Tag Archives: Sri Lanka

FrogHeart at the 2012 S.NET conference, part 2: Canada, nano, and the mango

I was delighted to learn more about the nanotechnology collaboration between Canada, India, and Sri Lanka (mentioned in my India, Sri Lanka, and Canada team up for nanotechnology-enabled food packaging posting of June 21, 2012) at the S.Net 2012 conference.

Rumana Bukht and Sally Randles from the University of Manchester’s Business School titled their presentation, Intervention of the State on Responsible Development of Nanotechnology in Canada.

Before discussing the presentation, here’s a summary of the project from my June 21, 2012 posting,

From the June 20, 2012 University of Guelph news release,

University of Guelph scientists led by Prof. Jayasankar Subramanian will work with South Asian colleagues to develop innovative packaging using state-of-the-art nanotechnology to reduce post-harvest losses in mangoes, a vital fruit crop in South Asia.

The $2.3 million project, announced today by Canada’s International Development Research Centre (IDRC) and the Canadian International Development Agency (CIDA), will improve livelihoods for nearly one-third of the populations of India and Sri Lanka, mostly small-scale farmers.

The Guelph scientists will work with researchers from the Tamil Nadu Agricultural University in India and Sri Lanka’s Industrial Technology Institute.

“Invented in part at U of G, this new packaging system should reduce post-harvest losses in fruits in India and Sri Lanka, where optimal storage conditions are not readily available.”

Mangoes are the second largest fruit crop in India and third in Sri Lanka. Farmers lose 35 to 40 per cent of their crops ─ worth $800 million a year ─ because of poor storage.

The researchers will combine patented technologies to develop special fruit cartons, dividers and wraps lined with nanoparticles from coconut husks and banana plants. Using these farm waste products will help provide income for small-scale entrepreneurs, particularly women.

During her talk, Rumana mentioned hexanal as an important ingredient in this new packaging. While my notes don’t provide much information about this ingredient, I did find this great April 26, 2012 article by Arun P Mathew for the Times of India, which provides more technical detail,

K S Subramanian, head of the department of Nano Science and Technology, who is involved in the project said that the University of Guelph, Canada discovered that hexanal, a chemical extracted from plants could successfully enhance the shelf-life and quality of fruits and vegetables. A researcher at TNAU [Tamil Nadu Agricultural University] has come [up] with a nano-film, he said.

“A combination of these two technologies could help develop a nano film with hexanal, which will improve the longevity of these fruits. Through this technology, around 30 percent of the losses could be avoided. This will improve the export of fruits and vegetables and increase the sales of fruits making farming more economically viable,” he said. Subramanian said that they would first be applied on mangoes and later on other fruits, based on its success.

He said that this will be an eco-friendly product. “Hexanal has been approved by United States based, FDA ( Food and Drug Administration). …

Rumana noted there will be safety testing of this hexanal-based nano-film and the testing will take place in India (not Canada) because India has better safety equipment and personnel with the appropriate skill sets. Canada will contribute the safety protocols. If the mango project is successful, researchers are considering plums and peaches for future projects.

I did want to get more  information about this collaboration and about the Canadian nano scene. As I have noted many times, getting information is difficult and I gather Rumana experienced some of the same difficulties. At least, I’m inferring difficulty from the fact that she refused, due to confidentiality agreements, to tell me which Canadian government officials she’d spoken with although she did identify departments (Health Canada and Industry Canada). Given all the secrecy you’d think something nefarious was happening instead of an attempt to minimize food wastage.

Next: OECD (Organization for Economic Cooperation and Development) and public engagement at S.NET 2012

India, Sri Lanka, and Canada team up for nanotechnology-enabled food packaging

Canada’s University of Guelph keeps coming up on my radar these days. The latest news concerns a nanotechnology-enabled food packaging technology. From the June 20, 2012 University of Guelph news release,

University of Guelph scientists led by Prof. Jayasankar Subramanian will work with South Asian colleagues to develop innovative packaging using state-of-the-art nanotechnology to reduce post-harvest losses in mangoes, a vital fruit crop in South Asia.

The $2.3 million project, announced today by Canada’s International Development Research Centre (IDRC) and the Canadian International Development Agency (CIDA), will improve livelihoods for nearly one-third of the populations of India and Sri Lanka, mostly small-scale farmers.

The Guelph scientists will work with researchers from the Tamil Nadu Agricultural University in India and Sri Lanka’s Industrial Technology Institute.

“We welcome the opportunity to work with leading scientists and institutes in Asia to raise the income of poor farmers and make food more nutritious and secure,” said Subramanian, a professor in Guelph’s Department of Plant Agriculture.

“Invented in part at U of G, this new packaging system should reduce post-harvest losses in fruits in India and Sri Lanka, where optimal storage conditions are not readily available.”

Mangoes are the second largest fruit crop in India and third in Sri Lanka. Farmers lose 35 to 40 per cent of their crops ─ worth $800 million a year ─ because of poor storage.

The researchers will combine patented technologies to develop special fruit cartons, dividers and wraps lined with nanoparticles from coconut husks and banana plants. Using these farm waste products will help provide income for small-scale entrepreneurs, particularly women.

I hope to hear more about this project as it progresses and hopefully next time, there’ll be a few more technical details. The mention of coconut husks and banana plants makes me wonder if they are talking about nanocellulose in some form or other.

For anyone who’s interested in the international aid aspects (from the news release),

The project is among six new initiatives funded by IDRC and CIDA under the Canadian International Food Security Research Fund (CIFSRF). The five-year, $62-million project links researchers in Canada and developing countries to address hunger and food insecurity in the developing world.

I last wrote about Sri Lanka and its nanotechnology efforts in my June 4, 2012 posting and I have mentioned India’s nanotechnology efforts several times but perhaps the most relevant, as per this item was in my April 4, 2012 posting.

ETA Oct. 31,2012: Minor grammatical changes were made in the final sentence. ‘Time’ was changed to ‘times’ and I removed the words ‘recent mention’ as they made no sense in the sentence.

Serendipity and coaxial nanocables

I like the sound of the word coaxial especially when it’s used in conjunction with cable, as in coaxial cable. Adding the world serendipity to the mix, as they did at Rice University, made the June 7, 2012 news item by Jade Boyd on the Nanowerk website irresistible [Note: I have removed a link.],

Thanks to a little serendipity, researchers at Rice University have created a tiny coaxial cable that is about a thousand times smaller than a human hair and has higher capacitance than previously reported microcapacitors.

The nanocable, which is described this week in Nature Communications (“Anomalous high capacitance in a coaxial single nanowire capacitor” [behind paywall]), was produced with techniques pioneered in the nascent graphene research field and could be used to build next-generation energy-storage systems. It could also find use in wiring up components of lab-on-a-chip processors, but its discovery is owed partly to chance.

“We didn’t expect to create this when we started,” said study co-author Jun Lou, associate professor of mechanical engineering and materials science at Rice. “At the outset, we were just curious to see what would happen electrically and mechanically if we took small copper wires known as interconnects and covered them with a thin layer of carbon.”

Boyd’s June 7, 2012 news item can also be read in its entirety at the Rice University website [Note: I have removed some links.],

The tiny coaxial cable is remarkably similar in makeup to the ones that carry cable television signals into millions of homes and offices. The heart of the cable is a solid copper wire that is surrounded by a thin sheath of insulating copper oxide. A third layer, another conductor, surrounds that. In the case of TV cables, the third layer is copper again, but in the nanocable it is a thin layer of carbon measuring just a few atoms thick. The coax nanocable is about 100 nanometers, or 100 billionths of a meter, wide.

While the coaxial cable is a mainstay of broadband telecommunications, the three-layer, metal-insulator-metal structure can also be used to build energy-storage devices called capacitors. Unlike batteries, which rely on chemical reactions to both store and supply electricity, capacitors use electrical fields. A capacitor contains two electrical conductors, one negative and the other positive, that are separated by thin layer of insulation. Separating the oppositely charged conductors creates an electrical potential, and that potential increases as the separated charges increase and as the distance between them – occupied by the insulating layer — decreases. The proportion between the charge density and the separating distance is known as capacitance, and it’s the standard measure of efficiency of a capacitor.

The study reports that the capacitance of the nanocable is at least 10 times greater than what would be predicted with classical electrostatics.

“The increase is most likely due to quantum effects that arise because of the small size of the cable,” said study co-author Pulickel Ajayan, Rice’s Benjamin M. and Mary Greenwood Anderson Professor of Mechanical Engineering and Materials Science.

When the project began 18 months ago, Rice postdoctoral researcher Zheng Liu, the lead co-author of the study, intended to make pure copper wires covered with carbon. The techniques for making the wires, which are just a few nanometers wide, are well-established because the wires are often used as “interconnects” in state-of-the-art electronics. Liu used a technique known as chemical vapor deposition (CVD) to cover the wires with a thin coating of carbon. The CVD technique is also used to grow sheets of single-atom-thick carbon called graphene on films of copper.

“When people make graphene, they usually want to study the graphene and they aren’t very interested in the copper,” Lou said. “It’s just used a platform for making the graphene.”

When Liu ran some electronic tests on his first few samples, the results were far from what he expected.

“We eventually found that a thin layer of copper oxide — which is served as a dielectric layer — was forming between the copper and the carbon,” said Liu.

Here’s an image illustrating this process,

The three-layer coaxial nanocable contains a solid copper wire surrounded by a layer of copper oxide that is encased a layer of carbon just a few atoms thick. (Courtesy: Rice University)

The researchers don’t seem to have any particular applications in mind for their nancoaxial cable although they seem hopeful about a few possibilities (from the June 7, 2012 news item on the Rice University website,

The capacitance of the new nanocable is up to 143 microfarads per centimeter squared, better than the best previous results from microcapacitors.

Lou said it may be possible to build a large-scale energy-storage device by arranging millions of the tiny nanocables side by side in large arrays.

“The nanoscale cable might also be used as a transmission line for radio frequency signals at the nanoscale,” Liu said. “This could be useful as a fundamental building block in micro- and nano-sized electromechanical systems like lab-on-a-chip devices.”

Who knows where serendipity will take this discovery?

As for why that word made the item irresistible to me, many years ago I was at a dinner party and one of the guests (a vivid storyteller and born in Sri Lanka) explained the origin of the word, serendipity. Sadly I don’t remember the details of her story, so here’s a less rich version of the story from the Encyclopedia Britannia website,

Serendib, also spelled Serendip, Arabic Sarandīb, name for the island of Sri Lanka (Ceylon). The name, Arabic in origin, was recorded in use at least as early as ad 361 and for a time gained considerable currency in the West. It is best known to speakers of English through the word serendipity, invented in the 18th century by the English man of letters Horace Walpole on the inspiration of a Persian fairy tale, “The Three Princes of Serendip,” whose heroes often made discoveries by chance.

Sri Lanka’s nano

Carol Aloysius’ May 27, 2012 article for Sri Lanka’s The Nation newspaper highlights both the country’s nanotechnology’s efforts and one of its leading nanoscientists, Prof Veranja Karunaratne,

Five years ago, a unique initiative was launched through the Sri Lanka Institute of Nanotechnology (SLINTEC). The Nanotechnology Initiative (NNI) which is a public-private partnership aimed at providing platform research solutions based on nanotechnology to the Sri Lankan industries has not only attracted global recognition, it has earned the man responsible for driving it to its current global status a coveted award from the French government.

“The vision of NNI is to facilitate development and make Sri Lanka an industrial power in order to enable the country to emerge from poverty by infusing nanotechnology based innovations through research and development utilizing local raw materials, resources and talent. In order to fast-tract the NNI, the Government proposed the setting up of SLINTEC, the first ever Government funded start-up research company,” says Prof Veranja Karunaratne.

A fortnight ago, on May 11, Prof Karunaratne who is a Senior Professor in the Department of Chemistry, University of Peradeniya, and for the last few years, Science Team Leader, Sri Lanka Institute of Nanotechnology (SLINTEC), was conferred the distinction of Chevalier dans l’ordre des Palmes Académiques, in recognition of his personal involvement in the promotion of French language and culture in Sri Lanka.

Aloysius’ article goes on to discuss some of Sri Lanka’s NNI initiatives and Karunaratne’s hopes for the country’s future,

SLINTEC which started research in August 2009, thus far, has applied for five patents at the United States Patent Office to cover the innovations for its joint venture partners, he notes. “Two of the patents pertained to the slow release nanofertilizer formulations which release nitrogen to the soil in slow, sustained manner. These two patents attracted the attention of Nagarjuna Fertilizer and Chemicals Limited (NFCL) a global leader in the manufacture of fertilizer, and in a landmark scientific development, SLINTEC entered into a strategic collaboration with NFCL of Hyderabad, India, to develop the next generation of nanotechnology based plant fertilizer solutions.

In the area of value addition to Sri Lankan natural resources, SLINTEC entered into an agreement with Laughs Gas (Pvt) Ltd. to build a pilot plant to convert Ilmenite to Titanium Dioxide and nano-Titanium Dioxide. This agreement paves the way to the commercial production of Titanium Dioxide from the high purity Ilmentite ore whose value addition had remained elusive during the past decades while Sri Lanka exported sand to foreign countries.

The whole rationale behind this concept, is for SLINTEC to take the nation from, being   commodity sellers to a Smart Nation – a nation that generates and sells technology, he explains. [emphasis mine] He is convinced that this will happen in the near future, where Sri Lanka will be on par with other developed nations.

I think more than one Canadian can empathize with the desire to move your nation awary from being a commodity seller.