Tag Archives: Sumit Gangwal

Greening silver nanoparticles with lignin

A July 13, 2015 news item on phys.org highlights a new approach to making silver nanoparticles safer in the environment,

North Carolina State University researchers have developed an effective and environmentally benign method to combat bacteria by engineering nanoscale particles that add the antimicrobial potency of silver to a core of lignin, a ubiquitous substance found in all plant cells. The findings introduce ideas for better, greener and safer nanotechnology and could lead to enhanced efficiency of antimicrobial products used in agriculture and personal care.

A July 13, 2015 North Carolina State University (NCSU) news release (also on EurekAlert), which originated the news item, adds a bit more information,

As the nanoparticles wipe out the targeted bacteria, they become depleted of silver. The remaining particles degrade easily after disposal because of their biocompatible lignin core, limiting the risk to the environment.

“People have been interested in using silver nanoparticles for antimicrobial purposes, but there are lingering concerns about their environmental impact due to the long-term effects of the used metal nanoparticles released in the environment,” said Velev, INVISTA Professor of Chemical and Biomolecular Engineering at NC State and the paper’s corresponding author. “We show here an inexpensive and environmentally responsible method to make effective antimicrobials with biomaterial cores.”

The researchers used the nanoparticles to attack E. coli, a bacterium that causes food poisoning; Pseudomonas aeruginosa, a common disease-causing bacterium; Ralstonia, a genus of bacteria containing numerous soil-borne pathogen species; and Staphylococcus epidermis, a bacterium that can cause harmful biofilms on plastics – like catheters – in the human body. The nanoparticles were effective against all the bacteria.

The method allows researchers the flexibility to change the nanoparticle recipe in order to target specific microbes. Alexander Richter, the paper’s first author and an NC State Ph.D. candidate who won a 2015 Lemelson-MIT prize, says that the particles could be the basis for reduced risk pesticide products with reduced cost and minimized environmental impact.

“We expect this method to have a broad impact,” Richter said. “We may include less of the antimicrobial ingredient without losing effectiveness while at the same time using an inexpensive technique that has a lower environmental burden. We are now working to scale up the process to synthesize the particles under continuous flow conditions.”

I don’t quite understand how the silver nanoparticles/ions are rendered greener. I gather the lignin is harmless but where do the silver nanoparticles/ions go after they’ve been stripped of their lignin cover and have killed the bacteria? I did try reading the paper’s abstract (not much use for someone with my science level),

Silver nanoparticles have antibacterial properties, but their use has been a cause for concern because they persist in the environment. Here, we show that lignin nanoparticles infused with silver ions and coated with a cationic polyelectrolyte layer form a biodegradable and green alternative to silver nanoparticles. The polyelectrolyte layer promotes the adhesion of the particles to bacterial cell membranes and, together with silver ions, can kill a broad spectrum of bacteria, including Escherichia coli, Pseudomonas aeruginosa and quaternary-amine-resistant Ralstonia sp. Ion depletion studies have shown that the bioactivity of these nanoparticles is time-limited because of the desorption of silver ions. High-throughput bioactivity screening did not reveal increased toxicity of the particles when compared to an equivalent mass of metallic silver nanoparticles or silver nitrate solution. Our results demonstrate that the application of green chemistry principles may allow the synthesis of nanoparticles with biodegradable cores that have higher antimicrobial activity and smaller environmental impact than metallic silver nanoparticles.

If you can explain what happens to the silver nanoparticles, please let me know.

Meanwhile, here’s a link to and a citation for the paper,

An environmentally benign antimicrobial nanoparticle based on a silver-infused lignin core by Alexander P. Richter, Joseph S. Brown, Bhuvnesh Bharti, Amy Wang, Sumit Gangwal, Keith Houck, Elaine A. Cohen Hubal, Vesselin N. Paunov, Simeon D. Stoyanov, & Orlin D. Velev. Nature Nanotechnology (2015) doi:10.1038/nnano.2015.141 Published online 13 July 2015

This paper is behind a paywall.