford, England. Subsequently, on June 21st in Turku, Finland, John Landy became the new record holder with an official time of 3:58.

The world watched eagerly as both men approached the starting blocks. As 35,000 enthusiastic fans looked on, no one knew what would take place on that historic day.

Promoted as “The Mile of the Century”, it would later be known as the “Miracle Mile”.

With only 90 yards to go in one of the world’s most memorable races, John Landy glanced over his left shoulder to check his opponent’s position. At that instant Bannister streaked by him to victory in a Commonwealth record time of 3:58.8. Landy’s second place finish in 3:59.6 marked the first time the four minute mile had been broken by two men in the same race.

The website hosts an image of the moment memorialized in bronze when Landy looks to his left as Banister passes him on his right,

By Statue: Jack HarmanPhoto: Paul Joseph from vancouver, bc, canada – roger bannister running the four minute mileUploaded by Skeezix1000, CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=9801121

Getting back to science, I wonder if some day we’ll stop thinking of it as a race where, inevitably, there’s one winner and everyone else loses and find a new metaphor.