Tag Archives: SUN

Real-time tracking of UV (ultraviolet light) exposure for all skin types (light to dark)

It’s nice to find this research after my August 21, 2018 posting where I highlighted (scroll down to ‘Final comments’) the issues around databases and skin cancer data which is usually derived from fair-skinned people while people with darker hues tend not to be included. This is partly due to the fact that fair-skinned people have a higher risk and also partly due to myths about how more melanin in your skin somehow protects you from skin cancer.

This October 4, 2018 news item on ScienceDaily announces research into a way to track UV exposure for all skin types,

Researchers from the University of Granada [Spain] and RMIT University in Melbourne [Australia] have developed personalised and low-cost wearable ultraviolet (UV) sensors that warn users when their exposure to the sun has become dangerous.

The paper-based sensor, which can be worn as a wristband, features happy and sad emoticon faces — drawn in an invisible UV-sensitive ink — that successively light up as you reach 25%, 50%, 75% and finally 100% of your daily recommended UV exposure.

The research team have also created six versions of the colour-changing wristbands, each of which is personalised for a specific skin tone  [emphasis mine]– an important characteristic given that darker people need more sun exposure to produce vitamin D, which is essential for healthy bones, teeth and muscles.

An October 2, 2018 University of Granada press release (also on EurekAlert) delves further,

Four of the wristbands, each of which indicates a different stage of exposure to UV radiation (25%, 50%, 75% and 100%)

The emoticon faces on the wristband successively “light up” as exposure to UV radiation increases

Skin cancer, one of the most common types of cancer throughout the world, is primarily caused by overexposure to ultraviolet radiation (UVR). In Spain, over 74,000 people are diagnosed with non-melanoma skin cancer every year, while a further 4,000 are diagnosed with melanoma skin cancer. In regions such as Australia, where the ozone layer has been substantially depleted, it is estimated that approximately 2 in 3 people will be diagnosed with skin cancer by the time they reach the age of 70.

“UVB and UVC radiation is retained by the ozone layer. This sensor is especially important in the current context, given that the hole in the ozone layer is exposing us to such dangerous radiation”, explains José Manuel Domínguez Vera, a researcher at the University of Granada’s Department of Inorganic Chemistry and the main author of the paper.

Domínguez Vera also highlights that other sensors currently available on the market only measure overall UV radiation, without distinguishing between UVA, UVB and UVC, each of which has a significantly different impact on human health.  In contrast, the new paper-based sensor can differentiate between UVA, UVB and UVC radiation. Prolonged exposure to UVA radiation is associated with skin ageing and wrinkling, while excessive exposure to UVB causes sunburn and increases the likelihood of skin cancer and eye damage.

Drawbacks of the traditional UV index

Ultraviolet radiation is determined by aspects such as location, time of day, pollution levels, astronomical factors, weather conditions such as clouds, and can be heightened by reflective surfaces like bodies of water, sand and snow. But UV rays are not visible to the human eye (even if it is cloudy UV radiation can be high) and until now the only way of monitoring UV intensity has been to use the UV index, which is standardly given in weather reports and indicates 5 degrees of radiation;  low, moderate, high, very high or extreme.

Despite its usefulness, the UV index is a relatively limited tool. For instance, it does not clearly indicate what time of the day or for how long you should be outside to get your essential vitamin D dose, or when to cover up to avoid sunburn and a heightened risk of skin cancer.

Moreover, the UV index is normally based on calculations for fair skin, making it unsuitable for ethnically diverse populations.  While individuals with fairer skin are more susceptible to UV damage, those with darker skin require much longer periods in the sun in order to absorb healthy amounts of vitamin D. In this regard, the UV index is not an accurate tool for gauging and monitoring an individual’s recommended daily exposure.

UV-sensitive ink

The research team set out to tackle the drawbacks of the traditional UV index by developing an inexpensive, disposable and personalised sensor that allows the wearer to track their UV exposure in real-time. The sensor paper they created features a special ink, containing phosphomolybdic acid (PMA), which turns from colourless to blue when exposed to UV radiation. They can use the initially-invisible ink to draw faces—or any other design—on paper and other surfaces. Depending on the type and intensity of the UV radiation to which the ink is exposed, the paper begins to turn blue; the greater the exposure to UV radiation, the faster the paper turns blue.

Additionally, by tweaking the ink composition and the sensor design, the team were able to make the ink change colour faster or slower, allowing them to produce different sensors that are tailored to the six different types of skin colour. [emphasis mine]

Applications beyond health

This low-cost, paper-based sensor technology will not only help people of all colours to strike an optimum balance between absorbing enough vitamin D and avoiding sun damage — it also has significant applications for the agricultural and industrial sectors. UV rays affect the growth of crops and the shelf life of a range of consumer products. As the UV sensors can detect even the slightest doses of UV radiation, as well as the most extreme, this new technology could have vast potential for industries and companies seeking to evaluate the prolonged impact of UV exposure on products that are cultivated or kept outdoors.

The research project is the result of fruitful collaborations between two members of the UGR BIONanoMet (FQM368) research group; Ana González and José Manuel Domínguez-Vera, and the research group led by Dr. Vipul Bansal at RMIT University in Melbourne (Australia).

Here’s a link to and a citation for the paper,

Skin color-specific and spectrally-selective naked-eye dosimetry of UVA, B and C radiations by Wenyue Zou, Ana González, Deshetti Jampaiah, Rajesh Ramanathan, Mohammad Taha, Sumeet Walia, Sharath Sriram, Madhu Bhaskaran, José M. Dominguez-Vera, & Vipul Bansal. Nature Communicationsvolume 9, Article number: 3743 (2018) DOI: https://doi.org/10.1038/s41467-018-06273-3 Published 25 September 2018

This paper is open access.

Solar-powered graphene skin for more feeling in your prosthetics

A March 23, 2017 news item on Nanowerk highlights research that could put feeling into a prosthetic limb,

A new way of harnessing the sun’s rays to power ‘synthetic skin’ could help to create advanced prosthetic limbs capable of returning the sense of touch to amputees.

Engineers from the University of Glasgow, who have previously developed an ‘electronic skin’ covering for prosthetic hands made from graphene, have found a way to use some of graphene’s remarkable physical properties to use energy from the sun to power the skin.

Graphene is a highly flexible form of graphite which, despite being just a single atom thick, is stronger than steel, electrically conductive, and transparent. It is graphene’s optical transparency, which allows around 98% of the light which strikes its surface to pass directly through it, which makes it ideal for gathering energy from the sun to generate power.

A March 23, 2017 University of Glasgow press release, which originated the news item, details more about the research,

Ravinder Dahiya

Dr Ravinder Dahiya

A new research paper, published today in the journal Advanced Functional Materials, describes how Dr Dahiya and colleagues from his Bendable Electronics and Sensing Technologies (BEST) group have integrated power-generating photovoltaic cells into their electronic skin for the first time.

Dr Dahiya, from the University of Glasgow’s School of Engineering, said: “Human skin is an incredibly complex system capable of detecting pressure, temperature and texture through an array of neural sensors which carry signals from the skin to the brain.

“My colleagues and I have already made significant steps in creating prosthetic prototypes which integrate synthetic skin and are capable of making very sensitive pressure measurements. Those measurements mean the prosthetic hand is capable of performing challenging tasks like properly gripping soft materials, which other prosthetics can struggle with. We are also using innovative 3D printing strategies to build more affordable sensitive prosthetic limbs, including the formation of a very active student club called ‘Helping Hands’.

“Skin capable of touch sensitivity also opens the possibility of creating robots capable of making better decisions about human safety. A robot working on a construction line, for example, is much less likely to accidentally injure a human if it can feel that a person has unexpectedly entered their area of movement and stop before an injury can occur.”

The new skin requires just 20 nanowatts of power per square centimetre, which is easily met even by the poorest-quality photovoltaic cells currently available on the market. And although currently energy generated by the skin’s photovoltaic cells cannot be stored, the team are already looking into ways to divert unused energy into batteries, allowing the energy to be used as and when it is required.

Dr Dahiya added: “The other next step for us is to further develop the power-generation technology which underpins this research and use it to power the motors which drive the prosthetic hand itself. This could allow the creation of an entirely energy-autonomous prosthetic limb.

“We’ve already made some encouraging progress in this direction and we’re looking forward to presenting those results soon. We are also exploring the possibility of building on these exciting results to develop wearable systems for affordable healthcare. In this direction, recently we also got small funds from Scottish Funding Council.”

For more information about this advance and others in the field of prosthetics you may want to check out Megan Scudellari’s March 30, 2017 article for the IEEE’s (Institute of Electrical and Electronics Engineers) Spectrum (Note: Links have been removed),

Cochlear implants can restore hearing to individuals with some types of hearing loss. Retinal implants are now on the market to restore sight to the blind. But there are no commercially available prosthetics that restore a sense of touch to those who have lost a limb.

Several products are in development, including this haptic system at Case Western Reserve University, which would enable upper-limb prosthetic users to, say, pluck a grape off a stem or pull a potato chip out of a bag. It sounds simple, but such tasks are virtually impossible without a sense of touch and pressure.

Now, a team at the University of Glasgow that previously developed a flexible ‘electronic skin’ capable of making sensitive pressure measurements, has figured out how to power their skin with sunlight. …

Here’s a link to and a citation for the paper,

Energy-Autonomous, Flexible, and Transparent Tactile Skin by Carlos García Núñez, William Taube Navaraj, Emre O. Polat and Ravinder Dahiya. Advanced Functional Materials DOI: 10.1002/adfm.201606287 Version of Record online: 22 MAR 2017

© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This paper is behind a paywall.

Sustainable Nanotechnologies (SUN) project draws to a close in March 2017

Two Oct. 31, 2016 news item on Nanowerk signal the impending sunset date for the European Union’s Sustainable Nanotechnologies (SUN) project. The first Oct. 31, 2016 news item on Nanowerk describes the projects latest achievements,

The results from the 3rd SUN annual meeting showed great advancement of the project. The meeting was held in Edinburgh, Scotland, UK on 4-5 October 2016 where the project partners presented the results obtained during the second reporting period of the project.

SUN is a three and a half year EU project, running from 2013 to 2017, with a budget of about €14 million. Its main goal is to evaluate the risks along the supply chain of engineered nanomaterials and incorporate the results into tools and guidelines for sustainable manufacturing.

The ultimate goal of the SUN Project is the development of an online software Decision Support System – SUNDS – aimed at estimating and managing occupational, consumer, environmental and public health risks from nanomaterials in real industrial products along their lifecycles. The SUNDS beta prototype has been released last October, 2015, and since then the main focus has been on refining the methodologies and testing them on selected case studies i.e. nano-copper oxide based wood preserving paint and nano- sized colourants for plastic car part: organic pigment and carbon black. Obtained results and open issues were discussed during the third annual meeting in order collect feedbacks from the consortium that will inform, in the next months, the implementation of the final version of the SUNDS software system, due by March 2017.

An Oct. 27, 2016 SUN project press release, which originated the news item, adds more information,

Significant interest has been payed towards the results obtained in WP2 (Lifecycle Thinking) which main objectives are to assess the environmental impacts arising from each life cycle stage of the SUN case studies (i.e. Nano-WC-Cobalt (Tungsten Carbide-cobalt) sintered ceramics, Nanocopper wood preservatives, Carbon Nano Tube (CNT) in plastics, Silicon Dioxide (SiO2) as food additive, Nano-Titanium Dioxide (TiO2) air filter system, Organic pigment in plastics and Nanosilver (Ag) in textiles), and compare them to conventional products with similar uses and functionality, in order to develop and validate criteria and guiding principles for green nano-manufacturing. Specifically, the consortium partner COLOROBBIA CONSULTING S.r.l. expressed its willingness to exploit the results obtained from the life cycle assessment analysis related to nanoTiO2 in their industrial applications.

On 6th October [2016], the discussions about the SUNDS advancement continued during a Stakeholder Workshop, where representatives from industry, regulatory and insurance sectors shared their feedback on the use of the decision support system. The recommendations collected during the workshop will be used for the further refinement and implemented in the final version of the software which will be released by March 2017.

The second Oct. 31, 2016 news item on Nanowerk led me to this Oct. 27, 2016 SUN project press release about the activities in the upcoming final months,

The project has designed its final events to serve as an effective platform to communicate the main results achieved in its course within the Nanosafety community and bridge them to a wider audience addressing the emerging risks of Key Enabling Technologies (KETs).

The series of events include the New Tools and Approaches for Nanomaterial Safety Assessment: A joint conference organized by NANOSOLUTIONS, SUN, NanoMILE, GUIDEnano and eNanoMapper to be held on 7 – 9 February 2017 in Malaga, Spain, the SUN-CaLIBRAte Stakeholders workshop to be held on 28 February – 1 March 2017 in Venice, Italy and the SRA Policy Forum: Risk Governance for Key Enabling Technologies to be held on 1- 3 March in Venice, Italy.

Jointly organized by the Society for Risk Analysis (SRA) and the SUN Project, the SRA Policy Forum will address current efforts put towards refining the risk governance of emerging technologies through the integration of traditional risk analytic tools alongside considerations of social and economic concerns. The parallel sessions will be organized in 4 tracks:  Risk analysis of engineered nanomaterials along product lifecycle, Risks and benefits of emerging technologies used in medical applications, Challenges of governing SynBio and Biotech, and Methods and tools for risk governance.

The SRA Policy Forum has announced its speakers and preliminary Programme. Confirmed speakers include:

  • Keld Alstrup Jensen (National Research Centre for the Working Environment, Denmark)
  • Elke Anklam (European Commission, Belgium)
  • Adam Arkin (University of California, Berkeley, USA)
  • Phil Demokritou (Harvard University, USA)
  • Gerard Escher (École polytechnique fédérale de Lausanne, Switzerland)
  • Lisa Friedersdor (National Nanotechnology Initiative, USA)
  • James Lambert (President, Society for Risk Analysis, USA)
  • Andre Nel (The University of California, Los Angeles, USA)
  • Bernd Nowack (EMPA, Switzerland)
  • Ortwin Renn (University of Stuttgart, Germany)
  • Vicki Stone (Heriot-Watt University, UK)
  • Theo Vermeire (National Institute for Public Health and the Environment (RIVM), Netherlands)
  • Tom van Teunenbroek (Ministry of Infrastructure and Environment, The Netherlands)
  • Wendel Wohlleben (BASF, Germany)

The New Tools and Approaches for Nanomaterial Safety Assessment (NMSA) conference aims at presenting the main results achieved in the course of the organizing projects fostering a discussion about their impact in the nanosafety field and possibilities for future research programmes.  The conference welcomes consortium partners, as well as representatives from other EU projects, industry, government, civil society and media. Accordingly, the conference topics include: Hazard assessment along the life cycle of nano-enabled products, Exposure assessment along the life cycle of nano-enabled products, Risk assessment & management, Systems biology approaches in nanosafety, Categorization & grouping of nanomaterials, Nanosafety infrastructure, Safe by design. The NMSA conference key note speakers include:

  • Harri Alenius (University of Helsinki, Finland,)
  • Antonio Marcomini (Ca’ Foscari University of Venice, Italy)
  • Wendel Wohlleben (BASF, Germany)
  • Danail Hristozov (Ca’ Foscari University of Venice, Italy)
  • Eva Valsami-Jones (University of Birmingham, UK)
  • Socorro Vázquez-Campos (LEITAT Technolоgical Center, Spain)
  • Barry Hardy (Douglas Connect GmbH, Switzerland)
  • Egon Willighagen (Maastricht University, Netherlands)
  • Nina Jeliazkova (IDEAconsult Ltd., Bulgaria)
  • Haralambos Sarimveis (The National Technical University of Athens, Greece)

During the SUN-caLIBRAte Stakeholder workshop the final version of the SUN user-friendly, software-based Decision Support System (SUNDS) for managing the environmental, economic and social impacts of nanotechnologies will be presented and discussed with its end users: industries, regulators and insurance sector representatives. The results from the discussion will be used as a foundation of the development of the caLIBRAte’s Risk Governance framework for assessment and management of human and environmental risks of MN and MN-enabled products.

The SRA Policy Forum: Risk Governance for Key Enabling Technologies and the New Tools and Approaches for Nanomaterial Safety Assessment conference are now open for registration. Abstracts for the SRA Policy Forum can be submitted till 15th November 2016.
For further information go to:
www.sra.org/riskgovernanceforum2017
http://www.nmsaconference.eu/

There you have it.