Tag Archives: Sweden

Colours in bendable electronic paper

Scientists at Chalmers University of Technology (Sweden) are able to produce a rainbow of colours in a new electronic paper according to an Oct. 14, 2016 news item on Nanowerk,

Less than a micrometre thin, bendable and giving all the colours that a regular LED display does, it still needs ten times less energy than a Kindle tablet. Researchers at Chalmers University of Technology have developed the basis for a new electronic “paper.”

When Chalmers researcher Andreas Dahlin and his PhD student Kunli Xiong were working on placing conductive polymers on nanostructures, they discovered that the combination would be perfectly suited to creating electronic displays as thin as paper. A year later the results were ready for publication. A material that is less than a micrometre thin, flexible and giving all the colours that a standard LED display does.

An Oct. 14, 2016 Chalmers University of Technology press release (also on EurekAlert) by Mats Tiborn, which originated the news item, expands on the theme,

“The ’paper’ is similar to the Kindle tablet. It isn’t lit up like a standard display, but rather reflects the external light which illuminates it. Therefore it works very well where there is bright light, such as out in the sun, in contrast to standard LED displays that work best in darkness. At the same time it needs only a tenth of the energy that a Kindle tablet uses, which itself uses much less energy than a tablet LED display”, says Andreas Dahlin.

It all depends on the polymers’ ability to control how light is absorbed and reflected. The polymers that cover the whole surface lead the electric signals throughout the full display and create images in high resolution. The material is not yet ready for application, but the basis is there. The team has tested and built a few pixels. These use the same red, green and blue (RGB) colours that together can create all the colours in standard LED displays. The results so far have been positive, what remains now is to build pixels that cover an area as large as a display.

“We are working at a fundamental level but even so, the step to manufacturing a product out of it shouldn’t be too far away. What we need now are engineers”, says Andreas Dahlin.

One obstacle today is that there is gold and silver in the display.

“The gold surface is 20 nanometres thick so there is not that much gold in it. But at present there is a lot of gold wasted in manufacturing it. Either we reduce the waste or we find another way to reduce the production cost”, says Andreas Dahlin.

Caption: Chalmers' e-paper contains gold, silver and PET plastic. The layer that produces the colours is less than a micrometre thin. Credit: Mats Tiborn

Caption: Chalmers’ e-paper contains gold, silver and PET plastic. The layer that produces the colours is less than a micrometre thin. Credit: Mats Tiborn

Here’s a link to and a citation for the paper,

Plasmonic Metasurfaces with Conjugated Polymers for Flexible Electronic Paper in Color by Kunli Xiong, Gustav Emilsson, Ali Maziz, Xinxin Yang, Lei Shao, Edwin W. H. Jager, and Andreas B. Dahlin. Advanced Materials DOI: 10.1002/adma.201603358 Version of Record online: 27 SEP 2016

© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This paper is behind a paywall.

Finally, Dexter Johnson in an Oct. 18, 2016 posting on his Nanoclast blog (on the IEEE [Institute of Electrical and Electronics Engineers] website) offers some broader insight into this development (Note: Links have been removed),

Plasmonic nanostructures leverage the oscillations in the density of electrons that are generated when photons hit a metal surface. Researchers have used these structures for applications including increasing the light absorption of solar cells and creating colors without the need for dyes. As a demonstration of how effective these nanostructures are as a replacement for color dyes, a the technology has been used to produce a miniature copy of the Mona Lisa in a space smaller than the footprint taken up by a single pixel on an iPhone Retina display.

Graphene Malaysia 2016 gathering and Malaysia’s National Graphene Action Plan 2020

Malaysia is getting ready to host a graphene conference according to an Oct. 10, 2016 news item on Nanotechnology Now,

The Graphene Malaysia 2016 [Nov. 8 – 9, 2016] (www.graphenemalaysiaconf.com) is jointly organized by NanoMalaysia Berhad and Phantoms Foundation. The conference will be centered on graphene industry interaction and collaborative innovation. The event will be launched under the National Graphene Action Plan 2020 (NGAP 2020), which will generate about 9,000 jobs and RM20 (US$4.86) billion GNI impact by the year 2020.

First speakers announced:
Murni Ali (Nanomalaysia, Malaysia) | Francesco Bonaccorso (Istituto Italiano di Tecnologia, Italy) | Antonio Castro Neto (NUS, Singapore) | Antonio Correia (Phantoms Foundation, Spain)| Pedro Gomez-Romero (ICN2 (CSIC-BIST), Spain) | Shu-Jen Han (Nanoscale Science & Technology IBM T.J. Watson Research Center, USA) | Kuan-Tsae Huang (AzTrong, USA/Taiwan) | Krzysztof Koziol (FGV Cambridge Nanosystems, UK) | Taavi Madiberk (Skeleton Technologies, Estonia) | Richard Mckie (BAE Systems, UK) | Pontus Nordin (Saab AB, Saab Aeronautics, Sweden) | Elena Polyakova (Graphene Laboratories Inc., USA) | Ahmad Khairuddin Abdul Rahim (Malaysian Investment Development Authority (MIDA), Malaysia) | Adisorn Tuantranont (Thailand Organic and Printed Electronics Innovation Center, Thailand) |Archana Venugopal (Texas Instruments, USA) | Won Jong Yoo (Samsung-SKKU Graphene-2D Center (SSGC), South Korea) | Hongwei Zhu (Tsinghua University, China)

You can check for more information and deadlines in the Nanotechnology Now Oct. 10, 2016 news item.

The Graphene Malalysia 2016 conference website can be found here and Malaysia’s National Graphene Action Plan 2020, which is well written, can be found here (PDF).  This portion from the executive summary offers some insight into Malyasia’s plans to launch itself into the world of high income nations,

Malaysia’s aspiration to become a high-income nation by 2020 with improved jobs and better outputs is driving the country’s shift away from “business as usual,” and towards more innovative and high value add products. Within this context, and in accordance with National policies and guidelines, Graphene, an emerging, highly versatile carbon-based nanomaterial, presents a unique opportunity for Malaysia to develop a high value economic ecosystem within its industries.  Isolated only in 2004, Graphene’s superior physical properties such as electrical/ thermal conductivity, high strength and high optical transparency, combined with its manufacturability have raised tremendous possibilities for its application across several functions and make it highly interesting for several applications and industries.  Currently, Graphene is still early in its development cycle, affording Malaysian companies time to develop their own applications instead of relying on international intellectual property and licenses.

Considering the potential, several leading countries are investing heavily in associated R&D. Approaches to Graphene research range from an expansive R&D focus (e.g., U.S. and the EU) to more focused approaches aimed at enhancing specific downstream applications with Graphene (e.g., South Korea). Faced with the need to push forward a multitude of development priorities, Malaysia must be targeted in its efforts to capture Graphene’s potential, both in terms of “how to compete” and “where to compete”. This National Graphene Action Plan 2020 lays out a set of priority applications that will be beneficial to the country as a whole and what the government will do to support these efforts.

Globally, much of the Graphene-related commercial innovation to date has been upstream, with producers developing techniques to manufacture Graphene at scale. There has also been some development in downstream sectors, as companies like Samsung, Bayer MaterialScience, BASF and Siemens explore product enhancement with Graphene in lithium-ion battery anodes and flexible displays, and specialty plastic and rubber composites. However the speed of development has been uneven, offering Malaysian industries willing to invest in innovation an opportunity to capture the value at stake. Since any innovation action plan has to be tailored to the needs and ambitions of local industry, Malaysia will focus its Graphene action plan initially on larger domestic industries (e.g., rubber) and areas already being targeted by the government for innovation such as energy storage for electric vehicles and conductive inks.

In addition to benefiting from the physical properties of Graphene, Malaysian downstream application providers may also capture the benefits of a modest input cost advantage for the domestic production of Graphene.  One commonly used Graphene manufacturing technique, the chemical vapour deposition (CVD) production method, requires methane as an input, which can be sourced economically from local biomass. While Graphene is available commercially from various producers around the world, downstream players may be able to enjoy some cost advantage from local Graphene supply. In addition, co-locating with a local producer for joint product development has the added benefit of speeding up the R&D lifecycle.

That business about finding downstream applications could also to the Canadian situation where we typically offer our resources (upstream) but don’t have an active downstream business focus. For example, we have graphite mines in Ontario and Québec which supply graphite flakes for graphene production which is all upstream. Less well developed are any plans for Canadian downstream applications.

Finally, it was interesting to note that the Phantoms Foundation is organizing this Malaysian conference since the same organization is organizing the ‘2nd edition of Graphene & 2D Materials Canada 2016 International Conference & Exhibition’ (you can find out more about the Oct. 18 – 20, 2016 event in my Sept. 23, 2016 posting). I think the Malaysians have a better title for their conference, far less unwieldy.

2016 Nobel Chemistry Prize for molecular machines

Wednesday, Oct. 5, 2016 was the day three scientists received the Nobel Prize in Chemistry for their work on molecular machines, according to an Oct. 5, 2016 news item on phys.org,

Three scientists won the Nobel Prize in chemistry on Wednesday [Oct. 5, 2016] for developing the world’s smallest machines, 1,000 times thinner than a human hair but with the potential to revolutionize computer and energy systems.

Frenchman Jean-Pierre Sauvage, Scottish-born Fraser Stoddart and Dutch scientist Bernard “Ben” Feringa share the 8 million kronor ($930,000) prize for the “design and synthesis of molecular machines,” the Royal Swedish Academy of Sciences said.

Machines at the molecular level have taken chemistry to a new dimension and “will most likely be used in the development of things such as new materials, sensors and energy storage systems,” the academy said.

Practical applications are still far away—the academy said molecular motors are at the same stage that electrical motors were in the first half of the 19th century—but the potential is huge.

Dexter Johnson in an Oct. 5, 2016 posting on his Nanoclast blog (on the IEEE [Institute of Electrical and Electronics Engineers] website) provides some insight into the matter (Note: A link has been removed),

In what seems to have come both as a shock to some of the recipients and a confirmation to all those who envision molecular nanotechnology as the true future of nanotechnology, Bernard Feringa, Jean-Pierre Sauvage, and Sir J. Fraser Stoddart have been awarded the 2016 Nobel Prize in Chemistry for their development of molecular machines.

The Nobel Prize was awarded to all three of the scientists based on their complementary work over nearly three decades. First, in 1983, Sauvage (currently at Strasbourg University in France) was able to link two ring-shaped molecules to form a chain. Then, eight years later, Stoddart, a professor at Northwestern University in Evanston, Ill., demonstrated that a molecular ring could turn on a thin molecular axle. Then, eight years after that, Feringa, a professor at the University of Groningen, in the Netherlands, built on Stoddardt’s work and fabricated a molecular rotor blade that could spin continually in the same direction.

Speaking of the Nobel committee’s selection, Donna Nelson, a chemist and president of the American Chemical Society told Scientific American: “I think this topic is going to be fabulous for science. When the Nobel Prize is given, it inspires a lot of interest in the topic by other researchers. It will also increase funding.” Nelson added that this line of research will be fascinating for kids. “They can visualize it, and imagine a nanocar. This comes at a great time, when we need to inspire the next generation of scientists.”

The Economist, which appears to be previewing an article about the 2016 Nobel prizes ahead of the print version, has this to say in its Oct. 8, 2016 article,

BIGGER is not always better. Anyone who doubts that has only to look at the explosion of computing power which has marked the past half-century. This was made possible by continual shrinkage of the components computers are made from. That success has, in turn, inspired a search for other areas where shrinkage might also yield dividends.

One such, which has been poised delicately between hype and hope since the 1990s, is nanotechnology. What people mean by this term has varied over the years—to the extent that cynics might be forgiven for wondering if it is more than just a fancy rebranding of the word “chemistry”—but nanotechnology did originally have a fairly clear definition. It was the idea that machines with moving parts could be made on a molecular scale. And in recognition of this goal Sweden’s Royal Academy of Science this week decided to award this year’s Nobel prize for chemistry to three researchers, Jean-Pierre Sauvage, Sir Fraser Stoddart and Bernard Feringa, who have never lost sight of nanotechnology’s original objective.

Optimists talk of manufacturing molecule-sized machines ranging from drug-delivery devices to miniature computers. Pessimists recall that nanotechnology is a field that has been puffed up repeatedly by both researchers and investors, only to deflate in the face of practical difficulties.

There is, though, reason to hope it will work in the end. This is because, as is often the case with human inventions, Mother Nature has got there first. One way to think of living cells is as assemblies of nanotechnological machines. For example, the enzyme that produces adenosine triphosphate (ATP)—a molecule used in almost all living cells to fuel biochemical reactions—includes a spinning molecular machine rather like Dr Feringa’s invention. This works well. The ATP generators in a human body turn out so much of the stuff that over the course of a day they create almost a body-weight’s-worth of it. Do something equivalent commercially, and the hype around nanotechnology might prove itself justified.

Congratulations to the three winners!

A new, stable open-shell carbon molecule from Oregon

This discovery could one day make organic solar cells more efficient than silicon ones. Researchers at the University of Oregon announced their discovery in a June 9, 2016 news item on ScienceDaily,

University of Oregon chemists have synthesized a stable and long-lasting carbon-based molecule that, they say, potentially could be applicable in solar cells and electronic devices.

The molecule changes its bonding patterns to a magnetic biradical state when heated; it then returns to a fully bonded non-magnetic closed state at room temperature. That transition, they report, can be done repeatedly without decomposition. It remains stable in the presence of both heat and oxygen.

A June 9, 2016 University of Oregon news release on EurekAlert, which originated the news item, provides more detail,

 

Biradical refers to organic compounds, known as open-shell molecules, that have two free-flowing, non-bonding electrons. Producing them using techniques to control their electron spin, and thus provide semiconducting properties, in a heated state has been hampered by instability since the first synthetic biradical hydrocarbon was made in 1907.

“Potentially our approach could help to make organic solar cells more efficient than silicon solar cells, but that’s probably far in the future,” said UO doctoral student Gabriel E. Rudebusch, the paper’s lead author. “Our synthesis is rapid and efficient. We easily can make a gram of this compound, which is very stable when exposed to oxygen and heat. This stability has been almost unheard of in the literature about biradical compounds.”

The four-step synthesis of the compound — diindenoanthracene, or DIAn — and how it held up when tested in superconducting materials were detailed in a proof-of-principle paper published online May 23 by the journal Nature Chemistry. The UO team collaborated with experts in Japan, Spain and Sweden.

The molecular framework for the new molecule involves the hydrocarbon anthracene, which has three linearly fused hexagonal benzene rings, in combination with two five-membered pentagonal rings.

“The big difference between our new molecule and a lot of other biradical molecules that have been produced is those five-membered rings,” said co-author Michael M. Haley, who holds the UO’s Richard M. and Patricia H. Noyes Professorship in Chemistry. “They have the inherent ability to accept electrons or give up electrons. This means DIAn can move both negative and positive charges, which is an essential property for useful devices such as transistors and solar cells. Also, we can heat up our molecule to 150 degrees Celsius, bring it back to room temperature and heat it up again, repeatedly, and we see no decomposition in its reaction to oxygen. The unique features of DIAn are essential if these molecules are to have a use in the real world.”

Haley’s lab is now seeking to develop derivatives of the new molecule to help move the technology forward into potential applications.

Here’s a link to and a citation for the paper,

Diindeno-fusion of an anthracene as a design strategy for stable organic biradicals by Gabriel E. Rudebusch, José L. Zafra, Kjell Jorner, Kotaro Fukuda, Jonathan L. Marshall, Iratxe Arrechea-Marcos, Guzmán L. Espejo, Rocío Ponce Ortiz, Carlos J. Gómez-García, Lev N. Zakharov, Masayoshi Nakano, Henrik Ottosson, Juan Casado & Michael M. Haley. Nature Chemistry (2016)  doi:10.1038/nchem.2518 Published online 23 May 2016

This paper is behind a paywall.

There is another June 9, 2016 University of Oregon news release by Jim Barlow about this discovery. It covers much of the same material but focuses more closely on Rudebusch’s perspective.

Implications of nanoplastic in the aquatic food chain

As plastic breaks down in the oceans into plastic nanoparticles, they enter the food chain when they are ingested by plankton. Researchers in Sweden have published a study about the process. From a May 23, 2016 news item on ScienceDaily,

Plastic accounts for nearly eighty per cent of all waste found in our oceans, gradually breaking down into smaller and smaller particles. New research from Lund University in Sweden investigates how nanosized plastic particles affect aquatic animals in different parts of the food chain.

“Not very many studies have been done on this topic before. Plastic particles of such a small size are difficult to study,” says Karin Mattsson.

A May 23, 2016 Lund University press release, which originated the news item, provides more detail,

“We tested how polystyrene plastic particles of different sizes, charge and surface affect the zooplankton Daphnia. It turned out that the size of the nanoparticles that were most toxic to the Daphnia in our study was 50 nanometers”, says Karin Mattsson.

Because zooplankton like Daphnia are also food for many other aquatic animals, the researchers wanted to study the effect of plastic particles higher up in the food chain. They found that fish that ate Daphnia containing nanoplastics experienced a change in their predatory behaviour and poor appetite. In several studies, researchers also discovered that the nanoparticles had the ability to cross biological barriers, such as the intestinal wall and brain.

“Although in our study we used much larger amounts of nanoplastic than those present in oceans today, we suspect that plastic particles may be accumulated inside the fish. This means that even low doses could ultimately have a negative effect”, says Karin Mattsson.

Plastic breaks down very slowly in nature, and once the microscopically small plastic particles reach lakes and oceans they are difficult to remove. Plastic particles also bind environmental toxins that can become part of the food chain when consumed accidentally.

“Our research indicates the need for more studies and increased caution in the use of nanoplastics”, she says.

Karin Mattsson is a physicist and her research project was produced in collaboration between the Centre for Environmental and Climate Research, the Division Biochemistry and Structural Biology and the Division of Aquatic Biology at Lund University. Karin Mattsson is also affiliated with NanoLund, where several studies are currently conducted to evaluate the safety of nanoparticles.

Here’s a link to and a citation for a paper published online in 2014 and in print in 2015,

Altered Behavior, Physiology, and Metabolism in Fish Exposed to Polystyrene Nanoparticles by Karin Mattsson, Mikael T. Ekvall, Lars-Anders Hansson, Sara Linse, Anders Malmendal, and Tommy Cedervall. Environ. Sci. Technol., 2015, 49 (1), pp 553–561 DOI: 10.1021/es5053655
Publication Date (Web): November 07, 2014

Copyright © 2014 American Chemical Society

More recently, Karin Mattson has published her PhD thesis on the topic (I believe it is written in Swedish).

Removing viruses from water with a ‘mille-feuille’ filter

Mille-feuille is a pastry and it’s name translates to ‘a thousand leaves’, which hints at how a ‘mille-feuille’ nanofilter is constructed. From a May 18, 2016 news item on Nanowerk,

A simple paper sheet made by scientists at Uppsala University can improve the quality of life for millions of people by removing resistant viruses from water. The sheet, made of cellulose nanofibers, is called the mille-feuille filter as it has a unique layered internal architecture resembling that of the French puff pastry mille-feuille (Eng. thousand leaves).

Caption: The sheet made of cellulose nanofibers in the mille-feuille filter which can remove resistant viruses from water. Research led by Albert Mihranyan, Professor of Nanotechnology at Uppsala University, Image by Simon Gustafsson. Credit: Simon Gustafsson

Caption: The sheet made of cellulose nanofibers in the mille-feuille filter which can remove resistant viruses from water. Research led by Albert Mihranyan, Professor of Nanotechnology at Uppsala University, Image by Simon Gustafsson. Credit: Simon Gustafsson

A May 18, 2016 Uppsala University (Sweden) press release on EurekAlert, which originated the news item, expands on the theme,

With a filter material directly from nature, and by using simple production methods, we believe that our filter paper can become the affordable global water filtration solution and help save lives. Our goal is to develop a filter paper that can remove even the toughest viruses from water as easily as brewing coffee’, says Albert Mihranyan, Professor of Nanotechnology at Uppsala University, who heads the study.

Access to safe drinking water is among the UN’s Sustainable Development Goals. More than 748 million people lack access to safe drinking water and basic sanitation. Water-borne infections are among the global causes for mortality, especially in children under age of five, and viruses are among the most notorious water-borne infectious microorganisms. They can be both extremely resistant to disinfection and difficult to remove by filtration due to their small size.

Today we heavily rely on chemical disinfectants, such as chlorine, which may produce toxic by-products depending on water quality. Filtration is a very effective, robust, energy-efficient, and inert method of producing drinking water as it physically removes the microorganisms from water rather than inactivates them. But the high price of efficient filters is limiting their use today.

‘Safe drinking water is a problem not only in the low-income countries. Massive viral outbreaks have also occurred in Europe in the past, including Sweden, continues Mihranyan referring to the massive viral outbreak in Lilla Edet municipality in Sweden in 2008, when more than 2400 people or almost 20% of the local population got infected with Norovirus due to poor water. ‘ Cellulose is one of the most common filtering media used in daily life from tea-bags to vacuum cleaners. However, the general-purpose filter paper has too large pores to remove viruses. In 2014, the group has described for the first time a paper filter that can remove large size viruses, such as influenza virus.

Small size viruses have been much harder to get rid of, as they are extremely resistant to physical and chemical inactivation. A successful filter should not only remove viruses but also feature high flow, low fouling, and long life-time, which makes advanced filters very expensive to develop. Now, with the breakthrough achieved using the mille-feuille filter the long awaited shift to affordable advanced filtration solutions may at last become a reality. Another application of the filter includes production of therapeutic proteins and vaccines.

Here’s a link to and a citation for the paper,

Mille-feuille paper: a novel type of filter architecture for advanced virus separation applications by Simon Gustafsson, Pascal Lordat, Tobias Hanrieder, Marcel Asper,  Oliver Schaeferb, and Albert Mihranyan, Mater. Horiz., 2016, Advance Article DOI: 10.1039/C6MH00090H First published online 18 May 2016

This paper is behind a paywall.

Measuring the van der Waals forces between individual atoms for the first time

A May 13, 2016 news item on Nanowerk heralds the first time measuring the van der Waals forces between individual atoms,

Physicists at the Swiss Nanoscience Institute and the University of Basel have succeeded in measuring the very weak van der Waals forces between individual atoms for the first time. To do this, they fixed individual noble gas atoms within a molecular network and determined the interactions with a single xenon atom that they had positioned at the tip of an atomic force microscope. As expected, the forces varied according to the distance between the two atoms; but, in some cases, the forces were several times larger than theoretically calculated.

A May 13, 2016 University of Basel press release (also on EurekAlert), which originated the news item, provides an explanation of van der Waals forces (the most comprehensive I’ve seen) and technical details about how the research was conducted,

Van der Waals forces act between non-polar atoms and molecules. Although they are very weak in comparison to chemical bonds, they are hugely significant in nature. They play an important role in all processes relating to cohesion, adhesion, friction or condensation and are, for example, essential for a gecko’s climbing skills.

Van der Waals interactions arise due to a temporary redistribution of electrons in the atoms and molecules. This results in the occasional formation of dipoles, which in turn induce a redistribution of electrons in closely neighboring molecules. Due to the formation of dipoles, the two molecules experience a mutual attraction, which is referred to as a van der Waals interaction. This only exists temporarily but is repeatedly re-formed. The individual forces are the weakest binding forces that exist in nature, but they add up to reach magnitudes that we can perceive very clearly on the macroscopic scale – as in the example of the gecko.

Fixed within the nano-beaker

To measure the van der Waals forces, scientists in Basel used a low-temperature atomic force microscope with a single xenon atom on the tip. They then fixed the individual argon, krypton and xenon atoms in a molecular network. This network, which is self-organizing under certain experimental conditions, contains so-called nano-beakers of copper atoms in which the noble gas atoms are held in place like a bird egg. Only with this experimental set-up is it possible to measure the tiny forces between microscope tip and noble gas atom, as a pure metal surface would allow the noble gas atoms to slide around.

Compared with theory

The researchers compared the measured forces with calculated values and displayed them graphically. As expected from the theoretical calculations, the measured forces fell dramatically as the distance between the atoms increased. While there was good agreement between measured and calculated curve shapes for all of the noble gases analyzed, the absolute measured forces were larger than had been expected from calculations according to the standard model. Above all for xenon, the measured forces were larger than the calculated values by a factor of up to two.

The scientists are working on the assumption that, even in the noble gases, charge transfer occurs and therefore weak covalent bonds are occasionally formed, which would explain the higher values.

Here’s a link to and a citation for the paper,

Van der Waals interactions and the limits of isolated atom models at interfaces by Shigeki Kawai, Adam S. Foster, Torbjörn Björkman, Sylwia Nowakowska, Jonas Björk, Filippo Federici Canova, Lutz H. Gade, Thomas A. Jung, & Ernst Meyer. Nature Communications 7, Article number: 11559  doi:10.1038/ncomms11559 Published 13 May 2016

This is an open access paper.

Nanosafety Cluster newsletter—excerpts from the Spring 2016 issue

The European Commission’s NanoSafety Cluster Newsletter (no.7) Spring 2016 edition is some 50 pp. long and it provides a roundup of activities and forthcoming events. Here are a few excerpts,

“Closer to the Market” Roadmap (CTTM) now finalised

Hot off the press! the Cluster’s “Closer to the Market” Roadmap (CTTM)  is  a  multi-dimensional,  stepwise  plan  targeting  a framework to deliver safe nano-enabled products to the market. After some years of discussions, several consultations of a huge number of experts in the nanosafety-field, conferences at which the issue of market implementation of nanotechnologies was talked  about,  writing  hours/days,  and  finally  two public consultation rounds, the CTTM is now finalized.

As stated in the Executive Summary: “Nano-products and nano-enabled applications need a clear and easy-to-follow human and environmental safety framework for the development along the innovation chain from initial idea to market and beyond that facilitates  navigation  through  the  complex  regulatory and approval processes under which different product categories fall.

Download it here, and get involved in its implementation through the Cluster!
Authors: Andreas Falk* 1, Christa Schimpel1, Andrea Haase3, Benoît Hazebrouck4, Carlos Fito López5, Adriele Prina-Mello6, Kai Savolainen7, Adriënne Sips8, Jesús M. Lopez de Ipiña10, Iseult Lynch11, Costas Charitidis12, Visser Germ13

NanoDefine hosts Synergy Workshop with NSC projects

NanoDefine  organised  the  2nd Nanosafety  Cluster  (NSC)  Synergy Workshop  at  the  Netherlands  House  for Education  and  Research  in Brussels  on  2nd  February  2016. The  aim  was  to  identify  overlaps and synergies existing between different projects that could develop into
outstanding cooperation opportunities.

One central issue was the building of a common ontology and a European framework for data management and analysis, as planned within eNanoMapper, to facilitate a closer interdisciplinary collaboration between  NSC projects and to better address the need for proper data storage, analysis and sharing (Open Access).

Unexpectedly, there’s a Canadian connection,

Discovering protocols for nanoparticles: the soils case
NanoFASE WP7 & NanoSafety Cluster WG3 Exposure

In NanoFASE, of course, we focus on the exposure to nanomaterials. Having consistent and meaningful protocols to characterize the fate of nanomaterials in different environments is therefore of great interest to us. Soils and sediments are in this respect very cumbersome. Also in the case of conventional chemicals has the development of  protocols for fate description in terrestrial systems been a long route.

The special considerations of nanomaterials make this job even harder. For instance, how does one handle the fact that the interaction between soils and nanoparticles is always out of equilibrium? How does one distinguish between the nanoparticles that are still mobile and those that are attached to soil?

In the case of conventional chemicals, a single measurement of a filtered soil suspension often suffices to find the mobile fraction, as long one is sure that equilibrium has been attained. Equilibrium never occurs in the case of  nanoparticles, and the distinction between attached/suspended particles is analytically less clear to do.

Current activity in NanoFASE is focusing at finding protocols to characterize this interaction. Not only does the protocol have to provide meaningful parameters that can be used, e.g. in modelling, but also the method itself should be fast and cheap enough so that a lot of data can be collected in a reasonable amount of time. NanoFASE is  in a good position to do this, because of its focus on fate and because of the many international collaborators.

For  instance,  the Swedish  Agricultural  University (Uppsala)  is  collaborating  with  McGill  University (Montreal, Canada [emphasis mine]), an advisory partner to NanoFASE, in developing the OECD [Organization for Economic Cooperation and Development] protocol for column tests (OECD test nr 312:  “Leaching in soil columns”). The effort is led by Yasir Sultan from Environment Canada and by Karlheinz Weinfurtner from the Frauenhofer institute in Germany. Initial results show the transport of nanomaterials in soil columns to be very limited.

The OECD protocol therefore does not often lead to measurable breakthrough curves that can be modelled to provide information about  nanomaterial  mobility  in  soils  and  most  likely  requires adaptations  to  account  for  the  relatively  low mobility  of  typical pristine nanomaterials.

OECD 312 prescribes to use 40 cm columns, which is most likely too long to show a breakthrough in the case of nanoparticles. Testing in NanoFASE will therefore focus on working with shorter columns and also investigating the effect of the flow speed.

The progress and the results of this action will be reported on our website (www.nanofase.eu).

ENM [engineered nanomaterial] Transformation in and Release from Managed Waste Streams (WP5): The NanoFASE pilot Wastewater Treatment Plant is up and running and producing sludge – soon we’ll be dosing with nanoparticles to test “real world” aging.

Now, wastewater,

ENM [engineered nanomaterial] Transformation in and Release from Managed Waste Streams (WP5): The NanoFASE pilot Wastewater Treatment Plant is up and running and producing sludge – soon we’ll be dosing with nanoparticles to test “real world” aging.

WP5 led by Ralf Kaegi of EAWAG [Swiss Federal Institute of Aquatic Science and Technology] (Switzerland) will establish transformation and release rates of ENM during their passage through different reactors. We are focusing on wastewater treatment plants (WWTPs), solid waste and dedicated sewage sludge incinerators as well as landfills (see figure below). Additionally, lab-scale experiments using pristine and well characterized materials, representing the realistic fate relevant forms at each stage, will allow us to obtain a mechanistic understanding of the transformation processes in waste treatment reactors. Our experimental results will feed directly into the development of a mathematical model describing the transformation and transfer of ENMs through the investigated reactors.

I’m including this since I’ve been following the ‘silver nanoparticle story’ for some time,

NanoMILE publication update: NanoMILE on the air and on the cover

Dramatic  differences  in  behavior  of  nano-silver during  the  initial  wash  cycle  and  for  its  further dissolution/transformation potential over time depending on detergent composition and form.

In an effort to better relate nanomaterial aging procedures to those which they are most likely to undergo during the life cycle of nano-enhanced products, in this paper we describe the various transformations which are possible when exposing Ag engineered nanoparticles (ENPs) to a suite of commercially available washing detergents (Figure 1). While Ag ENP transformation and washing of textiles has received considerable attention in recent years, our study is novel in that we (1) used several commercially available detergents allowing us to estimate the various changes possible in individual homes and commercial washing settings; (2) we have continued  method  development  of  state  of  the  art nanometrology techniques, including single particle ICP-MS, for the detection and characterization of ENPs in complex media; and (3) we were able to provide novel additions to the knowledge base of the environmental nanotechnology research community both in terms of the analytical methods (e.g. the first time ENP aggregates have been definitively analyzed via single particle ICP-MS) and broadening the scope of “real world” conditions that should be considered when understanding AgENP through their life cycle.

Our findings, which were recently published in Environmental Science and Toxicology (2015, 49: 9665), indicate that the washing detergent chemistry causes dramatic differences in ENP behavior during the initial wash cycle and has ramifications for the dissolution/transformation potential of the Ag ENPs over time (see Figure 2). The use of silver as an  antimicrobial  treatment  in  textiles  continues  to garner  considerable  attention.  Last  year  we  published  a manuscript in ACS Nano that considered how various silver treatments to textiles (conventional and nano) both release  nano-sized  material  after  the  wash  cycle  with  similar chemical  characteristics.  That  study  essentially conveyed that multiple silver treatments would become more similar through the product life cycle. Our newest  work expands this by investigating one silver ENP under various washing conditions thereby creating more varied silver products as an end result.

Fascinating stuff if you’ve been following the issues around nanotechnology and safety.

Towards the end of the newsletter on pp. 46-48, they list opportunities for partnerships, collaboration, and research posts and they list websites where you can check out job opportunities. Good Luck!

Dissipating heat with graphene-based film

As the summer approaches here in the Northern Hemisphere I think longingly of frost and snow and so readers may find more than the usual number of stories about ‘cooling’. On that note, Chalmers Technical University (Sweden) is announcing some new research into cooling graphene-based films, from an April 29, 2016 news item on ScienceDaily,

Heat dissipation in electronics and optoelectronics is a severe bottleneck in the further development of systems in these fields. To come to grips with this serious issue, researchers at Chalmers University of Technology have developed an efficient way of cooling electronics by using functionalized graphene nanoflakes. …

“Essentially, we have found a golden key with which to achieve efficient heat transport in electronics and other power devices by using graphene nanoflake-based film. This can open up potential uses of this kind of film in broad areas, and we are getting closer to pilot-scale production based on this discovery,” says Johan Liu, Professor of Electronics Production at Chalmers University of Technology in Sweden.

An April 29, 2016 Chalmers Technical University press release (also on EurekAlert), which originated the news item, describes the work in more detail,

The researchers studied the heat transfer enhancement of the film with different functionalized amino-based and azide-based silane molecules, and found that the heat transfer efficiency of the film can be improved by over 76 percent by introducing functionalization molecules, compared to a reference system without the functional layer. This is mainly because the contact resistance was drastically reduced by introducing the functionalization molecules.

Meanwhile, molecular dynamic simulations and ab initio calculations reveal that the functional layer constrains the cross-plane scattering of low-frequency phonons, which in turn enhances in-plane heat-conduction of the bonded film by recovering the long flexural phonon lifetime. The results suggested potential thermal management solutions for electronic devices.

In the research, scientists studied a number of molecules that were immobilized at the interfaces and at the edge of graphene nanoflake-based sheets forming covalent bonds. They also probed interface thermal resistance by using a photo-thermal reflectance measurement technique to demonstrate an improved thermal coupling due to functionalization.

“This is the first time that such systematic research has been done. The present work is much more extensive than previously published results from several involved partners, and it covers more functionalization molecules and also more extensive direct evidence of the thermal contact resistance measurement,” says Johan Liu.

Here’s a link to and a citation for the paper,

Functionalization mediates heat transport in graphene nanoflakes by Haoxue Han, Yong Zhang, Nan Wang, Majid Kabiri Samani, Yuxiang Ni, Zainelabideen Y. Mijbil, Michael Edwards, Shiyun Xiong, Kimmo Sääskilahti, Murali Murugesan, Yifeng Fu, Lilei Ye, Hatef Sadeghi, Steven Bailey, Yuriy A. Kosevich, Colin J. Lambert, Johan Liu, & Sebastian Volz. Nature Communications 7, Article number: 11281  doi:10.1038/ncomms11281 Published 29 April 2016

This is an open access paper.

Macchiarini controversy and synthetic trachea transplants (part 2 of 2)

For some bizarre frosting on this disturbing cake (see part 1 of the Macchiarini controversy and synthetic trachea transplants for the medical science aspects), a January 5, 2016 Vanity Fair article by Adam Ciralsky documents Macchiarini’s courtship of an NBC ([US] National Broadcasting Corporation) news producer who was preparing a documentary about him and his work,

Macchiarini, 57, is a magnet for superlatives. He is commonly referred to as “world-renowned” and a “super-surgeon.” He is credited with medical miracles, including the world’s first synthetic organ transplant, which involved fashioning a trachea, or windpipe, out of plastic and then coating it with a patient’s own stem cells. That feat, in 2011, appeared to solve two of medicine’s more intractable problems—organ rejection and the lack of donor organs—and brought with it major media exposure for Macchiarini and his employer, Stockholm’s Karolinska Institute, home of the Nobel Prize in Physiology or Medicine. Macchiarini was now planning another first: a synthetic-trachea transplant on a child, a two-year-old Korean-Canadian girl named Hannah Warren, who had spent her entire life in a Seoul hospital. …

Macchiarini had come to Vieira’s [Meredith Vieira, American journalist] attention in September 2012, when she read a front-page New York Times story about the doctor. She turned to [Benita] Alexander, one of her most seasoned and levelheaded producers, to look into a regenerative-medicine story for television.

When Alexander and Macchiarini found themselves together in Illinois for a period of weeks in the spring of 2013—brought there by the NBC special—they met frequently for quiet dinners. The trachea transplant on Hannah Warren, the Korean-Canadian girl, was being performed at Children’s Hospital of Illinois, in Peoria, and the procedure was fraught with risks, not least because Macchiarini’s technique was still a work in progress even for adults. (Christopher Lyles, an American who became the second person to receive an artificial trachea, died less than four months after his surgery at Karolinska.) “He’s a brilliant scientist and a great technical surgeon,” said Dr. Richard Pearl, who operated alongside Macchiarini in Illinois. Like others, Pearl described his Italian colleague as a Renaissance man, fluent in half a dozen languages. Another person, who would get to know him through Alexander, compared Macchiarini to “the Most Interesting Man in the World,” the character made famous in Dos Equis beer commercials.

In Peoria, Macchiarini’s medical magic appeared to have its limitations. Hannah Warren died from post-surgical complications less than three months after the transplant. Her anatomy “was much more challenging than we realized,” Pearl recounted. “Scientifically, the operation itself worked. It was just a shame what happened. When you’re doing something for the first time, you don’t have a textbook. It was the hardest operation I’ve ever scrubbed on.”

Then, there was the romance (from the Ciralsky article),

The personal relationship between Alexander and Macchiarini continued to blossom. In June 2013, they flew to Venice for what Alexander called “an incredibly romantic weekend.” Macchiarini bought her red roses and Venetian-glass earrings and took her on a gondola ride under the Bridge of Sighs. Like a pair of teenagers, they attached love locks to the Ponte dell’Accademia bridge, one of them bearing the inscription “B—P 23/6/13, 4 Ever.” Alexander told me that, “when he took me to Venice, we were still shooting the story … He always paid for everything … gifts, expensive dinners, flowers—the works. When it came to money, he was incredibly generous.”

It is a bedrock principle at NBC and every other news organization that journalists must avoid conflicts of interest, real or apparent. Alexander was not oblivious to this. “I knew that I was crossing the line in the sense that it’s a basic and well-understood rule of journalism that you don’t become involved with one of the subjects of your story, because your objectivity could clearly become compromised,” she told me. “I never once thought about him paying for the trip as him ‘buying’ me in some fashion, or potentially using money to influence me, because, from my perspective anyway … that just wasn’t the case. We were just crazy about each other, and I was falling in love.”

Alexander made her way to Stockholm at a later date (from the Ciralsky article),

Macchiarini was in Stockholm to attend to Yesim Cetir, a 25-year-old Turkish woman whose artificial trachea had failed. As Swedish television later reported, “It has taken nearly 100 surgeries to support the cell tissue around the airpipes. Her breathing is bad, and to avoid suffocation, her respiratory tract must be cleansed from mucus every fourth hour. She has now been lying in the hospital for nearly 1,000 days.” NBC’s special would come to include skeptical commentary from Dr. Joseph Vacanti, who questioned the sufficiency of Macchiarini’s research, but Cetir’s post-operative complications were not mentioned.

Prior to the NBC documentary’s (A Leap of Faith) airing, the romance became an engagement (from the Ciralsky article),

Macchiarini proposed to Benita Alexander on Christmas Day 2013, Alexander said. In the months leading up to the airing of A Leap of Faith, in June 2014, Macchiarini and Alexander went on trips to the Bahamas, Turkey, Mexico, Greece, and Italy. They went on shopping sprees and ate their way through Michelin-starred restaurants. Macchiarini even took Alexander and her daughter to meet his mother at her home, in Lucca. “She cooked homemade gnocchi,” Alexander recalled. Macchiarini’s mother shared pictures from the family photo album while her son translated. Emanuela Pecchia, the woman whom Macchiarini had married years earlier, lived only a short distance away. When Macchiarini informed Alexander, during a dinner cruise later that summer, that his divorce had finally come through, she recounted, he gave her an engagement ring.

In the months that followed, the doctor and his fiancée began planning their wedding in earnest. They set a date for July 11, 2015, in Rome. But their desire to marry in the Catholic Church was complicated by the fact that she is Episcopalian and divorced. Divorce would have been an issue for Macchiarini as well. However, Alexander said, Macchiarini insisted that he would fix things by visiting his friend and patient in the Vatican.

In October 2014, Alexander recalled, Macchiarini told her that he had met with Pope Francis for four hours and that the Pontiff consented to the couple’s marriage and, in yet another sign of his progressive tenure, vowed to officiate. Alexander said Macchiarini referred to himself as Pope Francis’s “personal doctor” and maintained that in subsequent meetings his patient offered to host the wedding at his summer residence, the Apostolic Palace of Castel Gandolfo.

Shortly after quitting her job in anticipation of her July 2015 wedding to Macchiarini, Alexander learned that Pope Francis who was supposed to officiate was in fact scheduled to be in South America during that time.  From the Ciralsky article,

As Alexander would discover with the help of a private investigator named Frank Murphy, virtually every detail Macchiarini provided about the wedding was false. A review of public records in Italy would also seem to indicate that Macchiarini remains married to Emanuela Pecchia, his wife of nearly 30 years. Murphy, who spent 15 years as a Pennsylvania State Police detective, told me, “I’ve never in my experience witnessed a fraud like this, with this level of international flair…. The fact that he could keep all the details straight and compartmentalize these different lives and lies is really amazing.

Ciralsky broaches the question of why someone with Macchiarini’s accomplishments would jeopardize his position in such a way,

To understand why someone of considerable stature could construct such elaborate tales and how he could seemingly make others believe them, I turned to Dr. Ronald Schouten, a Harvard professor who directs the Law and Psychiatry Service at Massachusetts General Hospital. “We’re taught from an early age that when something is too good to be true, it’s not true,” he said. “And yet we ignore the signals. People’s critical judgment gets suspended. In this case, that happened at both the personal and institutional level.” Though he will not diagnose from a distance, Schouten, who is one of the nation’s foremost authorities on psychopathy, observed, “Macchiarini is the extreme form of a con man. He’s clearly bright and has accomplishments, but he can’t contain himself. There’s a void in his personality that he seems to want to fill by conning more and more people.” When I asked how Macchiarini stacks up to, say, Bernie Madoff, he laughed and said, “Madoff was an ordinary con man with a Ponzi scheme. He never claimed to be the chairman of the Federal Reserve. He didn’t suggest he was part of a secret international society of bankers. This guy is really good.”

In addition to the romance, Ciralsky and Vanity Fair checked out Macchiarini’s résumé,

Vanity Fair contacted many of the schools at which Macchiarini claimed to have either earned a degree or held an academic post. While the University of Pisa confirmed that he indeed received an M.D. and had specialized in surgery, the University of Alabama at Birmingham denied that Macchiarini earned a master’s in biostatistics or that he participated in a two-year fellowship in thoracic surgery. In fact, according to U.A.B. spokesman Bob Shepard, the only record the school has for Macchiarini indicates that he did a six-month non-surgical fellowship in hematology/oncology—which according to the current Accreditation Council for Graduate Medical Education guidelines is 30 months shy of what is required for a clinical fellowship in that field. The University of Paris—Sud never responded to repeated requests for comment, but Hannover Medical School wrote to say that Macchiarini had been neither a full nor an associate professor there, merely an adjunct.

Comments

As I noted in part 1, there are medical science and ethical issues to be considered. As well, Macchiarini’s romantic behaviour certainly seems fraudulent as do parts of his curriculum vitae (CV) and there’s more about Macchiarini’s professional accomplishments (read Ciralsky’s entire January 5, 2016 Vanity Fair article for details).

The romantic and CV chicanery may or may not suggest serious problems with Macchiarini’s revolutionary procedure and ethics. History is littered with stories of people who achieved extraordinary advances and were not the most exemplary human beings. Paracelsus, founder of the field of toxicology and an important contributor in the fields of medicine and science, was reputedly a sketchy character. Caravaggio now remembered for his art, killed someone (accidentally or not) and was known for his violent behaviour even in a time when there was higher tolerance for it.

What I’m saying is that Macchiarini may be pioneering something important regardless of how you view his romantic chicanery and falsified CV. Medical research can be high risk and there is no way to avoid that sad fact. However, criticisms of the work from Macchiarini’s colleagues need to be addressed and the charge that a Russian patient who was not in imminent danger and not properly advised of the extremely high risk must also be addressed.

It should also be remembered that Macchiarini did not pull this off by himself. Institutions such as the Karolinska Institute failed to respond appropriately in the initial stages. As well, the venerable medical journal, The Lancet seems reluctant to address the situation even now.

Before dissecting the Alexander situation, it should be said that she showed courage in admitting her professional transgression and discussing a painful and humiliating romantic failure. All of us are capable of misjudgments and wishful thinking, unfortunately for her, this became an international affair.

More critically, Alexander, a journalist, set aside her ethics for a romance and what seems to be surprisingly poor research by Alexander’s team.  (Even I had a little something about this in 2013.) How did a crack NBC research team miss the problems? (For the curious, this Bryan Burrough April 30, 2015 article for Vanity Fair highlighting scandals plaguing NBC News may help to answer the question about NBC research.)

Finally, there’s an enormous amount of pressure on stem cell scientists due to the amounts of money and the degree of prestige involved. Ciralsky’s story notes the pressure when he describes how Macchiarini got one of this positions at an Italian facility in Florence through political machinations. (The situation is a little more complicated than I’ve described here but an accommodation in Macchiarini’s favour was made.) Laura Margottini’s Oct. 7, 2014 article for Science magazine provides a synopsis of another stem cell controversy in Italy.

Stem cell controversies have not been confined to Italy or Europe for that matter. There was the South Korean scandal in 2006 (see a Sept. 19, 2011 BBC [British Broadcasting Corporation] news online post for an update and synopsis) when a respected scientist was found to have falsified research results. Up to that  point, South Korea was considered the world leader in the field.

Finally,  if there are two survivors, is there a possibility that this procedure could be made successful for more patients or that some patients are better candidates than others?

Additional notes

Macchiarini is mounting a defence for himself according to a March 30, 2016 news item on phys.org and a Swedish survey indicates that the average Swede’s trust in researchers still remains high despite the Macchiarini imbroglio according to an April 15, 2016 news item on phys.org.

For anyone interested in the timeline and updates for this scandal, Retraction Watch offers this: http://retractionwatch.com/2016/02/12/reading-about-embattled-trachea-surgeon-paolo-macchiarini-heres-what-you-need-to-know/