Tag Archives: Switzerland

Scented video games: a nanotechnology project in Europe

Ten years ago when I was working on a master’s degree (creative writing and new media), I was part of a group presentation on multimedia and to prepare started a conversation about scent as part of a multimedia experience. Our group leader was somewhat outraged. He’d led international multimedia projects and as far as he was concerned the ‘scent’ discussion was a waste of time when we were trying to prepare a major presentation.

He was right and wrong. I think you’re supposed to have these discussions when you’re learning and exploring ideas but, in 2006, there wasn’t much work of that type to discuss. It seems things may be changing according to a May 21, 2016 news item on Nanowerk (Note: A link has been removed),

Controlled odour emission could transform video games and television viewing experiences and benefit industries such as pest control and medicine [emphasis mine]. The NANOSMELL project aims to switch smells on and off by tagging artificial odorants with nanoparticles exposed to electromagnetic field.

I wonder if the medicinal possibilities include nanotechnology-enabled aroma therapy?

Getting back to the news, a May 10, 2016 European Commission press release, which originated the news item, expands on the theme,

The ‘smellyvision’ – a TV that offers olfactory as well as visual stimulation – has been a science fiction staple for years. However, realising this concept has proved difficult given the sheer complexity of how smell works and the technical challenges of emitting odours on demand.

NANOSMELL will specifically address these two challenges by developing artificial smells that can be switched on and off remotely. This would be achieved by tagging specific DNA-based artificial odorants – chemical compounds that give off smells – with nanoparticles that respond to external electromagnetic fields.

With the ability to remotely control these artificial odours, the project team would then be able to examine exactly how olfactory receptors respond. Sensory imaging to investigate the patterns of neural activity and behavioural tests will be carried out in animals.

The project would next apply artificial odorants to the human olfactory system and measure perceptions by switching artificial smells on and off. Researchers will also assess whether artificial odorants have a role to play in wound healing by placing olfactory receptors in skin.

The researchers aim to develop controllable odour-emitting components that will further understanding of smell and open the door to novel odour-emitting applications in fields ranging from entertainment to medicine.

Project details

  • Project acronym: NanoSmell
  • Participants: Israel (Coordinator), Spain, Germany, Switzerland
  • Project Reference N° 662629
  • Total cost: € 3 979 069
  • EU contribution: € 3 979 069
  • Duration:September 2015 – September 2019

You can find more information on the European Commission’s NANOSMELL project page.

Frankenstein and Switzerland in 2016

The Frankenstein Bicentennial celebration is in process as various events and projects are now being launched. In a Nov. 12, 2015 posting I made mention of the Frankenstein Bicentennial Project 1818-2018 at Arizona State University (ASU; scroll down about 15% of the way),

… the Transmedia Museum (Frankenstein Bicentennial Project 1818-2018).  This project is being hosted by Arizona State University. From the project homepage,

No work of literature has done more to shape the way people imagine science and its moral consequences than Frankenstein; or The Modern Prometheus, Mary Shelley’s enduring tale of creation and responsibility. The novel’s themes and tropes—such as the complex dynamic between creator and creation—continue to resonate with contemporary audiences. Frankenstein continues to influence the way we confront emerging technologies, conceptualize the process of scientific research, imagine the motivations and ethical struggles of scientists, and weigh the benefits of innovation with its unforeseen pitfalls.

The Frankenstein Bicentennial Project will infuse science and engineering endeavors with considerations of ethics. It will use the power of storytelling and art to shape processes of innovation and empower public appraisal of techno-scientific research and creation. It will offer humanists and artists a new set of concerns around research, public policy, and the ramifications of exploration and invention. And it will inspire new scientific and technological advances inspired by Shelley’s exploration of our inspiring and terrifying ability to bring new life into the world. Frankenstein represents a landmark fusion of science, ethics, and literary expression.

The bicentennial provides an opportunity for vivid reflection on how science is culturally framed and understood by the public, as well as our ethical limitations and responsibility for nurturing the products of our creativity. It is also a moment to unveil new scientific and technological marvels, especially in the areas of synthetic biology and artificial intelligence. Engaging with Frankenstein allows scholars and educators, artists and writers, and the public at large to consider the history of scientific invention, reflect on contemporary research, and question the future of our technological society. Acting as a network hub for the bicentennial celebration, ASU will encourage and coordinate collaboration across institutions and among diverse groups worldwide.

2016 Frankenstein events

Now, there’s an exhibition in Switzerland where Frankenstein was ‘born’ according to a May 12, 2016 news item on phys.org,

Frankenstein, the story of a scientist who brings to life a cadaver and causes his own downfall, has for two centuries given voice to anxiety surrounding the unrelenting advance of science.

To mark the 200 years since England’s Mary Shelley first imagined the ultimate horror story during a visit to a frigid, rain-drenched Switzerland, an exhibit opens in Geneva Friday called “Frankenstein, Creation of Darkness”.

In the dimly-lit, expansive basement at the Martin Bodmer Foundation, a long row of glass cases holds 15 hand-written, yellowed pages from a notebook where Shelley in 1816 wrote the first version of what is considered a masterpiece of romantic literature.

The idea for her “miserable monster” came when at just 18 she and her future husband, English poet Percy Bysshe Shelley, went to a summer home—the Villa Diodati—rented by literary great Lord Byron on the outskirts of Geneva.

The current private owners of the picturesque manor overlooking Lake Geneva will also open their lush gardens to guided tours during the nearby exhibit which runs to October 9 [May 13 – Oct. 9, 2016].

While the spot today is lovely, with pink and purple lilacs spilling from the terraces and gravel walkways winding through rose-covered arches, in the summer of 1816 the atmosphere was more somber.

A massive eruption from the Tambora volcano in Indonesia wreaked havoc with the global climate that year, and a weather report for Geneva in June on display at the exhibit mentions “not a single leaf” had yet appeared on the oak trees.

To pass the time, poet Lord Byron challenged the band of literary bohemians gathered at the villa to each invent a ghost story, resulting in several famous pieces of writing.

English doctor and author John Polidori came up with the idea for “The Vampyre”, which was published three years later and is considered to have pioneered the romantic vampyre genre, including works like Bram Stoker’s “Dracula”.

That book figures among a multitude of first editions at the Geneva exhibit, including three of Mary Shelley’s “Frankenstein, or the Modern Prometheus”—the most famous story to emerge from the competition.

Here’s a description of the exhibit, from the Martin Bodmer Foundation’s Frankenstein webpage,

To celebrate the 200th anniversary of the writing of this historically influential work of literature, the Martin Bodmer Foundation presents a major exhibition on the origins of Frankenstein, the perspectives it opens and the questions it raises.

A best seller since its first publication in 1818, Mary Shelley’s novel continues to demand attention. The questions it raises remain at the heart of literary and philosophical concerns: the ethics of science, climate change, the technologisation of the human body, the unconscious, human otherness, the plight of the homeless and the dispossessed.

The exposition Frankenstein: Creation of Darkness recreates the beginnings of the novel in its first manuscript and printed forms, along with paintings and engravings that evoke the world of 1816. A variety of literary and scientific works are presented as sources of the novel’s ideas. While exploring the novel’s origins, the exhibition also evokes the social and scientific themes of the novel that remain important in our own day.

For what it’s worth, I have come across analyses which suggest science and technology may not have been the primary concern at the time. There are interpretations which suggest issues around childbirth (very dangerous until modern times) and fear of disfigurement and disfigured individuals. What makes Frankenstein and the book so fascinating is how flexible interpretations can be. (For more about Frankenstein and flexibility, read Susan Tyler Hitchcock’s 2009 book, Frankenstein: a cultural history.)

There’s one more upcoming Frankenstein event, from The Frankenstein Bicentennial announcement webpage,

On June 14 and 15, 2016, the Brocher Foundation, Arizona State University, Duke University, and the University of Lausanne will host “Frankenstein’s Shadow,” a symposium in Geneva, Switzerland to commemorate the origin of Frankenstein and assess its influence in different times and cultures, particularly its resonance in debates about public policy governing biotechnology and medicine. These dates place the symposium almost exactly 200 years after Mary Shelley initially conceived the idea for Frankenstein on June 16, 1816, and in almost exactly the same geographical location on the shores of Lake Geneva.

If you’re interested in details such as the programme schedule, there’s this PDF,

Frankenstein¹s_ShadowConference

Enjoy!

Measuring the van der Waals forces between individual atoms for the first time

A May 13, 2016 news item on Nanowerk heralds the first time measuring the van der Waals forces between individual atoms,

Physicists at the Swiss Nanoscience Institute and the University of Basel have succeeded in measuring the very weak van der Waals forces between individual atoms for the first time. To do this, they fixed individual noble gas atoms within a molecular network and determined the interactions with a single xenon atom that they had positioned at the tip of an atomic force microscope. As expected, the forces varied according to the distance between the two atoms; but, in some cases, the forces were several times larger than theoretically calculated.

A May 13, 2016 University of Basel press release (also on EurekAlert), which originated the news item, provides an explanation of van der Waals forces (the most comprehensive I’ve seen) and technical details about how the research was conducted,

Van der Waals forces act between non-polar atoms and molecules. Although they are very weak in comparison to chemical bonds, they are hugely significant in nature. They play an important role in all processes relating to cohesion, adhesion, friction or condensation and are, for example, essential for a gecko’s climbing skills.

Van der Waals interactions arise due to a temporary redistribution of electrons in the atoms and molecules. This results in the occasional formation of dipoles, which in turn induce a redistribution of electrons in closely neighboring molecules. Due to the formation of dipoles, the two molecules experience a mutual attraction, which is referred to as a van der Waals interaction. This only exists temporarily but is repeatedly re-formed. The individual forces are the weakest binding forces that exist in nature, but they add up to reach magnitudes that we can perceive very clearly on the macroscopic scale – as in the example of the gecko.

Fixed within the nano-beaker

To measure the van der Waals forces, scientists in Basel used a low-temperature atomic force microscope with a single xenon atom on the tip. They then fixed the individual argon, krypton and xenon atoms in a molecular network. This network, which is self-organizing under certain experimental conditions, contains so-called nano-beakers of copper atoms in which the noble gas atoms are held in place like a bird egg. Only with this experimental set-up is it possible to measure the tiny forces between microscope tip and noble gas atom, as a pure metal surface would allow the noble gas atoms to slide around.

Compared with theory

The researchers compared the measured forces with calculated values and displayed them graphically. As expected from the theoretical calculations, the measured forces fell dramatically as the distance between the atoms increased. While there was good agreement between measured and calculated curve shapes for all of the noble gases analyzed, the absolute measured forces were larger than had been expected from calculations according to the standard model. Above all for xenon, the measured forces were larger than the calculated values by a factor of up to two.

The scientists are working on the assumption that, even in the noble gases, charge transfer occurs and therefore weak covalent bonds are occasionally formed, which would explain the higher values.

Here’s a link to and a citation for the paper,

Van der Waals interactions and the limits of isolated atom models at interfaces by Shigeki Kawai, Adam S. Foster, Torbjörn Björkman, Sylwia Nowakowska, Jonas Björk, Filippo Federici Canova, Lutz H. Gade, Thomas A. Jung, & Ernst Meyer. Nature Communications 7, Article number: 11559  doi:10.1038/ncomms11559 Published 13 May 2016

This is an open access paper.

New model to track flow of nanomaterials through our air, earth, and water

Just how many tons of nanoparticles are making their way through the environment? Scientists at the Swiss Federal Laboratories for Materials Science and Technology (Empa) have devised a new model which could help answer that question. From a May 12, 2016 news item on phys.org,

Carbon nanotubes remain attached to materials for years while titanium dioxide and nanozinc are rapidly washed out of cosmetics and accumulate in the ground. Within the National Research Program “Opportunities and Risks of Nanomaterials” (NRP 64) a team led by Empa scientist Bernd Nowack has developed a new model to track the flow of the most important nanomaterials in the environment.

A May 12, 2016 Empa press release by Michael Hagmann, which also originated the news item, provides more detail such as an estimated tonnage for titanium dioxide nanoparticles produced annually in Europe,

How many man-made nanoparticles make their way into the air, earth or water? In order to assess these amounts, a group of researchers led by Bernd Nowack from Empa, the Swiss Federal Laboratories for Materials Science and Technology, has developed a computer model as part of the National Research Program “Opportunities and Risks of Nanomaterials” (NRP 64). “Our estimates offer the best available data at present about the environmental accumulation of nanosilver, nanozinc, nano-tinanium dioxide and carbon nanotubes”, says Nowack.

In contrast to the static calculations hitherto in use, their new, dynamic model does not just take into account the significant growth in the production and use of nanomaterials, but also makes provision for the fact that different nanomaterials are used in different applications. For example, nanozinc and nano-titanium dioxide are found primarily in cosmetics. Roughly half of these nanoparticles find their way into our waste water within the space of a year, and from there they enter into sewage sludge. Carbon nanotubes, however, are integrated into composite materials and are bound in products such as which are immobilized and are thus found for example in tennis racquets and bicycle frames. It can take over ten years before they are released, when these products end up in waste incineration or are recycled.

39,000 metric tons of nanoparticles

The researchers involved in this study come from Empa, ETH Zurich and the University of Zurich. They use an estimated annual production of nano-titanium dioxide across Europe of 39,000 metric tons – considerably more than the total for all other nanomaterials. Their model calculates how much of this enters the atmosphere, surface waters, sediments and the earth, and accumulates there. In the EU, the use of sewage sludge as fertilizer (a practice forbidden in Switzerland) means that nano-titanium dioxide today reaches an average concentration of 61 micrograms per kilo in affected soils.

Knowing the degree of accumulation in the environment is only the first step in the risk assessment of nanomaterials, however. Now this data has to be compared with results of eco-toxicological tests and the statutory thresholds, says Nowack. A risk assessment has not been carried out with his new model so far. Earlier work with data from a static model showed, however, that the concentrations determined for all four nanomaterials investigated are not expected to have any impact on the environment.

But in the case of nanozinc at least, its concentration in the environment is approaching the critical level. This is why this particular nanomaterial has to be given priority in future eco-toxicological studies – even though nanozinc is produced in smaller quantities than nano-titanium dioxide. Furthermore, eco-toxicological tests have until now been carried out primarily with freshwater organisms. The researchers conclude that additional investigations using soil-dwelling organisms are a priority.

Here are links to and citations for papers featuring the work,

Dynamic Probabilistic Modeling of Environmental Emissions of Engineered Nanomaterials by Tian Yin Sun†, Nikolaus A. Bornhöft, Konrad Hungerbühler, and Bernd Nowack. Environ. Sci. Technol., 2016, 50 (9), pp 4701–4711 DOI: 10.1021/acs.est.5b05828 Publication Date (Web): April 04, 2016

Copyright © 2016 American Chemical Society

Probabilistic environmental risk assessment of five nanomaterials (nano-TiO2, nano-Ag, nano-ZnO, CNT, and fullerenes) by Claudia Coll, Dominic Notter, Fadri Gottschalk, Tianyin Sun, Claudia Som, & Bernd Nowack. Nanotoxicology Volume 10, Issue 4, 2016 pages 436-444 DOI: 10.3109/17435390.2015.1073812 Published online: 10 Nov 2015

The first paper, which is listed in Environmental Science & Technology, appears to be open access while the second paper is behind a paywall.

Nanosafety Cluster newsletter—excerpts from the Spring 2016 issue

The European Commission’s NanoSafety Cluster Newsletter (no.7) Spring 2016 edition is some 50 pp. long and it provides a roundup of activities and forthcoming events. Here are a few excerpts,

“Closer to the Market” Roadmap (CTTM) now finalised

Hot off the press! the Cluster’s “Closer to the Market” Roadmap (CTTM)  is  a  multi-dimensional,  stepwise  plan  targeting  a framework to deliver safe nano-enabled products to the market. After some years of discussions, several consultations of a huge number of experts in the nanosafety-field, conferences at which the issue of market implementation of nanotechnologies was talked  about,  writing  hours/days,  and  finally  two public consultation rounds, the CTTM is now finalized.

As stated in the Executive Summary: “Nano-products and nano-enabled applications need a clear and easy-to-follow human and environmental safety framework for the development along the innovation chain from initial idea to market and beyond that facilitates  navigation  through  the  complex  regulatory and approval processes under which different product categories fall.

Download it here, and get involved in its implementation through the Cluster!
Authors: Andreas Falk* 1, Christa Schimpel1, Andrea Haase3, Benoît Hazebrouck4, Carlos Fito López5, Adriele Prina-Mello6, Kai Savolainen7, Adriënne Sips8, Jesús M. Lopez de Ipiña10, Iseult Lynch11, Costas Charitidis12, Visser Germ13

NanoDefine hosts Synergy Workshop with NSC projects

NanoDefine  organised  the  2nd Nanosafety  Cluster  (NSC)  Synergy Workshop  at  the  Netherlands  House  for Education  and  Research  in Brussels  on  2nd  February  2016. The  aim  was  to  identify  overlaps and synergies existing between different projects that could develop into
outstanding cooperation opportunities.

One central issue was the building of a common ontology and a European framework for data management and analysis, as planned within eNanoMapper, to facilitate a closer interdisciplinary collaboration between  NSC projects and to better address the need for proper data storage, analysis and sharing (Open Access).

Unexpectedly, there’s a Canadian connection,

Discovering protocols for nanoparticles: the soils case
NanoFASE WP7 & NanoSafety Cluster WG3 Exposure

In NanoFASE, of course, we focus on the exposure to nanomaterials. Having consistent and meaningful protocols to characterize the fate of nanomaterials in different environments is therefore of great interest to us. Soils and sediments are in this respect very cumbersome. Also in the case of conventional chemicals has the development of  protocols for fate description in terrestrial systems been a long route.

The special considerations of nanomaterials make this job even harder. For instance, how does one handle the fact that the interaction between soils and nanoparticles is always out of equilibrium? How does one distinguish between the nanoparticles that are still mobile and those that are attached to soil?

In the case of conventional chemicals, a single measurement of a filtered soil suspension often suffices to find the mobile fraction, as long one is sure that equilibrium has been attained. Equilibrium never occurs in the case of  nanoparticles, and the distinction between attached/suspended particles is analytically less clear to do.

Current activity in NanoFASE is focusing at finding protocols to characterize this interaction. Not only does the protocol have to provide meaningful parameters that can be used, e.g. in modelling, but also the method itself should be fast and cheap enough so that a lot of data can be collected in a reasonable amount of time. NanoFASE is  in a good position to do this, because of its focus on fate and because of the many international collaborators.

For  instance,  the Swedish  Agricultural  University (Uppsala)  is  collaborating  with  McGill  University (Montreal, Canada [emphasis mine]), an advisory partner to NanoFASE, in developing the OECD [Organization for Economic Cooperation and Development] protocol for column tests (OECD test nr 312:  “Leaching in soil columns”). The effort is led by Yasir Sultan from Environment Canada and by Karlheinz Weinfurtner from the Frauenhofer institute in Germany. Initial results show the transport of nanomaterials in soil columns to be very limited.

The OECD protocol therefore does not often lead to measurable breakthrough curves that can be modelled to provide information about  nanomaterial  mobility  in  soils  and  most  likely  requires adaptations  to  account  for  the  relatively  low mobility  of  typical pristine nanomaterials.

OECD 312 prescribes to use 40 cm columns, which is most likely too long to show a breakthrough in the case of nanoparticles. Testing in NanoFASE will therefore focus on working with shorter columns and also investigating the effect of the flow speed.

The progress and the results of this action will be reported on our website (www.nanofase.eu).

ENM [engineered nanomaterial] Transformation in and Release from Managed Waste Streams (WP5): The NanoFASE pilot Wastewater Treatment Plant is up and running and producing sludge – soon we’ll be dosing with nanoparticles to test “real world” aging.

Now, wastewater,

ENM [engineered nanomaterial] Transformation in and Release from Managed Waste Streams (WP5): The NanoFASE pilot Wastewater Treatment Plant is up and running and producing sludge – soon we’ll be dosing with nanoparticles to test “real world” aging.

WP5 led by Ralf Kaegi of EAWAG [Swiss Federal Institute of Aquatic Science and Technology] (Switzerland) will establish transformation and release rates of ENM during their passage through different reactors. We are focusing on wastewater treatment plants (WWTPs), solid waste and dedicated sewage sludge incinerators as well as landfills (see figure below). Additionally, lab-scale experiments using pristine and well characterized materials, representing the realistic fate relevant forms at each stage, will allow us to obtain a mechanistic understanding of the transformation processes in waste treatment reactors. Our experimental results will feed directly into the development of a mathematical model describing the transformation and transfer of ENMs through the investigated reactors.

I’m including this since I’ve been following the ‘silver nanoparticle story’ for some time,

NanoMILE publication update: NanoMILE on the air and on the cover

Dramatic  differences  in  behavior  of  nano-silver during  the  initial  wash  cycle  and  for  its  further dissolution/transformation potential over time depending on detergent composition and form.

In an effort to better relate nanomaterial aging procedures to those which they are most likely to undergo during the life cycle of nano-enhanced products, in this paper we describe the various transformations which are possible when exposing Ag engineered nanoparticles (ENPs) to a suite of commercially available washing detergents (Figure 1). While Ag ENP transformation and washing of textiles has received considerable attention in recent years, our study is novel in that we (1) used several commercially available detergents allowing us to estimate the various changes possible in individual homes and commercial washing settings; (2) we have continued  method  development  of  state  of  the  art nanometrology techniques, including single particle ICP-MS, for the detection and characterization of ENPs in complex media; and (3) we were able to provide novel additions to the knowledge base of the environmental nanotechnology research community both in terms of the analytical methods (e.g. the first time ENP aggregates have been definitively analyzed via single particle ICP-MS) and broadening the scope of “real world” conditions that should be considered when understanding AgENP through their life cycle.

Our findings, which were recently published in Environmental Science and Toxicology (2015, 49: 9665), indicate that the washing detergent chemistry causes dramatic differences in ENP behavior during the initial wash cycle and has ramifications for the dissolution/transformation potential of the Ag ENPs over time (see Figure 2). The use of silver as an  antimicrobial  treatment  in  textiles  continues  to garner  considerable  attention.  Last  year  we  published  a manuscript in ACS Nano that considered how various silver treatments to textiles (conventional and nano) both release  nano-sized  material  after  the  wash  cycle  with  similar chemical  characteristics.  That  study  essentially conveyed that multiple silver treatments would become more similar through the product life cycle. Our newest  work expands this by investigating one silver ENP under various washing conditions thereby creating more varied silver products as an end result.

Fascinating stuff if you’ve been following the issues around nanotechnology and safety.

Towards the end of the newsletter on pp. 46-48, they list opportunities for partnerships, collaboration, and research posts and they list websites where you can check out job opportunities. Good Luck!

Less pollution from ships with nanofilter

04.05.16 - Cargo ships are among the leading sources of pollution on the planet. Starting in 2020, however, stricter sulfur emission standards will take effect. A low-cost solution for reaching the new targets may come from an EPFL start-up, which is developing a nanostructured filter for use in a ship’s exhaust stacks. Courtesy EPFL

04.05.16 – Cargo ships are among the leading sources of pollution on the planet. Starting in 2020, however, stricter sulfur emission standards will take effect. A low-cost solution for reaching the new targets may come from an EPFL start-up, which is developing a nanostructured filter for use in a ship’s exhaust stacks. Copyright Alain Herzog Courtesy EPFL

A May 4, 2016 news item on Nanowerk describes a marine initiative from the École Polytechnique de Lausanne (EPFL) in Switzerland,

Around 55,000 cargo ships ply the oceans every day, powered by a fuel that is dirtier than diesel. And owing to lax standards, maritime transport has emerged as one of the leading emitters – alongside air transport – of nitrogen oxide and sulfur. But the International Maritime Organization has enacted tighter emission limits, with new standards set to take effect in 2020. In response, an EPFL start-up is developing a low-cost and eco-friendly solution: a filter that can be installed in the ships’ exhaust stacks. The start-up, Daphne Technology, could do well on this massive market.

Given that no oceans or seas border Switzerland, it’s a rather interesting initiative on their part. Here’s more from a May 4, 2015 EPFL press release, which originated the news item,

Lowering sulfur emissions to below 1%

Under laboratory conditions, the nanostructured filter is able to cut sulfur emissions to below 1% and nitrogen oxide emissions to 15% of the current standards. This is a major improvement, seeing as the new standards will require an approximately 14% reduction in sulfur emissions.

Manufacturing the filters is similar to manufacturing solar cells. A thin metal plate – titanium in this case – is nanostructured in order to increase its surface area, and a number of substances are deposited in extremely thin layers. The plates are then placed vertically and evenly spaced, creating channels through which the toxic gases travel. The gases are captured by the nanostructured surfaces. This approach is considered eco-friendly because the substances in the filter are designed to be recycled. And the exhaust gas itself becomes inert and could be used in a variety of products, such as fertilizer.

The main challenges now are to figure out a way to make these filters on large surfaces, and to bring down the cost. It was at EPFL’s Swiss Plasma Center that researcher Mario Michan found a machine that he could modify to meet his needs: it uses plasma to deposit thin layers of substances. The next step is to produce a prototype that can be tested under real-world conditions.

Michan came up with his solution for toxic gas emissions after he worked on merchant ships while completing his Master’s degree in microengineering. It took several years, some techniques he picked up in the various labs in which he worked, and a few patents for Michan to make headway on his project. It was while he was working in another field at CERN and observing the technologies used to coat the inside of particle accelerators that he discovered a process needed for his original concept. An EPFL patent tying together the various aspects of the technology and several manufacturing secrets should be filed this year.

According to the European Environment Agency, merchant ships give off 204 times more sulfur than the billion cars on the roads worldwide. Michan estimates that his nanostructured filters, if they were used by all cargo ships, would reduce these emissions to around twice the level given off by all cars, and the ships would not need to switch to another fuel. Other solutions exist, but his market research showed that they were all lacking in some way: “Marine diesel fuel is cleaner but much more expensive and would drive up fuel costs by 50% according to ship owners. And the other technologies that have been proposed cannot be used on boats or they only cut down on sulfur emissions without addressing the problem of nitrogen oxide.”

The Daphne Technology website is here.

An atom without properties?

There’s rather intriguing Swiss research into atoms and so-called Bell Correlations according to an April 21, 2016 news item on ScienceDaily,

The microscopic world is governed by the rules of quantum mechanics, where the properties of a particle can be completely undetermined and yet strongly correlated with those of other particles. Physicists from the University of Basel have observed these so-called Bell correlations for the first time between hundreds of atoms. Their findings are published in the scientific journal Science.

Everyday objects possess properties independently of each other and regardless of whether we observe them or not. Einstein famously asked whether the moon still exists if no one is there to look at it; we answer with a resounding yes. This apparent certainty does not exist in the realm of small particles. The location, speed or magnetic moment of an atom can be entirely indeterminate and yet still depend greatly on the measurements of other distant atoms.

An April 21, 2016 University of Basel (Switzerland) press release (also on EurekAlert), which originated the news item, provides further explanation,

With the (false) assumption that atoms possess their properties independently of measurements and independently of each other, a so-called Bell inequality can be derived. If it is violated by the results of an experiment, it follows that the properties of the atoms must be interdependent. This is described as Bell correlations between atoms, which also imply that each atom takes on its properties only at the moment of the measurement. Before the measurement, these properties are not only unknown – they do not even exist.

A team of researchers led by professors Nicolas Sangouard and Philipp Treutlein from the University of Basel, along with colleagues from Singapore, have now observed these Bell correlations for the first time in a relatively large system, specifically among 480 atoms in a Bose-Einstein condensate. Earlier experiments showed Bell correlations with a maximum of four light particles or 14 atoms. The results mean that these peculiar quantum effects may also play a role in larger systems.

Large number of interacting particles

In order to observe Bell correlations in systems consisting of many particles, the researchers first had to develop a new method that does not require measuring each particle individually – which would require a level of control beyond what is currently possible. The team succeeded in this task with the help of a Bell inequality that was only recently discovered. The Basel researchers tested their method in the lab with small clouds of ultracold atoms cooled with laser light down to a few billionths of a degree above absolute zero. The atoms in the cloud constantly collide, causing their magnetic moments to become slowly entangled. When this entanglement reaches a certain magnitude, Bell correlations can be detected. Author Roman Schmied explains: “One would expect that random collisions simply cause disorder. Instead, the quantum-mechanical properties become entangled so strongly that they violate classical statistics.”

More specifically, each atom is first brought into a quantum superposition of two states. After the atoms have become entangled through collisions, researchers count how many of the atoms are actually in each of the two states. This division varies randomly between trials. If these variations fall below a certain threshold, it appears as if the atoms have ‘agreed’ on their measurement results; this agreement describes precisely the Bell correlations.

New scientific territory

The work presented, which was funded by the National Centre of Competence in Research Quantum Science and Technology (NCCR QSIT), may open up new possibilities in quantum technology; for example, for generating random numbers or for quantum-secure data transmission. New prospects in basic research open up as well: “Bell correlations in many-particle systems are a largely unexplored field with many open questions – we are entering uncharted territory with our experiments,” says Philipp Treutlein.

Here’s a link to and a citation for the paper,

Bell correlations in a Bose-Einstein condensate by Roman Schmied, Jean-Daniel Bancal, Baptiste Allard, Matteo Fadel, Valerio Scarani, Philipp Treutlein, Nicolas Sangouard. Science  22 Apr 2016: Vol. 352, Issue 6284, pp. 441-444 DOI: 10.1126/science.aad8665

This paper is behind a paywall.

Embroidering electronics into clothing

Researchers at The Ohio State University are developing embroidered antennas and circuits with 0.1 mm precision—the perfect size to integrate electronic components such as sensors and computer memory devices into clothing. Photo by Jo McCulty, courtesy of The Ohio State University.

Researchers at The Ohio State University are developing embroidered antennas and circuits with 0.1 mm precision—the perfect size to integrate electronic components such as sensors and computer memory devices into clothing. Photo by Jo McCulty, courtesy of The Ohio State University.

An April 13, 2016 news item on Nanowerk describes an advance in the field of wearable electronics,

Researchers who are working to develop wearable electronics have reached a milestone: They are able to embroider circuits into fabric with 0.1 mm precision—the perfect size to integrate electronic components such as sensors and computer memory devices into clothing.

With this advance, the Ohio State University researchers have taken the next step toward the design of functional textiles—clothes that gather, store, or transmit digital information. With further development, the technology could lead to shirts that act as antennas for your smart phone or tablet, workout clothes that monitor your fitness level, sports equipment that monitors athletes’ performance, a bandage that tells your doctor how well the tissue beneath it is healing—or even a flexible fabric cap that senses activity in the brain.

That last item is one that John Volakis, director of the ElectroScience Laboratory at Ohio State, and research scientist Asimina Kiourti are investigating. The idea is to make brain implants, which are under development to treat conditions from epilepsy to addiction, more comfortable by eliminating the need for external wiring on the patient’s body.

An April 13, 2016 Ohio State University news release by Pam Frost Gorder, which originated the news item, expands on the theme (Note: Links have been removed),

“A revolution is happening in the textile industry,” said Volakis, who is also the Roy & Lois Chope Chair Professor of Electrical Engineering at Ohio State. “We believe that functional textiles are an enabling technology for communications and sensing—and one day even medical applications like imaging and health monitoring.”

Recently, he and Kiourti refined their patented fabrication method to create prototype wearables at a fraction of the cost and in half the time as they could only two years ago. With new patents pending, they published the new results in the journal IEEE Antennas and Wireless Propagation Letters.

In Volakis’ lab, the functional textiles, also called “e-textiles,” are created in part on a typical tabletop sewing machine—the kind that fabric artisans and hobbyists might have at home. Like other modern sewing machines, it embroiders thread into fabric automatically based on a pattern loaded via a computer file. The researchers substitute the thread with fine silver metal wires that, once embroidered, feel the same as traditional thread to the touch.

“We started with a technology that is very well known—machine embroidery—and we asked, how can we functionalize embroidered shapes? How do we make them transmit signals at useful frequencies, like for cell phones or health sensors?” Volakis said. “Now, for the first time, we’ve achieved the accuracy of printed metal circuit boards, so our new goal is to take advantage of the precision to incorporate receivers and other electronic components.”

The shape of the embroidery determines the frequency of operation of the antenna or circuit, explained Kiourti.

The shape of one broadband antenna, for instance, consists of more than half a dozen interlocking geometric shapes, each a little bigger than a fingernail, that form an intricate circle a few inches across. Each piece of the circle transmits energy at a different frequency, so that they cover a broad spectrum of energies when working together—hence the “broadband” capability of the antenna for cell phone and internet access.

“Shape determines function,” she said. “And you never really know what shape you will need from one application to the next. So we wanted to have a technology that could embroider any shape for any application.”

The researchers’ initial goal, Kiourti added, was just to increase the precision of the embroidery as much as possible, which necessitated working with fine silver wire. But that created a problem, in that fine wires couldn’t provide as much surface conductivity as thick wires. So they had to find a way to work the fine thread into embroidery densities and shapes that would boost the surface conductivity and, thus, the antenna/sensor performance.

Previously, the researchers had used silver-coated polymer thread with a 0.5-mm diameter, each thread made up of 600 even finer filaments twisted together. The new threads have a 0.1-mm diameter, made with only seven filaments. Each filament is copper at the center, enameled with pure silver.

They purchase the wire by the spool at a cost of 3 cents per foot; Kiourti estimated that embroidering a single broadband antenna like the one mentioned above consumes about 10 feet of thread, for a material cost of around 30 cents per antenna. That’s 24 times less expensive than when Volakis and Kiourti created similar antennas in 2014.

In part, the cost savings comes from using less thread per embroidery. The researchers previously had to stack the thicker thread in two layers, one on top of the other, to make the antenna carry a strong enough electrical signal. But by refining the technique that she and Volakis developed, Kiourti was able to create the new, high-precision antennas in only one embroidered layer of the finer thread. So now the process takes half the time: only about 15 minutes for the broadband antenna mentioned above.

She’s also incorporated some techniques common to microelectronics manufacturing to add parts to embroidered antennas and circuits.

One prototype antenna looks like a spiral and can be embroidered into clothing to improve cell phone signal reception. Another prototype, a stretchable antenna with an integrated RFID (radio-frequency identification) chip embedded in rubber, takes the applications for the technology beyond clothing. (The latter object was part of a study done for a tire manufacturer.)

Yet another circuit resembles the Ohio State Block “O” logo, with non-conductive scarlet and gray thread embroidered among the silver wires “to demonstrate that e-textiles can be both decorative and functional,” Kiourti said.

They may be decorative, but the embroidered antennas and circuits actually work. Tests showed that an embroidered spiral antenna measuring approximately six inches across transmitted signals at frequencies of 1 to 5 GHz with near-perfect efficiency. The performance suggests that the spiral would be well-suited to broadband internet and cellular communication.

In other words, the shirt on your back could help boost the reception of the smart phone or tablet that you’re holding – or send signals to your devices with health or athletic performance data.

The work fits well with Ohio State’s role as a founding partner of the Advanced Functional Fabrics of America Institute, a national manufacturing resource center for industry and government. The new institute, which joins some 50 universities and industrial partners, was announced earlier this month by U.S. Secretary of Defense Ashton Carter.

Syscom Advanced Materials in Columbus provided the threads used in Volakis and Kiourti’s initial work. The finer threads used in this study were purchased from Swiss manufacturer Elektrisola. The research is funded by the National Science Foundation, and Ohio State will license the technology for further development.

Until then, Volakis is making out a shopping list for the next phase of the project.

“We want a bigger sewing machine,” he said.

Here’s a link to and a citation for the paper,

Fabrication of Textile Antennas and Circuits With 0.1 mm Precision by A. Kiourti, C. Lee, and J. L. Volakis.  IEEE Antennas and Wireless Propagation Letters (Volume:15 ) Page(s): 151 – 153 ISSN : 1536-1225 INSPEC Accession Number: 15785288 DOI: 10.1109/LAWP.2015.2435257 Date of Publication: 20 May 2015 Issue Date: 2016

This paper is behind a paywall.

The Canadian nano scene as seen by the OECD (Organization for Economic Cooperation and Development)

I’ve grumbled more than once or twice about the seemingly secret society that is Canada’s nanotechnology effort (especially health, safety, and environment issues) and the fact that I get most my information from Organization for Economic Cooperation and Development (OECD) documents. That said, thank you to Lynne Bergeson’s April 8, 2016 post on Nanotechnology Now for directions to the latest OECD nano document,

The Organization for Economic Cooperation and Development recently posted a March 29, 2016, report entitled Developments in Delegations on the Safety of Manufactured Nanomaterials — Tour de Table. … The report compiles information, provided by Working Party on Manufactured Nanomaterials (WPMN) participating delegations, before and after the November 2015 WPMN meeting, on current developments on the safety of manufactured nanomaterials.

It’s an international roundup that includes: Australia, Austria, Belgium, Canada, Germany, Japan, Korea, the Netherlands, Switzerland, Turkey, United Kingdom, U.S., and the European Commission (EC), as well as the Business and Industry Advisory Committee to the OECD (BIAC) and International Council on Animal Protection in OECD Programs (ICAPO).

As usual, I’m focusing on Canada. From the DEVELOPMENTS IN DELEGATIONS ON THE SAFETY OF MANUFACTURED NANOMATERIALS – TOUR DE TABLE Series on the Safety of Manufactured Nanomaterials No. 67,

CANADA
National  developments  on  human  health  and  environmental  safety  including  recommendations, definitions, or discussions related to adapting or applying existing regulatory systems or the drafting of new laws/ regulations/amendments/guidance materials A consultation document on a Proposed Approach to Address Nanoscale Forms of Substances on the Domestic  Substances  List was  published  with  a  public  comment  period  ending on  May  17,  2015. The proposed approach outlines the Government’s plan to address nanomaterials considered in commerce in Canada (on  Canada’s  public inventory).  The  proposal is a stepwise  approach to  acquire  and  evaluate information,  followed  by  any  necessary  action. A  follow-up  stakeholder  workshop  is  being  planned  to discuss  next  steps  and  possible  approaches  to prioritize  future  activities. The  consultation document  is available at: http://www.ec.gc.ca/lcpe-cepa/default.asp?lang=En&n=1D804F45-1

A mandatory information gathering survey was published on July 25, 2015. The purpose of the survey is to collect information to determine the commercialstatus of certain nanomaterials in Canada. The survey targets  206  substances  considered  to  be  potentially  in commerce  at  the  nanoscale. The  list  of  206 substances was developed using outcomes from the Canada-United States Regulatory Cooperation Council (RCC)  Nanotechnology  Initiative  to  identify nanomaterial  types. These  nanomaterial  types  were  cross-referenced  with  the Domestic  Substances  List to  develop  a  preliminary  list  of  substances  which are potentially intentionally manufactured at the nanoscale. The focus of the survey aligns with the Proposed Approach to  Address  Nanoscale  Forms  of  Substances  on  the Domestic  Substances  List (see  above)  and certain  types  of  nanomaterials  were  excluded  during the  development  of  the  list  of  substances. The information  being  requested  by  the  survey  includes substance  identification,  volumes,  and  uses.  This information will feed into the Government’s proposed approach to address nanomaterials on the Domestic Substances List. Available at: http://gazette.gc.ca/rp-pr/p1/2015/2015-07-25/html/notice-avis-eng.php

Information on:

a.risk  assessment  decisions, including  the  type  of:  (a)  nanomaterials  assessed; (b) testing recommended; and (c) outcomes of the assessment;

Four substances were notified to the program since the WPMN14 – three surface modified substances and  one  inorganic  substance.  No  actions,  including  additional  data requests,  were  taken  due  to  low expected  exposures  in  accordance  with  the New  Substances  Notifications  Regulations  (Chemicals and Polymers) (NSNR) for two of the substances.  Two of the substances notified were subject to a Significant New Activity Notice. A Significant New Activity notice is an information gathering tool used to require submission  of  additional  information  if  it  is suspected  that  a  significant  new  activity  may  result in  the substance becoming toxic under the Canadian Environmental Protection Act, 1999.

b.Proposals, or modifications to previous regulatory decisions

As  part  of  the  Government’s  Chemicals  Management Plan,  a  review  is  being  undertaken  for  all substances  which  have  been  controlled through  Significant  New  Activity  (SNAc)  notices (see  above).  As part  of  this  activity,  the  Government  is  reviewing past  nanomaterials  SNAc  notices  to  see  if  new information  is  available  to  refine  the  scope  and information  requirements.    As  a  result  of  this  review, 9 SNAc  notices  previously  in  place  for  nanomaterials have  been  rescinded.    This  work  is  ongoing,  and  a complete review of all nanomaterial SNAcs is currently planned to be completed in 2016.

Information related to good practice documents

The Canada-led,  ISO  standards project, ISO/DTR  19716 Nanotechnologies — Characterization  of cellulose  nanocrystals, [emphasis mine] initiated  in  April 2014, is  now at Committee  Draft  (CD)  3-month  ISO ballot, closing    Aug 31, 2015. Ballot comments will be addressed during JWG2 Measurement and Characterization working  group meetings  at  the 18th Plenary  of  ISO/TC229, Nanotechnologies,  being held in Edmonton, Alberta, Sep. 28 – Oct. 2, 2015.

Research   programmes   or   strategies   designed   to  address   human   health   and/   or environmental safety aspects of nanomaterials

Scientific research

Environment Canada continues to support various academic and departmental research projects. This research has to date included studying fate and effects of nanomaterials in the aquatic, sediment, soil, and air  compartments. Funding  in  fiscal  2015-16  continues  to  support  such  projects,  including  sub-surface transportation, determining key physical-chemical parameters to predict ecotoxicity, and impacts of nano-silver [silver nanoparticles]  addition  to  a  whole  lake  ecosystem [Experimental Lakes Area?]. Environment  Canada  has  also  partnered  with  the National Research  Council  of  Canada  recently  to  initiate  a project  on  the  development  of  test  methods  to identify surfaces of nanomaterials for the purposes of regulatory identification and to support risk assessments. In addition,  Environment  Canada  is  working  with  academic laboratories in  Canada  and  Germany  to  prepare guidance to support testing of nanoparticles using the OECD Test Guideline for soil column leaching.

Health  Canada  continues  its  research  efforts  to  investigate  the  effects  of  surface-modified  silica nanoparticles. The   aims   of   these   projects   are  to:   (1) study the importance of size and surface functionalization;  and  (2)  provide a genotoxic profile and  to  identify  mechanistic  relationships  of  particle properties  to  elicited  toxic  responses.  A manuscript reporting  the in  vitro genotoxic,  cytotoxic and transcriptomic  responses  following  exposure  to  silica  nanoparticles  has  recently  been  submitted to  a  peer reviewed journal and is currently undergoing review. Additional manuscripts reporting the toxicity results obtained to date are in preparation.

Information on public/stakeholder consultations;

A consultation document on a Proposed Approach to Address Nanoscale Forms of Substances on the Domestic  Substances  List was  published  with a  public  comment  period ending  on May  17,  2015  (see Question  1).  Comments  were  received  from approximately  20  stakeholders  representing  industry and industry  associations,  as  well  as  non-governmental  organizations. These  comments  will  inform  decision making to address nanomaterials in commerce in Canada.

Information on research or strategies on life cycle aspects of nanomaterials

Canada, along with Government agencies in the United States, Non-Governmental Organizations and Industry,  is  engaged  in  a  project  to  look  at releases  of  nanomaterials  from  industrial  consumer  matrices (e.g., coatings). The objectives of the NanoRelease Consumer Products project are to develop protocols or
methods (validated  through  interlaboratory  testing) to  measure  releases  of  nanomaterials  from  solid matrices as a result of expected uses along the material life cycle for consumer products that contain the nanomaterials. The  project  is  currently  in  the  advanced  stages  of Phase  3  (Interlaboratory  Studies).  The objectives of Phase 3 of the project are to develop robust methods for producing and collecting samples of CNT-epoxy  and  CNT-rubber  materials  under  abrasion  and  weathering scenarios,  and  to  detect  and quantify, to the extent possible, CNT release fractions. Selected laboratories in the US, Canada, Korea and the European Community are finalising the generation and analysis of sanding and weathering samples and the    results    are    being    collected    in    a   data    hub    for    further    interpretation    and    analysis.

Additional details about the project can be found at the project website: http://www.ilsi.org/ResearchFoundation/RSIA/Pages/NanoRelease1.aspx

Under the OECD Working Party on Resource Productivity and Waste (WPRPW), the expert group on waste containing nanomaterials has developed four reflection papers on the fate of nanomaterials in waste treatment  operations.  Canada  prepared the  paper  on  the  fate  of  nanomaterials in  landfills;  Switzerland on the  recycling  of  waste  containing  nanomaterials;  Germany  on  the  incineration  of  waste  containing nanomaterials;  and  France  on  nanomaterials  in wastewater  treatment.  The  purpose  of  these  papers is to provide  an  overview  of  the  existing  knowledge  on the  behaviour  of  nanomaterials  during  disposal operations and identify the information gaps. At the fourth meeting of the WPRPW that took place on 12-14 November 2013, three of the four reflection papers were considered by members. Canada’s paper was presented and discussed at the fifth meeting of the WPRPRW that took place on 8-10 December 2014. The four  papers  were  declassified  by  EPOC  in  June  2015, and  an  introductory  chapter  was  prepared  to  draw these  papers  together. The introductory  chapter  and accompanying  papers  will  be  published in  Fall  2015. At  the sixth  meeting  of  the  WPRPW  in  June – July  2015,  the  Secretariat  presented  a  proposal  for an information-sharing  platform  that  would  allow  delegates  to  share research  and  documents  related  to nanomaterials. During a trial phase, delegates will be asked to use the platform and provide feedback on its use at the next meeting of the WPRPW in December 2015. This information-sharing platform will also be accessible to delegates of the WPMN.

Information related to exposure measurement and exposure mitigation.

Canada and the Netherlands are co-leading a project on metal impurities in carbon nanotubes. A final version  of  the  report  is  expected  to  be ready for WPMN16. All  research has  been completed (e.g. all components are published or in press and there was a presentation by Pat Rasmussen to SG-08 at the Face-to-Face Meeting in Seoul June 2015). The first draft will be submitted to the SG-08 secretariat in autumn 2015. Revisions  will  be  based  on  early  feedback  from  SG-08  participants.  The  next  steps  depend  on  this feedback and amount of revision required.

Information on past, current or future activities on nanotechnologies that are being done in co-operation with non-OECD countries.

A webinar between ECHA [European Chemicals Agency], the US EPA [Environmental Protection Agency] and Canada was hosted by Canada on April 16, 2015. These are  regularly  scheduled  trilateral  discussions  to keep  each  other  informed  of  activities  in  respective jurisdictions.

In  March 2015, Health  Canada  hosted  3  nanotechnology knowledge  transfer sessions  targeting Canadian  government  research  and  regulatory  communities  working  in  nanotechnology.  These  sessions were  an  opportunity  to  share  information  and perspectives  on  the  current  state  of  science supporting  the regulatory  oversight  of  nanomaterials with  Government.  Presenters  provided  detailed  outputs  from  the OECD WPMN including: updates on OECD test methods and guidance documents; overviews of physical-chemical properties, as well as their relevance to toxicological testing and risk assessment; ecotoxicity and fate   test   methods;   human   health   risk   assessment   and   alternative   testing   strategies;   and exposure measurement  and  mitigation.  Guest  speakers  included  Dr  Richard  C.  Pleus  Managing  Director  and  Director of Intertox, Inc and Dr. Vladimir Murashov Special Assistant on Nanotechnology to the Director of National Institute for Occupational Safety and Health (NIOSH).

On   March   4-5, 2015, Industry   Canada   and   NanoCanada co-sponsored  “Commercializing Nanotechnology  in  Canada”,  a  national  workshop  that brought  together  representatives  from  industry, academia and government to better align Canada’s efforts in nanotechnology.  This workshop was the first of  its  kind  in  Canada. It  also  marked  the  official  launch  of  NanoCanada (http://nanocanada.com/),  a national  initiative  that  is  bringing  together stakeholders  from  across  Canada  to  bridge  the  innovation  gap and stimulates emerging technology solutions.

It’s nice to get an update about what’s going on. Despite the fact this report was published in 2016 the future tense is used in many of the verbs depicting actions long since accomplished. Maybe this was a cut-and-paste job?

Moving on, I note the mention of the Canada-led,  ISO  standards project, ISO/DTR  19716 Nanotechnologies — Characterization  of cellulose  nanocrystals (CNC). For those not familiar with CNC, the Canadian government has invested hugely in this material derived mainly from trees, in Canada. Other countries and jurisdictions have researched nanocellulose derived from carrots, bananas, pineapples, etc.

Finally, it was interesting to find out about the existence of  NanoCanada. In looking up the Contact Us page, I noticed Marie D’Iorio’s name. D’Iorio, as far as I’m aware, is still the Executive Director for Canada’s National Institute of Nanotechnology (NINT) or here (one of the National Research Council of Canada’s institutes). I have tried many times to interview someone from the NINT (Nils Petersen, the first NINT ED and Martha Piper, a member of the advisory board) and more recently D’Iorio herself only to be be met with a resounding silence. However, there’s a new government in place, so I will try again to find out more about the NINT, and, this time, NanoCanada.

Unraveling carbyne (one-dimensional carbon)

An international group of researchers has developed a technique for producing a record-breaking length of one-dimensional carbon (carbon chain) according to an April 4, 2016 news item on Nanowerk,

Elemental carbon appears in many different modifications, including diamond, fullerenes and graphene. Their unique structural, electronic, mechanical, transport and optical properties have a broad range of applications in physics, chemistry and materials science, including composite materials, nanoscale light emitting devices and energy harvesting materials. Within the “carbon family”, only carbyne, the truly one-dimensional form of carbon, has not yet been synthesized despite having been studied for more than 50 years. Its extreme instability in ambient conditions rendered the final experimental proof of its existence elusive.

An international collaboration of researchers now succeeded in developing a novel route for the bulk production of carbon chains composed of more than 6,400 carbon atoms by using thin double-walled carbon nanotubes as protective hosts for the chains.

An April 4, 2016 University of Vienna press release (also on EurekAlert) provides another perspective on the research,

Even in its elemental form, the high bond versatility of carbon allows for many different well-known materials, including diamond and graphite. A single layer of graphite, termed graphene, can then be rolled or folded into carbon nanotubes or fullerenes, respectively. To date, Nobel prizes have been awarded for both graphene (2010) and fullerenes (1996). Although the existence of carbyne, an infinitely long carbon chain, was proposed in 1885 by Adolf von Baeyer (Nobel laureate for his overall contributions in organic chemistry, 1905), scientists have not yet been able to synthesize this material. Von Baeyer even suggested that carbyne would remain elusive as its high reactivity would always lead to its immediate destruction. Nevertheless, carbon chains of increasing length have been successfully synthesized over the last 50 years, with a record of around 100 carbon atoms (2003). This record has now been broken by more than one order of magnitude, with the demonstration of micrometer length-scale chains.

The new record

Researchers from the University of Vienna, led by Thomas Pichler, have presented a novel approach to grow and stabilize carbon chains with a record length of 6,000 carbon atoms, improving the previous record by more than one order of magnitude. They use the confined space inside a double-walled carbon nanotube as a nano-reactor to grow ultra-long carbon chains on a bulk scale. In collaboration with the groups of Kazu Suenaga at the AIST Tsukuba [National Institute of Advanced Industrial Science and Technology] in Japan, Lukas Novotny at the ETH Zürich [Swiss Federal Institute of Technology] in Switzerland and Angel Rubio at the MPI [Max Planck Institute] Hamburg in Germany and UPV/EHU [University of the Basque Country] San Sebastian in Spain, the existence of the chains has been unambiguously confirmed by using a multitude of sophisticated, complementary methods. These are temperature dependent near- and far-field Raman spectroscopy with different lasers (for the investigation of electronic and vibrational properties), high resolution transmission electron spectroscopy (for the direct observation of carbyne inside the carbon nanotubes) and x-ray scattering (for the confirmation of bulk chain growth).

The researchers present their study in the latest edition of Nature Materials. “The direct experimental proof of confined ultra-long linear carbon chains, which are more than an order of magnitude longer than the longest proven chains so far, can be seen as a promising step towards the final goal of unraveling the “holy grail” of carbon allotropes, carbyne”, explains the lead author, Lei Shi.

Application potential

Carbyne is very stable inside double-walled carbon nanotubes. This property is crucial for its eventual application in future materials and devices. According to theoretical models, carbyne’s mechanical properties exceed all known materials, outperforming both graphene and diamond. Carbyne’s electrical properties suggest novel nanoelectronic applications in quantum spin transport and magnetic semiconductors.

Here’s a link to and a citation for the paper,

Confined linear carbon chains as a route to bulk carbyne by Lei Shi, Philip Rohringer, Kazu Suenaga, Yoshiko Niimi, Jani Kotakoski, Jannik C. Meyer, Herwig Peterlik, Marius Wanko, Seymur Cahangirov, Angel Rubio, Zachary J. Lapin, Lukas Novotny, Paola Ayala, & Thomas Pichler. Nature Materials (2016) doi:10.1038/nmat4617 Published online 04 April 2016

This paper is behind a paywall.

But, there is this earlier and open access version on arXiv.org,

Confined linear carbon chains: A route to bulk carbyne
Lei Shi, Philip Rohringer, Kazu Suenaga, Yoshiko Niimi, Jani Kotakoski, Jannik C. Meyer, Herwig Peterlik, Paola Ayala, Thomas Pichler (Submitted on 17 Jul 2015 (v1), last revised 20 Jul 2015 (this version, v2))