Tag Archives: superconductivity

Café Scientifique (Vancouver, Canada) April 25, 2017 talk: No Small Feat: Seeing Atoms and Molecules

I thought I’d been knocked off the list but finally I have a notice for an upcoming Café Scientifique talk that arrived and before the event, at that.  From an April 12, 2017 notice (received via email),

Our next café will happen on TUESDAY APRIL 25TH, 7:30PM in the back
room at YAGGER’S DOWNTOWN (433 W Pender). Our speaker for the
evening will be DR. SARAH BURKE, an Assistant Professor in the
Department of Physics and Astronomy/ Department of Chemistry at UBC [University of British Columbia]. The title of her talk is:

NO SMALL FEAT: SEEING ATOMS AND MOLECULES

From solar cells to superconductivity, the properties of materials and
the devices we make from them arise from the atomic scale structure of
the atoms that make up the material, their electrons, and how they all
interact.  Seeing this takes a microscope, but not like the one you may
have had as a kid or used in a university lab, which are limited to
seeing objects on the scale of the wavelength of visible light: still
thousands of times bigger than the size of an atom.  Scanning probe
microscopes operate more like a nanoscale record player, scanning a very
sharp tip over a surface and measuring interactions between the tip and
surface to create atomically resolved images.  These techniques show us
where atoms and electrons live at surfaces, on nanostructures, and in
molecules.  I will describe how these techniques give us a powerful
glimpse into a tiny world.

I have a little more about Sarah Burke from her webpage in the UBC Physics and Astronomy webspace,

Building an understanding of important electronic and optoelectronic processes in nanoscale materials from the atomic scale up will pave the way for next generation materials and technologies.

My research interests broadly encompass the study of electronic processes where nanoscale structure influences or reveals the underlying physics. Using scanning probe microscopy (SPM) techniques, my group investigates materials for organic electronics and optoelectronics, graphene and other carbon-based nanomaterials, and other materials where a nanoscale view offers the potential for new understanding. We also work to expand the SPM toolbox; developing new methods in order to probe different aspects of materials, and working to understand leading edge techniques.

For the really curious, you can find more information about her research group, UBC Laboratory for Atomic Imaging Research (LAIR) here.

Superconducting graphene from Saint Jean Carbon (a Canadian company)

An announcement from Saint Jean Carbon helps to paint a picture of one Canadian graphene research and commercialization effort. From an Oct. 26, 2015 news item on Azonano,

Saint Jean Carbon Inc., a carbon sciences company engaged in the development of natural graphite properties and related carbon products is pleased to announce that it has completed an initial phase of research and development (R&D) work on the development of superconducting graphene.

An Oct. 22, 2015 Saint Jean Carbon news release, (also on Marketwired) which originated the news item, explains the company’s interest in superconducting graphene,

The result of the work has produced graphene that possibly may have magnetic properties; Magnetic properties are what is needed if the material is used in superconducting applications. This is believed to be a first. The encouraging result is just the very first step with many more tests to complete. Hopefully, this puts the project on the path towards the development of a low-temperature superconductor that leverages key properties of graphene.

Superconductivity is defined as a quantum mechanical phenomenon that offers the potential for zero electrical resistance. The ability to operate with no electrical resistance at or near room temperature holds significant potential in a wide range of product and technology applications. This include high-performance smart grids, electric power transmission, transformers, power storage devices, electric motors used in vehicle propulsion as in maglev trains, magnetic levitation devices, spintronic devices and superconducting magnetic refrigeration. Solving this puzzle; would have enormous technological importance.

The work has been based on the identification of the growing understanding of the magnetic properties (the ability to repel magnetic fields) of graphene. These properties could play a crucial role in enhancing superconductivity and therefore make it a good candidate for continued efforts to realize its potential. To truly understand the magnetic properties, the material has been sent to a third party for full magnetometer temperature testing; this is believed to be the only way to get accurate nano material measurements. The tests are very complex and time consuming but will provide us with absolute definitive measurements and a clear path forward for possible applications. Upon completion of the tests (estimated to be completed by October 28th 2015), the company will release the results. [emphases mine] Elements of the research work have relied on a patented (nanoparticle ultrasound separation) system designed to isolate and create large quantities of graphene cost effectively.

Company management must feel quite confident about the results of their testing to issue this ‘preview’ news release which goes on to highlight the advantages of using Canadian graphite for producing graphene,

The base graphite used in the research program was very pure, which minimized the need for costly and environmentally harsh purification. In addition, the graphene that was produced has excellent electrical/thermal connectivity; large high surface area, very good wettability, and had some promise of magnetic properties.

The production method has been initially shown to be less aggressive and significantly more cost effective than other processes such as the Hummers Method. This should further improve the overall ability to produce base material for many other needed applications for graphene today. The process may greatly shorten the time to market, and we are encouraged that there are already real needs for the material in all sorts of applications including polymers, epoxies and other coatings. The company plans to work with industry partners to develop a solution based application that can be developed today and be in use in a short time frame.

The next phase of the joint research effort is to prepare a bench scale system capable of producing larger quantities of high purity graphene samples for potential industry partners. Mr. Ogilvie commented, “We believe our working relationship with the university teams is an excellent opportunity to leverage Saint Jean’s graphite experience and assets while simultaneously expanding our focus on critical new carbon-based opportunities such as graphene superconductors. As one of the next steps in our go-forward plan is to quickly advance the product applications by working with a number of companies and potential strategic partners. Given the potential of graphene in everything from quantum computing to energy storage, Saint Jean has been encouraged by the breadth and depth of these preliminary discussions. As the work unfolds we look forward to keeping our shareholders actively informed on our continued efforts and results.” Dr. Don MacIntyre, the Company’s geologist, P. Geo., and Qualified Person, reviewed and approved the technical and scientific information in this release.

While the company’s executive offices are in Ontario with a second office in Alberta (company contact page), the graphite mines are in Québec (from  the news release),

About Saint Jean

Saint Jean is a publicly traded carbon sciences company with interest graphite mining claims on five 100% Company owned properties located in the province of Quebec in Canada. The five properties include the Walker property, a past producing mine, the Wallingford property, the St. Jovite property, East Miller and Clot property. For information on Saint Jean’s other properties and the latest news please go to the website: www.saintjeancarbon.com

Saint Jean Carbon’s chief executive officer (CEO) has an interesting carbon background (from the Management page),

Mr. Ogilvie brings a wealth of knowledge to the graphite sector. Mr. Ogilvie has been extensively involved in several start-ups, including emerging graphite companies, for over 33 years. He most recently served as Chief Executive Officer and Director for both Mega Graphite Inc. and Canada Carbon. Prior to this, in 2007 Mr. Ogilvie led a private investment group in the redevelopment and turnaround of Industrial Minerals Inc. (now known as Northern Graphite [emphasis mine] Corporation (NGC-TSX.V), a junior mining company that is presently developing one of the largest large-flake natural graphite deposits in the world. Mr. Ogilvie has direct experience in the development of technologies related to the production of graphite ores and the operation of global graphite markets for base and high purity graphite products.

Northern Graphite was last mentioned here in a March 9, 2015 post (scroll down about 50% of the way) featuring a report about the worldwide graphite market. In a Feb. 6, 2012 post, the first one about Northern Graphite, the focus is on the flakes.

Final comment: It seems like quite the month for Canadian graphene efforts of all stripes; I wrote an October 19, 2015 post featuring a new international graphene foundation (GO Foundation for graphene commercialization) being launched in Canada.