Tag Archives: Spain

Gold nanoparticles used to catalyze biofuel waste and create a useful additive

This work is the result of an international collaboration including Russia (from a May 23, 2017 news item on Nanowerk),

Gold nanoparticles serve as catalysts for obtaining valuable chemical products based on glycerol. Scientists from Tomsk Polytechnic University and their international colleagues are developing gold catalysts to recycle one of the main byproducts of biofuel production. The obtained products are in high demand in medicine, agriculture, cosmetic industry and other sectors.

Scientists from the University of Milano (Italy), the National Autonomous University of Mexico, the Institute of Catalysis and Petrochemistry of Madrid (Spain) and the University of Porto (Portugal) take part in the study of gold nanoparticles.

A May 23, 2027 Tomsk Polytechnic University press release, which originated the news item, expands on the theme,

Today the production of biofuels is an important area in many countries. They can be obtained from a great variety of biomasses. In Latin America it is orange and tangerine peel as well as banana skin. In USA biofuels are produced from corn, in the central part of Russia and Europe – from rape (Brassica napus). When processing these plants into biofuels a large amount of glycerol is formed. Its esters constitute the basis of oils and fats. Glycerol is widely used in cosmetic industry as an individual product. However, much more glycerol is obtained in the production of biofuels – many thousands of tons a year. As a result, unused glycerol merely becomes waste,’ describes the problem Alexey Pestryakov, the Head of the Department of Physical and Analytical Chemistry. ‘Now, a lot of research groups are engaged in this issue as to how to transform excess glycerol into other useful products. Along with our foreign colleagues we offered catalysts based on gold nanoparticles.’

The authors of the research note that catalytic oxidation on gold is one of the most effective techniques to obtain from glycerol such useful products as aldehydes, esters, carboxylic acids and other substances.

‘All these substances are products of fine organic chemistry and are in demand in a wide range of industries, first of all, in the pharmaceutical and cosmetic industries. In agriculture they are applied as part of different feed additives, veterinary drugs, fertilizers, plant treatment products, etc.

Thus, unused glycerol after being processed will further be applied,’ sums up Alexey Pestryakov.

Gold catalysts are super active. They can enter into chemical reactions with other substances at room temperature (other catalysts need to be heated), in some case even under zero. However, gold can be a catalyst only at the nanolevel.

‘If you take a piece of gold, even very tiny, there will be no chemical reaction. In order to make gold become chemically active, the size of its particle should be less than two nanometers. Only then it gets its amazing properties,’ explains the scientist.

As a catalyst gold was discovered not so long ago, in the early 1990s, by Japanese chemists.

To date, TPU scientists and their colleagues are not the only ones who develop such catalysts.

Unlike their counterparts the gold catalysts developed at TPU are more stable (they retain their activity longer).

‘A great challenge in this area is that gold catalysts are very rapidly deactivated, not only during work, but even during storage. Our objective is to ensure their longer shelf life. It is also important to use oxygen as an oxidizer, since toxic and corrosive peroxide compounds are often used for such purposes,’ says Alexey Petryakov.

Here’s a link to and a citation for the paper,

More Insights into Support and Preparation Method Effects in Gold Catalyzed Glycerol Oxidation by Nina Bogdanchikova, Inga Tuzovskaya, Laura Prati, Alberto Villa, Alexey Pestryakov, Mario Farías. Current Organic Synthesis VOLUME: 14 ISSUE: 3 Year: 2017Page: [377 – 382] Pages: 6 DOI: 10.2174/1570179413666161031114833

This paper is behind a paywall. (Scroll down the page to find the article.)

Nanoparticles and strange forces

An April 10, 2017 news item on Nanowerk announces work from the University of New Mexico (UNM), Note: A link has been removed,

A new scientific paper published, in part, by a University of New Mexico physicist is shedding light on a strange force impacting particles at the smallest level of the material world.

The discovery, published in Physical Review Letters (“Lateral Casimir Force on a Rotating Particle near a Planar Surface”), was made by an international team of researchers lead by UNM Assistant Professor Alejandro Manjavacas in the Department of Physics & Astronomy. Collaborators on the project include Francisco Rodríguez-Fortuño (King’s College London, U.K.), F. Javier García de Abajo (The Institute of Photonic Sciences, Spain) and Anatoly Zayats (King’s College London, U.K.).

An April 7,2017 UNM news release by Aaron Hill, which originated the news item, expands on the theme,

The findings relate to an area of theoretical nanophotonics and quantum theory known as the Casimir Effect, a measurable force that exists between objects inside a vacuum caused by the fluctuations of electromagnetic waves. When studied using classical physics, the vacuum would not produce any force on the objects. However, when looked at using quantum field theory, the vacuum is filled with photons, creating a small but potentially significant force on the objects.

“These studies are important because we are developing nanotechnologies where we’re getting into distances and sizes that are so small that these types of forces can dominate everything else,” said Manjavacas. “We know these Casimir forces exist, so, what we’re trying to do is figure out the overall impact they have very small particles.”

Manjavacas’ research expands on the Casimir effect by developing an analytical expression for the lateral Casimir force experienced by nanoparticles rotating near a flat surface.

Imagine a tiny sphere (nanoparticle) rotating over a surface. While the sphere slows down due to photons colliding with it, that rotation also causes the sphere to move in a lateral direction. In our physical world, friction between the sphere and the surface would be needed to achieve lateral movement. However, the nano-world does not follow the same set of rules, eliminating the need for contact between the sphere and the surface for movement to occur.

“The nanoparticle experiences a lateral force as if it were in contact with the surface, even though is actually separated from it,” said Manjavacas. “It’s a strange reaction but one that may prove to have significant impact for engineers.”

While the discovery may seem somewhat obscure, it is also extremely useful for researchers working in the always evolving nanotechnology industry. As part of their work, Manjavacas says they’ve also learned the direction of the force can be controlled by changing the distance between the particle and surface, an understanding that may help nanotech engineers develop better nanoscale objects for healthcare, computing or a variety of other areas.

For Manjavacas, the project and this latest publication are just another step forward in his research into these Casimir forces, which he has been studying throughout his scientific career. After receiving his Ph.D. from Complutense University of Madrid (UCM) in 2013, Manjavacas worked as a postdoctoral research fellow at Rice University before coming to UNM in 2015.

Currently, Manjavacas heads UNM’s Theoretical Nanophotonics research group, collaborating with scientists around the world and locally in New Mexico. In fact, Manjavacas credits Los Alamos National Laboratory Researcher Diego Dalvit, a leading expert on Casimir forces, for helping much of his work progress.

“If I had to name the person who knows the most about Casimir forces, I’d say it was him,” said Manjavacas. “He published a book that’s considered one of the big references on the topic. So, having him nearby and being able to collaborate with other UNM faculty is a big advantage for our research.”

Here’s a link to and a citation for the paper,

Lateral Casimir Force on a Rotating Particle near a Planar Surface by Alejandro Manjavacas, Francisco J. Rodríguez-Fortuño, F. Javier García de Abajo, and Anatoly V. Zayats. Phys. Rev. Lett. (Vol. 118, Iss. 13 — 31 March 2017) 118, 133605 DOI:https://doi.org/10.1103/PhysRevLett.118.133605 Published 31 March 2017

This paper is behind a paywall.

Cleaning wastewater with fruit peel

A March 23, 2017 news item on phys.org announces a water purification process based on fruit peel,’

A collaborative of researchers has developed a process to clean water containing heavy metals and organic pollutants using a new adsorbent material made from the peels of oranges and grapefruits.

A March 23, 2017 University of Granada press release explains more about the research (Note: Links have been removed),

Researchers from the University of Granada (UGR), and from the Center for Electrochemical Research and Technological Development (Centro de Investigación y Desarrollo Tecnológico en Electroquímica, CIDETEQ) and the Center of Engineering and Industrial Development (Centro de Ingeniería y Desarrollo Industrial, CIDESI), both in Mexico, have developed a process that allows to clean waters containing heavy metals and organic compounds considered pollutants, using a new adsorbent material made from the peels of fruits such as oranges and grapefruits.

Said peels are residues which pose a problem for the food industry, given that they take up a great volume and aren’t very useful nowadays. 38.2 million tons of said fruit peels are estimated to be produced worldwide each year in the food industry.

The research, in which the UGR participates, has served for designing a new process by which, thanks to an Instant Controlled Pressure Drop treatment, it is possible to modify the structure of said residues, giving them adsorbent properties such as a greater porosity and surface area.

Researcher Luis Alberto Romero Cano, from the Carbon Materials Research Team (Grupo de Investigación en Materiales de Carbón) at the Faculty of Science, UGR, explains that, by a subsequent chemical treatment, they “have managed to add functional groups to the material, thus making it selective in order to remove metals and organic pollutants present in water”.

A subsequent research carried out by the authors of this paper has showed that it is possible to pack those new materials in fixed bed columns, in a way similar to a filter by which wastewater runs on a constant flux process, like the usual wastewater treatments. This laboratory-scale study has allowed to obtain parameters to design a large-scale use of said materials.

“The results show a great potential for the use of said materials as adsorbents capable of competing with commercial activated carbon for the adsorption and recovery of metals present in wastewater, in a way that it could be possible to carry out sustainable processes in which products with a great commercial value could be obtained from food industry residues”, Romero Cano says.

Here’s a link to and a citation for the paper,

Biosorbents prepared from orange peels using Instant Controlled Pressure Drop for Cu(II) and phenol removal by Luis A. Romero-Cano, Linda V. Gonzalez-Gutierrez, Leonardo A. Baldenegro-Perez. Industrial Crops and Products Volume 84, June 2016, Pages 344–349  http://dx.doi.org/10.1016/j.indcrop.2016.02.027

I’m not sure why they decided to promote this research so long after it was published but I’m glad they did. It’s always good to see work designed to make use of what is currently waste. By the way, this paper is behind a paywall.

Graphene-based neural probes

I have two news bits (dated almost one month apart) about the use of graphene in neural probes, one from the European Union and the other from Korea.

European Union (EU)

This work is being announced by the European Commission’s (a subset of the EU) Graphene Flagship (one of two mega-funding projects announced in 2013; 1B Euros each over ten years for the Graphene Flagship and the Human Brain Project).

According to a March 27, 2017 news item on ScienceDaily, researchers have developed a graphene-based neural probe that has been tested on rats,

Measuring brain activity with precision is essential to developing further understanding of diseases such as epilepsy and disorders that affect brain function and motor control. Neural probes with high spatial resolution are needed for both recording and stimulating specific functional areas of the brain. Now, researchers from the Graphene Flagship have developed a new device for recording brain activity in high resolution while maintaining excellent signal to noise ratio (SNR). Based on graphene field-effect transistors, the flexible devices open up new possibilities for the development of functional implants and interfaces.

The research, published in 2D Materials, was a collaborative effort involving Flagship partners Technical University of Munich (TU Munich; Germany), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS; Spain), Spanish National Research Council (CSIC; Spain), The Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN; Spain) and the Catalan Institute of Nanoscience and Nanotechnology (ICN2; Spain).

Caption: Graphene transistors integrated in a flexible neural probe enables electrical signals from neurons to be measured with high accuracy and density. Inset: The tip of the probe contains 16 flexible graphene transistors. Credit: ICN2

A March 27, 2017 Graphene Flagship press release on EurekAlert, which originated the news item, describes the work,  in more detail,

The devices were used to record the large signals generated by pre-epileptic activity in rats, as well as the smaller levels of brain activity during sleep and in response to visual light stimulation. These types of activities lead to much smaller electrical signals, and are at the level of typical brain activity. Neural activity is detected through the highly localised electric fields generated when neurons fire, so densely packed, ultra-small measuring devices is important for accurate brain readings.

The neural probes are placed directly on the surface of the brain, so safety is of paramount importance for the development of graphene-based neural implant devices. Importantly, the researchers determined that the graphene-based probes are non-toxic, and did not induce any significant inflammation.

Devices implanted in the brain as neural prosthesis for therapeutic brain stimulation technologies and interfaces for sensory and motor devices, such as artificial limbs, are an important goal for improving quality of life for patients. This work represents a first step towards the use of graphene in research as well as clinical neural devices, showing that graphene-based technologies can deliver the high resolution and high SNR needed for these applications.

First author Benno Blaschke (TU Munich) said “Graphene is one of the few materials that allows recording in a transistor configuration and simultaneously complies with all other requirements for neural probes such as flexibility, biocompability and chemical stability. Although graphene is ideally suited for flexible electronics, it was a great challenge to transfer our fabrication process from rigid substrates to flexible ones. The next step is to optimize the wafer-scale fabrication process and improve device flexibility and stability.”

Jose Antonio Garrido (ICN2), led the research. He said “Mechanical compliance is an important requirement for safe neural probes and interfaces. Currently, the focus is on ultra-soft materials that can adapt conformally to the brain surface. Graphene neural interfaces have shown already great potential, but we have to improve on the yield and homogeneity of the device production in order to advance towards a real technology. Once we have demonstrated the proof of concept in animal studies, the next goal will be to work towards the first human clinical trial with graphene devices during intraoperative mapping of the brain. This means addressing all regulatory issues associated to medical devices such as safety, biocompatibility, etc.”

Caption: The graphene-based neural probes were used to detect rats’ responses to visual stimulation, as well as neural signals during sleep. Both types of signals are small, and typically difficult to measure. Credit: ICN2

Here’s a link to and a citation for the paper,

Mapping brain activity with flexible graphene micro-transistors by Benno M Blaschke, Núria Tort-Colet, Anton Guimerà-Brunet, Julia Weinert, Lionel Rousseau, Axel Heimann, Simon Drieschner, Oliver Kempski, Rosa Villa, Maria V Sanchez-Vives. 2D Materials, Volume 4, Number 2 DOI https://doi.org/10.1088/2053-1583/aa5eff Published 24 February 2017

© 2017 IOP Publishing Ltd

This paper is behind a paywall.


While this research from Korea was published more recently, the probe itself has not been subjected to in vivo (animal testing). From an April 19, 2017 news item on ScienceDaily,

Electrodes placed in the brain record neural activity, and can help treat neural diseases like Parkinson’s and epilepsy. Interest is also growing in developing better brain-machine interfaces, in which electrodes can help control prosthetic limbs. Progress in these fields is hindered by limitations in electrodes, which are relatively stiff and can damage soft brain tissue.

Designing smaller, gentler electrodes that still pick up brain signals is a challenge because brain signals are so weak. Typically, the smaller the electrode, the harder it is to detect a signal. However, a team from the Daegu Gyeongbuk Institute of Science & Technology [DGIST} in Korea developed new probes that are small, flexible and read brain signals clearly.

This is a pretty interesting way to illustrate the research,

Caption: Graphene and gold make a better brain probe. Credit: DGIST

An April 19, 2017 DGIST press release (also on EurekAlert), which originated the news item, expands on the theme (Note: A link has been removed),

The probe consists of an electrode, which records the brain signal. The signal travels down an interconnection line to a connector, which transfers the signal to machines measuring and analysing the signals.

The electrode starts with a thin gold base. Attached to the base are tiny zinc oxide nanowires, which are coated in a thin layer of gold, and then a layer of conducting polymer called PEDOT. These combined materials increase the probe’s effective surface area, conducting properties, and strength of the electrode, while still maintaining flexibility and compatibility with soft tissue.

Packing several long, thin nanowires together onto one probe enables the scientists to make a smaller electrode that retains the same effective surface area of a larger, flat electrode. This means the electrode can shrink, but not reduce signal detection. The interconnection line is made of a mix of graphene and gold. Graphene is flexible and gold is an excellent conductor. The researchers tested the probe and found it read rat brain signals very clearly, much better than a standard flat, gold electrode.

“Our graphene and nanowires-based flexible electrode array can be useful for monitoring and recording the functions of the nervous system, or to deliver electrical signals to the brain,” the researchers conclude in their paper recently published in the journal ACS Applied Materials and Interfaces.

The probe requires further clinical tests before widespread commercialization. The researchers are also interested in developing a wireless version to make it more convenient for a variety of applications.

Here’s a link to and a citation for the paper,

Enhancement of Interface Characteristics of Neural Probe Based on Graphene, ZnO Nanowires, and Conducting Polymer PEDOT by Mingyu Ryu, Jae Hoon Yang, Yumi Ahn, Minkyung Sim, Kyung Hwa Lee, Kyungsoo Kim, Taeju Lee, Seung-Jun Yoo, So Yeun Kim, Cheil Moon, Minkyu Je, Ji-Woong Choi, Youngu Lee, and Jae Eun Jang. ACS Appl. Mater. Interfaces, 2017, 9 (12), pp 10577–10586 DOI: 10.1021/acsami.7b02975 Publication Date (Web): March 7, 2017

Copyright © 2017 American Chemical Society

This paper is behind a paywall.

Effective sunscreens from nature

The dream is to find sunscreens that don’t endanger humans or pollute the environment and it seems that Spanish scientists may have taken a step closer to making that dream a reality (from a Jan. 30, 2017 Wiley Publications press release (also on EurekAlert),

The ideal sunscreen should block UVB and UVA radiation while being safe and stable. In the journal Angewandte Chemie, Spanish scientists have introduced a new family of UVA and UVB filters based on natural sunscreen substances found in algae and cyanobacteria. They are highly stable and enhance the effectivity [sic] of commercial sunscreens.

Good news for sunseekers. Commercial [sic] available sunscreen lotions can very effectively protect from dangerous radiation in the ultraviolet [spectrum], but they need to be applied regularly and in high amounts to develop their full potential. One of the most critical issues is the limited stability of the UV filter molecules. Inspired by nature, Diego Sampedro and his colleagues from La Rioja University in Logrono and collaborators from Malaga University and Alcala University, Madrid, Spain, have screened a natural class of UV-protecting [blocking?] molecules for their possible use in skin protection. They adjusted the nature-given motif [sic] to the requirements of chemical synthesis and found that the molecules could indeed boost the sun protection factor of common formulations.

The natural sunscreen molecules are called microsporine-like amino acids (MAAs) and are widespread in the microbial world, most prominently in marine algae and cyanobacteria. MAAs are small molecules derived from amino acids, thermally stable, and they absorb light in the ultraviolet region, protecting the microbial DNA from radiation damage. Thus they are natural sunscreens, which inspired Sampedro and his colleagues to create [a] new class of organic sunscreen compounds.

Theoretical calculations revealed what is chemically needed for a successful design. “We performed a computer calculation of several basic scaffolds [..] to identify the simplest compound that fulfills the requisites for efficient sunscreens”, the authors write. The result of their search was a set of molecules which were readily synthesized, “avoiding the decorating substituents that come from the biosynthetic route.” Thus the small basic molecules can be tuned to give them more favorable properties.

The authors found that the synthesized compounds are characterized by excellent filter capacities in the relevant UV range. In addition they are photostable, much more than, for example, oxybenzene [sic] which is a widely used sunscreen in commercial formulations. They do not react chemically and dissipate radiation as heat (but not to such an extent that the skin temperature would rise as well). And, most importantly, when tested in real formulations, the sun protection factor (SPF) rose by a factor of more than two. Thus they could be promising targets for more stable, more efficient sunscreen lotions. Good news for your next summer vacation.

There’s some unusual phrasing so, I’m guessing that the writer it not accustomed to writing press releases in English. One other comment, it’s oxybenzone that’s often used as an ingredient in commercial sunscreens.

Here’s a link to and a citation for the paper,

Rational Design and Synthesis of Efficient Sunscreens To Boost the Solar Protection Factor by Raúl Losantos, Ignacio Funes-Ardoiz, Dr. José Aguilera, Prof. Enrique Herrera-Ceballos, Dr. Cristina García-Iriepa, Prof. Pedro J. Campos, and Diego Sampedro. Angewandte Chemie International Edition Volume 56, Issue 10, pages 2632–2635, March 1, 2017 DOI: 10.1002/anie.201611627 Version of Record online: 27 JAN 2017

© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

This paper is behind a paywall.

I have previously featured work on another natural sunscreen. In that case it was to be derived from English ivy (July 22, 2010 posting); there was an update on the English ivy work in a May 30, 2016 posting but the researcher has moved in a different direction looking at wound healing and armour as possible applications for the research.

Developing cortical implants for future speech neural prostheses

I’m guessing that graphene will feature in these proposed cortical implants since the project leader is a member of the Graphene Flagship’s Biomedical Technologies Work Package. (For those who don’t know, the Graphene Flagship is one of two major funding initiatives each receiving funding of 1B Euros over 10 years from the European Commission as part of their FET [Future and Emerging Technologies)] Initiative.)  A Jan. 12, 2017 news item on Nanowerk announces the new project (Note: A link has been removed),

BrainCom is a FET Proactive project, funded by the European Commission with 8.35M€ [8.3 million Euros] for the next 5 years, holding its Kick-off meeting on January 12-13 at ICN2 (Catalan Institute of Nanoscience and Nanotechnology) and the UAB [ Universitat Autònoma de Barcelona]. This project, coordinated by ICREA [Catalan Institution for Research and Advanced Studies] Research Prof. Jose A. Garrido from ICN2, will permit significant advances in understanding of cortical speech networks and the development of speech rehabilitation solutions using innovative brain-computer interfaces.

A Jan. 12, 2017 ICN2 press release, which originated the news item expands on the theme (it is a bit repetitive),

More than 5 million people worldwide suffer annually from aphasia, an extremely invalidating condition in which patients lose the ability to comprehend and formulate language after brain damage or in the course of neurodegenerative disorders. Brain-computer interfaces (BCIs), enabled by forefront technologies and materials, are a promising approach to treat patients with aphasia. The principle of BCIs is to collect neural activity at its source and decode it by means of electrodes implanted directly in the brain. However, neurorehabilitation of higher cognitive functions such as language raises serious issues. The current challenge is to design neural implants that cover sufficiently large areas of the brain to allow for reliable decoding of detailed neuronal activity distributed in various brain regions that are key for language processing.

BrainCom is a FET Proactive project funded by the European Commission with 8.35M€ for the next 5 years. This interdisciplinary initiative involves 10 partners including technologists, engineers, biologists, clinicians, and ethics experts. They aim to develop a new generation of neuroprosthetic cortical devices enabling large-scale recordings and stimulation of cortical activity to study high level cognitive functions. Ultimately, the BraimCom project will seed a novel line of knowledge and technologies aimed at developing the future generation of speech neural prostheses. It will cover different levels of the value chain: from technology and engineering to basic and language neuroscience, and from preclinical research in animals to clinical studies in humans.

This recently funded project is coordinated by ICREA Prof. Jose A. Garrido, Group Leader of the Advanced Electronic Materials and Devices Group at the Institut Català de Nanociència i Nanotecnologia (Catalan Institute of Nanoscience and Nanotechnology – ICN2) and deputy leader of the Biomedical Technologies Work Package presented last year in Barcelona by the Graphene Flagship. The BrainCom Kick-Off meeting is held on January 12-13 at ICN2 and the Universitat Autònoma de Barcelona (UAB).

Recent developments show that it is possible to record cortical signals from a small region of the motor cortex and decode them to allow tetraplegic [also known as, quadriplegic] people to activate a robotic arm to perform everyday life actions. Brain-computer interfaces have also been successfully used to help tetraplegic patients unable to speak to communicate their thoughts by selecting letters on a computer screen using non-invasive electroencephalographic (EEG) recordings. The performance of such technologies can be dramatically increased using more detailed cortical neural information.

BrainCom project proposes a radically new electrocorticography technology taking advantage of unique mechanical and electrical properties of novel nanomaterials such as graphene, 2D materials and organic semiconductors.  The consortium members will fabricate ultra-flexible cortical and intracortical implants, which will be placed right on the surface of the brain, enabling high density recording and stimulation sites over a large area. This approach will allow the parallel stimulation and decoding of cortical activity with unprecedented spatial and temporal resolution.

These technologies will help to advance the basic understanding of cortical speech networks and to develop rehabilitation solutions to restore speech using innovative brain-computer paradigms. The technology innovations developed in the project will also find applications in the study of other high cognitive functions of the brain such as learning and memory, as well as other clinical applications such as epilepsy monitoring.

The BrainCom project Consortium members are:

  • Catalan Institute of Nanoscience and Nanotechnology (ICN2) – Spain (Coordinator)
  • Institute of Microelectronics of Barcelona (CNM-IMB-CSIC) – Spain
  • University Grenoble Alpes – France
  • ARMINES/ Ecole des Mines de St. Etienne – France
  • Centre Hospitalier Universitaire de Grenoble – France
  • Multichannel Systems – Germany
  • University of Geneva – Switzerland
  • University of Oxford – United Kingdom
  • Ludwig-Maximilians-Universität München – Germany
  • Wavestone – Luxembourg

There doesn’t seem to be a website for the project but there is a BrainCom webpage on the European Commission’s CORDIS (Community Research and Development Information Service) website.

Nanotech business news from Turkey and from Northern Ireland

I have two nanotech business news bits, one from Turkey and one from Northern Ireland.


A Turkish company has sold one of its microscopes to the US National Aeronautics and Space Administration (NASA), according to a Jan. 20, 2017 news item on dailysabah.com,

Turkish nanotechnology company Nanomanyetik has begun selling a powerful microscope to the U.S. space agency NASA, the company’s general director told Anadolu Agency on Thursday [Jan. 19, 2017].

Dr. Ahmet Oral, who also teaches physics at Middle East Technical University, said Nanomanyetik developed a microscope that is able to map surfaces on the nanometric and atomic levels, or extremely small particles.

Nanomanyetik’s foreign customers are drawn to the microscope because of its higher quality yet cheaper price compared to its competitors.

“There are almost 30 firms doing this work,” according to Oral. “Ten of them are active and we are among these active firms. Our aim is to be in the top three,” he said, adding that Nanomanyetik jumps to the head of the line because of its after-sell service.

In addition to sales to NASA, the Ankara-based firm exports the microscope to Brazil, Chile, France, Iran, Israel, Italy, Japan, Poland, South Korea and Spain.

Electronics giant Samsung is also a customer.

“Where does Samsung use this product? There are pixels in the smartphones’ displays. These pixels are getting smaller each year. Now the smallest pixel is 15X10 microns,” he said. Human hair is between 10 and 100 microns in diameter.

“They are figuring inner sides of pixels so that these pixels can operate much better. These patterns are on the nanometer level. They are using these microscopes to see the results of their works,” Oral said.

Nanomanyetik’s microscopes produces good quality, high resolution images and can even display an object’s atoms and individual DNA fibers, according to Oral.

You can find the English language version of the Nanomanyetik (NanoMagnetics Instruments) website here . For those with the language skills there is the Turkish language version, here.

Northern Ireland

A Jan. 22, 2017 news article by Dominic Coyle for The Irish Times (Note: Links have been removed) shares this business news and mention of a world first,

MOF Technologies has raised £1.5 million (€1.73 million) from London-based venture capital group Excelsa Ventures and Queen’s University Belfast’s Qubis research commercialisation group.

MOF Technologies chief executive Paschal McCloskey welcomed the Excelsa investment.

Established in part by Qubis in 2012 in partnership with inventor Prof Stuart James, MOF Technologies began life in a lab at the School of Chemistry and Chemical Engineering at Queen’s.

Its metal organic framework (MOF) technology is seen as having significant potential in areas including gas storage, carbon capture, transport, drug delivery and heat transformation. Though still in its infancy, the market is forecast to grow to £2.2 billion by 2022, the company says.

MOF Technologies last year became the first company worldwide to successfully commercialise MOFs when it agreed a deal with US fruit and vegetable storage provider Decco Worldwide to commercialise MOFs for use in a food application.

TruPick, designed by Decco and using MOF Technologies’ environmentally friendly technology, enables nanomaterials control the effects of ethylene on fruit produce so it maintains freshness in storage or transport.

MOFs are crystalline, sponge-like materials composed of two components – metal ions and organic molecules known as linkers.

“We very quickly recognised the market potential of MOFs in terms of their unmatched ability for gas storage,” said Moritz Bolle from Excelsa Ventures. “This technology will revolutionise traditional applications and open countless new opportunities for industry. We are confident MOF Technologies is the company that will lead this seismic shift in materials science.

You can find MOF Technologies here.

Are there any leaders in the ‘graphene race’?

Tom Eldridge, a director and co-founder of Fullerex, has written a Jan. 5, 2017 essay titled: Is China still leading the graphene race? for Nanotechnology Now. Before getting to the essay, here’s a bit more about Fullerex and Tom Eldridge’s qualifications. From Fullerex’s LinkedIn description,

Fullerex is a leading independent broker of nanomaterials and nano-intermediates. Our mission is to support the advancement of nanotechnology in creating radical, transformative and sustainable improvement to society. We are dedicated to achieving these aims by accelerating the commercialisation and usage of nanomaterials across industry and beyond. Fullerex is active in market development and physical trading of advanced materials. We generate demand for nanomaterials across synergistic markets by stimulating innovation with end-users and ensuring robust supply chains are in place to address the growing commercial trade interest. Our end-user markets include Polymers and Polymer Composites, Coatings, Tyre and Rubber, Cementitious Composites, 3D Printing and Printed Electronics, the Energy sector, Lubricating Oils and Functional Fluids. The materials we cover: Nanomaterials: Includes fullerenes, carbon nanotubes and graphene, metal and metal oxide nanoparticles, and organic-inorganic hybrids. Supplied as raw nanopowders or ready-to-use dispersions and concentrates. Nano-intermediates: Producer goods and semi-finished products such as nano-enabled coatings, polymer masterbatches, conductive inks, thermal interface materials and catalysts.

As for Tom Eldridge, here’s more about him, his brother, and the company from the Fullerex About page,

Fullerex was founded by Joe and Tom Eldridge, brothers with a keen interest in nanotechnology and the associated emerging market for nanomaterials.

Joe has a strong background in trading with nearly 10 years’ experience as a stockbroker, managing client accounts for European Equities and FX. At University he read Mathematics at Imperial College London gaining a BSc degree and has closely followed the markets for disruptive technologies and advanced materials for a number of years.

Tom worked in the City of London for 7 years in commercial roles throughout his professional career, with an expertise in market data, financial and regulatory news. In his academic background, he earned a BSc degree in Physics and Philosophy at Kings College London and is a member of the Institute of Physics.

As a result, Fullerex has the strong management composition that allows the company to support the growth of the nascent and highly promising nanomaterials industry. Fullerex is a flexible company with drive, enthusiasm and experience, committed to aiding the development of this market.

Getting back to the matter at hand, that’s a rather provocative title for Tom Eldridge’s essay,. given that he’s a Brit and (I believe) the Brits viewed themselves as leaders in the ‘graphene race’ but he offers a more nuanced analysis than might be expected from the title. First, the patent landscape (from Eldridge’s Jan. 5, 2017 essay),

As competition to exploit the “wonder material” has intensified around the world, detailed reports have so far been published which set out an in-depth depiction of the global patent landscape for graphene, notably from CambridgeIP and the UK Intellectual Property Office, in 2013 and 2015 respectively. Ostensibly the number of patents and patent applications both indicated that China was leading the innovation in graphene technology. However, on closer inspection it became less clear as to how closely the patent figures themselves reflect actual progress and whether this will translate into real economic impact. Some of the main reasons to be doubtful included:

– 98% of the Chinese patent applications only cover China, so therefore have no worldwide monopoly.
– A large number of the Chinese patents are filed in December, possibly due to demand to meet patent quotas. The implication being that the patent filings follow a politically driven agenda, rather than a purely innovation or commercially driven agenda.
– In general, inventors could be more likely to file for patent protection in some countries rather than others e.g. for tax purposes. Which therefore does not give a truly accurate picture of where all the actual research activity is based.
– Measuring the proportion of graphene related patents to overall patents is more indicative of graphene specialisation, which shows that Singapore has the largest proportion of graphene patents, followed by China, then South Korea.

(Intellectual Property Office, 2015), (Ellis, 2015), (CambridgeIP, 2013)

Then, there’s the question of production,

Following the recent launch of the latest edition of the Bulk Graphene Pricing Report, which is available exclusively through The Graphene Council, Fullerex has updated its comprehensive list of graphene producers worldwide, and below is a summary of the number of graphene producers by country in 2017.

Summary Table Showing the Number of Graphene Producers by Country and Region

The total number of graphene producers identified is 142, across 27 countries. This research expands upon previous surveys of the graphene industry, such as the big data analysis performed by Nesta in 2015 (Shapira, 2015). The study by Nesta [formerly  NESTA, National Endowment for Science, Technology and the Arts) is an independent charity that works to increase the innovation capacity of the UK; see Wikipedia here for more about NESTA] revealed 65 producers throughout 16 countries but was unable to glean accurate data on producers in Asia, particularly China.

As we can now see however from the data collected by Fullerex, China has the largest number of graphene producers, followed by the USA, and then the UK.

In addition to having more companies active in the production and sale of graphene than any other country, China also holds about 2/3rds of the global production capacity, according to Fullerex.

Eldridge goes on to note that the ‘graphene industry’ won’t truly grow and develop until there are substantive applications for the material. He also suggests taking another look at the production figures,

As with the patent landscape, rather than looking at the absolute figures, we can review the numbers in relative terms. For instance, if we normalise to account for the differences in the size of each country, by looking at the number of producers as a proportion of GDP, we see the following: Spain (7.18), UK (4.48), India (3.73), China (3.57), Canada (3.28) [emphasis mine], USA (1.79) (United Nations, 2013).

Unsurprisingly, each leading country has a national strategy for economic development which involves graphene prominently.

For instance, The Spanish Council for Scientific Research has lent 9 of its institutes along with 10 universities and other public R&D labs involved in coordinating graphene projects with industry.

The Natural Sciences and Engineering Research Council of Canada [NSERC] has placed graphene as one of five research topics in its target area of “Advanced Manufacturing” for Strategic Partnership Grants.

The UK government highlights advanced materials as one of its Eight Great Technologies, within which graphene is a major part of, having received investment for the NGI and GEIC buildings, along with EPSRC and Innovate UK projects. I wrote previously about the UK punching above its weight in terms of research, ( http://fullerex.com/index.php/articles/130-the-uk-needs-an-industrial-revolution-can-graphene-deliver/ ) but that R&D spending relative to GDP was too low compared to other developed nations. It is good to see that investment into graphene production in the UK is bucking that trend, and we should anticipate this will provide a positive economic outcome.

Yes, I’m  particularly interested in the fact Canada becomes more important as a producer when the numbers are relative but it is interesting to compare the chart with Eldridge’s text and to note how importance shifts depending on what numbers are being considered.

I recommend reading Eldridge’s piece in its entirety.

A few notes about graphene in Canada

By the way, the information in Eldridge’s essay about NSERC’s placement of graphene as a target area for grants is news to me. (As I have often noted here, I get more information about the Canadian nano scene from international sources than I do from our national sources.)

Happily I do get some home news such as a Jan. 5, 2017 email update from Lomiko Metals, a Canadian junior exploration company focused on graphite and lithium. The email provides the latest information from the company (as I’m not an expert in business or mining this is not an endorsement),

On December 13, 2016 we were excited to announce the completion of our drill program at the La Loutre flake graphite property. We received very positive results from our 1550 meter drilling program in 2015 in the area we are drilling now. In that release I stated, “”The intercepts of multiple zones of mineralization in the Refractory Zone where we have reported high grade intercepts previously is a very promising sign. The samples have been rushed to the ALS Laboratory for full assay testing,” We hope to have the results of those assays shortly.

December 16, 2016 Lomiko announced a 10:1 roll back of our shares. We believe that this roll back is important as we work towards securing long term equity financing for the company. Lomiko began trading on the basis of the roll back on December 19.

We believe that Graphite has a bright future because of the many new products that will rely on the material. I have attached a link to a video on Lomiko, Graphite and Graphene.  


January 3, 2017 Lomiko announced the extension and modification of its option agreements with Canadian Strategic Metals Inc. for the La Loutre and Lac des Iles properties. The effect of this extension is to give Lomiko additional time to complete the required work under the agreements.

Going forward Lomiko is in a much stronger position as the result of our share roll back. Potential equity funders who are very interested in our forthcoming assay results from La Loutre and the overall prospects of the company, have been reassured by our share consolidation.

Looking forward to 2017, we anticipate the assays of the La Loutre drilling to be delivered in the next 90 days, sooner we hope. We also anticipate additional equity funding will become available for the further exploration and delineation of the La Loutre and Lac des Iles properties and deposits.

More generally, we are confident that the market for large flake graphite will become firmer in 2017. Lomiko’s strategy of identifying near surface, ready to mine, graphite nodes puts us in the position to take advantage of improvements in the graphite price without having to commit large sums to massive mine development. As we identify and analyze the graphite nodes we are finding we increase the potential resources of the company. 2017 should see significantly improved resource estimates for Lomiko’s properties.

As I wasn’t familiar with the term ‘roll back of shares’, I looked it up and found this in an April 18, 2012 posting by Dudley Pierce Baker on kitco.com,

As a general rule, we hate to see an announcement of a share rollback, however, there exceptions which we cover below. Investors should always be aware that if a company has, say over 150 million shares outstanding, in our opinion, it is a potential candidate for a rollback and the announcement should not come as a surprise.

Weak markets, a low share price, a large number of shares outstanding, little or no cash and you have a company which is an idea candidate for a rollback.

The basic concept of a rollback or consolidation in a company’s shares is rather simple.

We are witnessing a few cases of rollbacks not with the purpose of raising more money but rather to facilitate the listing of the company’s shares on the NYSE [New York Stock Exchange] Amex.

I have no idea what situation Lomiko finds itself in but it should be noted that graphere research has been active since 2004 when the first graphene sheets were extracted from graphite. This is a relatively new field of endeavour and Lomiko (along with other companies) is in the position of pioneering the effort here in Canada. That said, there are many competitors to graphene and major international race to commercialize nanotechnology-enabled products.

Are there any leaders in the ‘graphene race?

Getting back to the question in the headline, I don’t think there are any leaders at the moment. No one seems to have what they used to call “a killer app,” that one application/product that everyone wants and which drive demand for graphene.

Drip dry housing

This piece on new construction materials does have a nanotechnology aspect although it’s not made clear exactly how nanotechnology plays a role.

From a Dec. 28, 2016 news item on phys.org (Note: A link has been removed),

The construction industry is preparing to use textiles from the clothing and footwear industries. Gore-Tex-like membranes, which are usually found in weather-proof jackets and trekking shoes, are now being studied to build breathable, water-resistant walls. Tyvek is one such synthetic textile being used as a “raincoat” for homes.

You can find out more about Tyvek here.on the Dupont website.

A Dec. 21, 2016 press release by Chiara Cecchi for Youris ((European Research Media Center), which originated the news item, proceeds with more about textile-type construction materials,

Camping tents, which have been used for ages to protect against wind, ultra-violet rays and rain, have also inspired the modern construction industry, or “buildtech sector”. This new field of research focuses on the different fibres (animal-based such as wool or silk, plant-based such as linen and cotton and synthetic such as polyester and rayon) in order to develop technical or high-performance materials, thus improving the quality of construction, especially for buildings, dams, bridges, tunnels and roads. This is due to the fibres’ mechanical properties, such as lightness, strength, and also resistance to many factors like creep, deterioration by chemicals and pollutants in the air or rain.

“Textiles play an important role in the modernisation of infrastructure and in sustainable buildings”, explains Andrea Bassi, professor at the Department of Civil and Environmental Engineering (DICA), Politecnico of Milan, “Nylon and fiberglass are mixed with traditional fibres to control thermal and acoustic insulation in walls, façades and roofs. Technological innovation in materials, which includes nanotechnologies [emphasis mine] combined with traditional textiles used in clothes, enables buildings and other constructions to be designed using textiles containing steel polyvinyl chloride (PVC) or ethylene tetrafluoroethylene (ETFE). This gives the materials new antibacterial, antifungal and antimycotic properties in addition to being antistatic, sound-absorbing and water-resistant”.

Rooflys is another example. In this case, coated black woven textiles are placed under the roof to protect roof insulation from mould. These building textiles have also been tested for fire resistance, nail sealability, water and vapour impermeability, wind and UV resistance.

Photo: Production line at the co-operative enterprise CAVAC Biomatériaux, France. Natural fibres processed into a continuous mat (biofib) – Martin Ansell, BRE CICM, University of Bath, UK

In Spain three researchers from the Technical University of Madrid (UPM) have developed a new panel made with textile waste. They claim that it can significantly enhance both the thermal and acoustic conditions of buildings, while reducing greenhouse gas emissions and the energy impact associated with the development of construction materials.

Besides textiles, innovative natural fibre composite materials are a parallel field of the research on insulators that can preserve indoor air quality. These bio-based materials, such as straw and hemp, can reduce the incidence of mould growth because they breathe. The breathability of materials refers to their ability to absorb and desorb moisture naturally”, says expert Finlay White from Modcell, who contributed to the construction of what they claim are the world’s first commercially available straw houses, “For example, highly insulated buildings with poor ventilation can build-up high levels of moisture in the air. If the moisture meets a cool surface it will condensate and producing mould, unless it is managed. Bio-based materials have the means to absorb moisture so that the risk of condensation is reduced, preventing the potential for mould growth”.

The Bristol-based green technology firm [Modcell] is collaborating with the European Isobio project, which is testing bio-based insulators which perform 20% better than conventional materials. “This would lead to a 5% total energy reduction over the lifecycle of a building”, explains Martin Ansell, from BRE Centre for Innovative Construction Materials (BRE CICM), University of Bath, UK, another partner of the project.

“Costs would also be reduced. We are evaluating the thermal and hygroscopic properties of a range of plant-derived by-products including hemp, jute, rape and straw fibres plus corn cob residues. Advanced sol-gel coatings are being deposited on these fibres to optimise these properties in order to produce highly insulating and breathable construction materials”, Ansell concludes.

You can find Modcell here.

Here’s another image, which I believe is a closeup of the processed fibre shown in the above,

Production line at the co-operative enterprise CAVAC Biomatériaux, France. Natural fibres processed into a continuous mat (biofib) – Martin Ansell, BRE CICM, University of Bath, UK [Note: This caption appears to be a copy of the caption for the previous image]

Luminous electronic tiles (lumentile)

A Dec. 19, 2016 news item on Nanowerk introduces a ceramic tile that can be given a different look at the touch of a fingertip,

Using pioneering photonics technology, The ‘Luminous Electronic Tile’, or LUMENTILE, project mixes the simplicity of a plain ceramic tile with the complexity of today’s sophisticated touch screen technology, creating a light source and unparalleled interaction. All it takes is one tap to change the colour, look or mood of any room in your house.

This is the first time anyone has tried to embed electronics into ceramics or glass for a large-scale application. With the ability to play videos or display images, the tiles allow the user to turn their walls into a large ‘cinema’ screen, where each unit acts as a set of pixels of the overall display.

An undated Horizon 2020 webpage describes the ‘digital wallpaper’ in more detail,

Scientists from Italy have created ‘digital wallpaper’, allowing for a constant change in design and aesthetic controlled via a smartphone, tablet or computer.

Each Luminous Electronic Tile – or Lumentile – acts as a touch screen which can change colour, pattern or light intensity, play videos or display images.

If numerous tiles are arranged together, they can create a ‘cinema’ screen with each tile acting as a set of pixels for the overall display.

The combination of ceramic, glass and electronics could allow the user to have interchangeable control of the look and design of their surroundings by tapping the tile.

Each tile can be arranged to completely or partially cover walls of a room, floor or ceiling.

However, they can also be transferred to the exterior of buildings, as either flat or curved tiles to fit around columns or uneven surfaces.

Project co-ordinator Professor Guido Giuliani, said: “It may sound like the stuff of James Bond but external tiles would create a ‘chameleonic skin’ or instant camouflage.

“Although we are a long way off this yet, this would allow a car or building to blend completely into its surroundings, and hence ‘disappear’.”

Although these tiles cannot be purchased yet, they hope to be available to users in two years, with mass production by the end of 2020.

Lumentile received a grant of more than €2.4m from the Horizon 2020 programme via the Photonics Public Private Partnership. Created in Italy by the Universita Degli Studi Di Pavia, the Lumentile project also has a number of European partners from Finland, Switzerland and Spain.

A combination of ceramic, glass and organic electronics, the luminous tile includes structural materials, solid-state light sources and electronic chips and can be controlled with a central computer, a smart phone or tablet. [downloaded from http://www.nanowerk.com/nanotechnology-news/newsid=45417.php]

You can find a bit more information on the Lumentile project website.