Tag Archives: Switzerland

Bidirectional prosthetic-brain communication with light?

The possibility of not only being able to make a prosthetic that allows a tetraplegic to grab a coffee but to feel that coffee  cup with their ‘hand’ is one step closer to reality according to a Feb. 22, 2017 news item on ScienceDaily,

Since the early seventies, scientists have been developing brain-machine interfaces; the main application being the use of neural prosthesis in paralyzed patients or amputees. A prosthetic limb directly controlled by brain activity can partially recover the lost motor function. This is achieved by decoding neuronal activity recorded with electrodes and translating it into robotic movements. Such systems however have limited precision due to the absence of sensory feedback from the artificial limb. Neuroscientists at the University of Geneva (UNIGE), Switzerland, asked whether it was possible to transmit this missing sensation back to the brain by stimulating neural activity in the cortex. They discovered that not only was it possible to create an artificial sensation of neuroprosthetic movements, but that the underlying learning process occurs very rapidly. These findings, published in the scientific journal Neuron, were obtained by resorting to modern imaging and optical stimulation tools, offering an innovative alternative to the classical electrode approach.

A Feb. 22, 2017 Université de Genève press release on EurekAlert, which originated the news item, provides more detail,

Motor function is at the heart of all behavior and allows us to interact with the world. Therefore, replacing a lost limb with a robotic prosthesis is the subject of much research, yet successful outcomes are rare. Why is that? Until this moment, brain-machine interfaces are operated by relying largely on visual perception: the robotic arm is controlled by looking at it. The direct flow of information between the brain and the machine remains thus unidirectional. However, movement perception is not only based on vision but mostly on proprioception, the sensation of where the limb is located in space. “We have therefore asked whether it was possible to establish a bidirectional communication in a brain-machine interface: to simultaneously read out neural activity, translate it into prosthetic movement and reinject sensory feedback of this movement back in the brain”, explains Daniel Huber, professor in the Department of Basic Neurosciences of the Faculty of Medicine at UNIGE.

Providing artificial sensations of prosthetic movements

In contrast to invasive approaches using electrodes, Daniel Huber’s team specializes in optical techniques for imaging and stimulating brain activity. Using a method called two-photon microscopy, they routinely measure the activity of hundreds of neurons with single cell resolution. “We wanted to test whether mice could learn to control a neural prosthesis by relying uniquely on an artificial sensory feedback signal”, explains Mario Prsa, researcher at UNIGE and the first author of the study. “We imaged neural activity in the motor cortex. When the mouse activated a specific neuron, the one chosen for neuroprosthetic control, we simultaneously applied stimulation proportional to this activity to the sensory cortex using blue light”. Indeed, neurons of the sensory cortex were rendered photosensitive to this light, allowing them to be activated by a series of optical flashes and thus integrate the artificial sensory feedback signal. The mouse was rewarded upon every above-threshold activation, and 20 minutes later, once the association learned, the rodent was able to more frequently generate the correct neuronal activity.

This means that the artificial sensation was not only perceived, but that it was successfully integrated as a feedback of the prosthetic movement. In this manner, the brain-machine interface functions bidirectionally. The Geneva researchers think that the reason why this fabricated sensation is so rapidly assimilated is because it most likely taps into very basic brain functions. Feeling the position of our limbs occurs automatically, without much thought and probably reflects fundamental neural circuit mechanisms. This type of bidirectional interface might allow in the future more precisely displacing robotic arms, feeling touched objects or perceiving the necessary force to grasp them.

At present, the neuroscientists at UNIGE are examining how to produce a more efficient sensory feedback. They are currently capable of doing it for a single movement, but is it also possible to provide multiple feedback channels in parallel? This research sets the groundwork for developing a new generation of more precise, bidirectional neural prostheses.

Towards better understanding the neural mechanisms of neuroprosthetic control

By resorting to modern imaging tools, hundreds of neurons in the surrounding area could also be observed as the mouse learned the neuroprosthetic task. “We know that millions of neural connections exist. However, we discovered that the animal activated only the one neuron chosen for controlling the prosthetic action, and did not recruit any of the neighbouring neurons”, adds Daniel Huber. “This is a very interesting finding since it reveals that the brain can home in on and specifically control the activity of just one single neuron”. Researchers can potentially exploit this knowledge to not only develop more stable and precise decoding techniques, but also gain a better understanding of most basic neural circuit functions. It remains to be discovered what mechanisms are involved in routing signals to the uniquely activated neuron.

Caption: A novel optical brain-machine interface allows bidirectional communication with the brain. While a robotic arm is controlled by neuronal activity recorded with optical imaging (red laser), the position of the arm is fed back to the brain via optical microstimulation (blue laser). Credit: © Daniel Huber, UNIGE

Here’s a link to and a citation for the paper,

Rapid Integration of Artificial Sensory Feedback during Operant Conditioning of Motor Cortex Neurons by Mario Prsa, Gregorio L. Galiñanes, Daniel Huber. Neuron Volume 93, Issue 4, p929–939.e6, 22 February 2017 DOI: http://dx.doi.org/10.1016/j.neuron.2017.01.023 Open access funded by European Research Council

This paper is open access.

Imprinting fibres at the nanometric scale

Switzerland’s École Polytechnique Fédérale de Lausanne (EPFL) announces a discovery in a Jan. 24, 2017 press release (also on EurkeAlert),

Researchers at EPFL have come up with a way of imprinting nanometric patterns on the inside and outside of polymer fibers. These fibers could prove useful in guiding nerve regeneration and producing optical effects, for example, as well as in eventually creating artificial tissue and smart bandages.

Researchers at EPFL’s Laboratory of Photonic Materials and Fibre Devices, which is run by Fabien Sorin, have come up with a simple and innovative technique for drawing or imprinting complex, nanometric patterns on hollow polymer fibers. Their work has been published in Advanced Functional Materials.

The potential applications of this breakthrough are numerous. The imprinted designs could be used to impart certain optical effects on a fiber or make it water-resistant. They could also guide stem-cell growth in textured fiber channels or be used to break down the fiber at a specific location and point in time in order to release drugs as part of a smart bandage.

Stretching the fiber like molten plastic

To make their nanometric imprints, the researchers began with a technique called thermal drawing, which is the technique used to fabricate optical fibers. Thermal drawing involves engraving or imprinting millimeter-sized patterns on a preform, which is a macroscopic version of the target fiber. The imprinted preform is heated to change its viscosity, stretched like molten plastic into a long, thin fiber and then allowed to harden again. Stretching causes the pattern to shrink while maintaining its proportions and position. Yet this method has a major shortcoming: the pattern does not remain intact below the micrometer scale. “When the fiber is stretched, the surface tension of the structured polymer causes the pattern to deform and even disappear below a certain size, around several microns,” said Sorin.

To avoid this problem, the EPFL researchers came up with the idea of sandwiching the imprinted preform in a sacrificial polymer [emphasis mine]. This polymer protects the pattern during stretching by reducing the surface tension. It is discarded once the stretching is complete. Thanks to this trick, the researchers are able to apply tiny and highly complex patterns to various types of fibers. “We have achieved 300-nanometer patterns, but we could easily make them as small as several tens of nanometers,” said Sorin. This is the first time that such minute and highly complex patterns have been imprinted on flexible fiber on a very large scale. “This technique enables to achieve textures with feature sizes two order of magnitude smaller than previously reported,” said Sorin. “It could be applied to kilometers of fibers at a highly reasonable cost.”

To highlight potential applications of their achievement, the researchers teamed up with the Bertarelli Foundation Chair in Neuroprosthetic Technology, led by Stéphanie Lacour. Working in vitro, they were able to use their fibers to guide neurites from a spinal ganglion (on the spinal nerve). This was an encouraging step toward using these fibers to help nerves regenerate or to create artificial tissue.

This development could have implications in many other fields besides biology. “Fibers that are rendered water-resistant by the pattern could be used to make clothes. Or we could give the fibers special optical effects for design or detection purposes. There is also much to be done with the many new microfluidic systems out there,” said Sorin. The next step for the researchers will be to join forces with other EPFL labs on initiatives such as studying in vivo nerve regeneration. All this, thanks to the wonder of imprinted polymer fibers.

I like the term “sacrificial polymer.”

Here’s a link to and a citation for the paper,

Controlled Sub-Micrometer Hierarchical Textures Engineered in Polymeric Fibers and Microchannels via Thermal Drawing by Tung Nguyen-Dang, Alba C. de Luca, Wei Yan, Yunpeng Qu, Alexis G. Page, Marco Volpi, Tapajyoti Das Gupta, Stéphanie P. Lacour, and Fabien Sorin. Advanced Functional Materials DOI: 10.1002/adfm.201605935 Version of Record online: 24 JAN 2017

© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This paper is behind a paywall.

Developing cortical implants for future speech neural prostheses

I’m guessing that graphene will feature in these proposed cortical implants since the project leader is a member of the Graphene Flagship’s Biomedical Technologies Work Package. (For those who don’t know, the Graphene Flagship is one of two major funding initiatives each receiving funding of 1B Euros over 10 years from the European Commission as part of their FET [Future and Emerging Technologies)] Initiative.)  A Jan. 12, 2017 news item on Nanowerk announces the new project (Note: A link has been removed),

BrainCom is a FET Proactive project, funded by the European Commission with 8.35M€ [8.3 million Euros] for the next 5 years, holding its Kick-off meeting on January 12-13 at ICN2 (Catalan Institute of Nanoscience and Nanotechnology) and the UAB [ Universitat Autònoma de Barcelona]. This project, coordinated by ICREA [Catalan Institution for Research and Advanced Studies] Research Prof. Jose A. Garrido from ICN2, will permit significant advances in understanding of cortical speech networks and the development of speech rehabilitation solutions using innovative brain-computer interfaces.

A Jan. 12, 2017 ICN2 press release, which originated the news item expands on the theme (it is a bit repetitive),

More than 5 million people worldwide suffer annually from aphasia, an extremely invalidating condition in which patients lose the ability to comprehend and formulate language after brain damage or in the course of neurodegenerative disorders. Brain-computer interfaces (BCIs), enabled by forefront technologies and materials, are a promising approach to treat patients with aphasia. The principle of BCIs is to collect neural activity at its source and decode it by means of electrodes implanted directly in the brain. However, neurorehabilitation of higher cognitive functions such as language raises serious issues. The current challenge is to design neural implants that cover sufficiently large areas of the brain to allow for reliable decoding of detailed neuronal activity distributed in various brain regions that are key for language processing.

BrainCom is a FET Proactive project funded by the European Commission with 8.35M€ for the next 5 years. This interdisciplinary initiative involves 10 partners including technologists, engineers, biologists, clinicians, and ethics experts. They aim to develop a new generation of neuroprosthetic cortical devices enabling large-scale recordings and stimulation of cortical activity to study high level cognitive functions. Ultimately, the BraimCom project will seed a novel line of knowledge and technologies aimed at developing the future generation of speech neural prostheses. It will cover different levels of the value chain: from technology and engineering to basic and language neuroscience, and from preclinical research in animals to clinical studies in humans.

This recently funded project is coordinated by ICREA Prof. Jose A. Garrido, Group Leader of the Advanced Electronic Materials and Devices Group at the Institut Català de Nanociència i Nanotecnologia (Catalan Institute of Nanoscience and Nanotechnology – ICN2) and deputy leader of the Biomedical Technologies Work Package presented last year in Barcelona by the Graphene Flagship. The BrainCom Kick-Off meeting is held on January 12-13 at ICN2 and the Universitat Autònoma de Barcelona (UAB).

Recent developments show that it is possible to record cortical signals from a small region of the motor cortex and decode them to allow tetraplegic [also known as, quadriplegic] people to activate a robotic arm to perform everyday life actions. Brain-computer interfaces have also been successfully used to help tetraplegic patients unable to speak to communicate their thoughts by selecting letters on a computer screen using non-invasive electroencephalographic (EEG) recordings. The performance of such technologies can be dramatically increased using more detailed cortical neural information.

BrainCom project proposes a radically new electrocorticography technology taking advantage of unique mechanical and electrical properties of novel nanomaterials such as graphene, 2D materials and organic semiconductors.  The consortium members will fabricate ultra-flexible cortical and intracortical implants, which will be placed right on the surface of the brain, enabling high density recording and stimulation sites over a large area. This approach will allow the parallel stimulation and decoding of cortical activity with unprecedented spatial and temporal resolution.

These technologies will help to advance the basic understanding of cortical speech networks and to develop rehabilitation solutions to restore speech using innovative brain-computer paradigms. The technology innovations developed in the project will also find applications in the study of other high cognitive functions of the brain such as learning and memory, as well as other clinical applications such as epilepsy monitoring.

The BrainCom project Consortium members are:

  • Catalan Institute of Nanoscience and Nanotechnology (ICN2) – Spain (Coordinator)
  • Institute of Microelectronics of Barcelona (CNM-IMB-CSIC) – Spain
  • University Grenoble Alpes – France
  • ARMINES/ Ecole des Mines de St. Etienne – France
  • Centre Hospitalier Universitaire de Grenoble – France
  • Multichannel Systems – Germany
  • University of Geneva – Switzerland
  • University of Oxford – United Kingdom
  • Ludwig-Maximilians-Universität München – Germany
  • Wavestone – Luxembourg

There doesn’t seem to be a website for the project but there is a BrainCom webpage on the European Commission’s CORDIS (Community Research and Development Information Service) website.

Luminous electronic tiles (lumentile)

A Dec. 19, 2016 news item on Nanowerk introduces a ceramic tile that can be given a different look at the touch of a fingertip,

Using pioneering photonics technology, The ‘Luminous Electronic Tile’, or LUMENTILE, project mixes the simplicity of a plain ceramic tile with the complexity of today’s sophisticated touch screen technology, creating a light source and unparalleled interaction. All it takes is one tap to change the colour, look or mood of any room in your house.

This is the first time anyone has tried to embed electronics into ceramics or glass for a large-scale application. With the ability to play videos or display images, the tiles allow the user to turn their walls into a large ‘cinema’ screen, where each unit acts as a set of pixels of the overall display.

An undated Horizon 2020 webpage describes the ‘digital wallpaper’ in more detail,

Scientists from Italy have created ‘digital wallpaper’, allowing for a constant change in design and aesthetic controlled via a smartphone, tablet or computer.

Each Luminous Electronic Tile – or Lumentile – acts as a touch screen which can change colour, pattern or light intensity, play videos or display images.

If numerous tiles are arranged together, they can create a ‘cinema’ screen with each tile acting as a set of pixels for the overall display.

The combination of ceramic, glass and electronics could allow the user to have interchangeable control of the look and design of their surroundings by tapping the tile.

Each tile can be arranged to completely or partially cover walls of a room, floor or ceiling.

However, they can also be transferred to the exterior of buildings, as either flat or curved tiles to fit around columns or uneven surfaces.

Project co-ordinator Professor Guido Giuliani, said: “It may sound like the stuff of James Bond but external tiles would create a ‘chameleonic skin’ or instant camouflage.

“Although we are a long way off this yet, this would allow a car or building to blend completely into its surroundings, and hence ‘disappear’.”

Although these tiles cannot be purchased yet, they hope to be available to users in two years, with mass production by the end of 2020.

Lumentile received a grant of more than €2.4m from the Horizon 2020 programme via the Photonics Public Private Partnership. Created in Italy by the Universita Degli Studi Di Pavia, the Lumentile project also has a number of European partners from Finland, Switzerland and Spain.

A combination of ceramic, glass and organic electronics, the luminous tile includes structural materials, solid-state light sources and electronic chips and can be controlled with a central computer, a smart phone or tablet. [downloaded from http://www.nanowerk.com/nanotechnology-news/newsid=45417.php]

You can find a bit more information on the Lumentile project website.

Sustainable Nanotechnologies (SUN) project draws to a close in March 2017

Two Oct. 31, 2016 news item on Nanowerk signal the impending sunset date for the European Union’s Sustainable Nanotechnologies (SUN) project. The first Oct. 31, 2016 news item on Nanowerk describes the projects latest achievements,

The results from the 3rd SUN annual meeting showed great advancement of the project. The meeting was held in Edinburgh, Scotland, UK on 4-5 October 2016 where the project partners presented the results obtained during the second reporting period of the project.

SUN is a three and a half year EU project, running from 2013 to 2017, with a budget of about €14 million. Its main goal is to evaluate the risks along the supply chain of engineered nanomaterials and incorporate the results into tools and guidelines for sustainable manufacturing.

The ultimate goal of the SUN Project is the development of an online software Decision Support System – SUNDS – aimed at estimating and managing occupational, consumer, environmental and public health risks from nanomaterials in real industrial products along their lifecycles. The SUNDS beta prototype has been released last October, 2015, and since then the main focus has been on refining the methodologies and testing them on selected case studies i.e. nano-copper oxide based wood preserving paint and nano- sized colourants for plastic car part: organic pigment and carbon black. Obtained results and open issues were discussed during the third annual meeting in order collect feedbacks from the consortium that will inform, in the next months, the implementation of the final version of the SUNDS software system, due by March 2017.

An Oct. 27, 2016 SUN project press release, which originated the news item, adds more information,

Significant interest has been payed towards the results obtained in WP2 (Lifecycle Thinking) which main objectives are to assess the environmental impacts arising from each life cycle stage of the SUN case studies (i.e. Nano-WC-Cobalt (Tungsten Carbide-cobalt) sintered ceramics, Nanocopper wood preservatives, Carbon Nano Tube (CNT) in plastics, Silicon Dioxide (SiO2) as food additive, Nano-Titanium Dioxide (TiO2) air filter system, Organic pigment in plastics and Nanosilver (Ag) in textiles), and compare them to conventional products with similar uses and functionality, in order to develop and validate criteria and guiding principles for green nano-manufacturing. Specifically, the consortium partner COLOROBBIA CONSULTING S.r.l. expressed its willingness to exploit the results obtained from the life cycle assessment analysis related to nanoTiO2 in their industrial applications.

On 6th October [2016], the discussions about the SUNDS advancement continued during a Stakeholder Workshop, where representatives from industry, regulatory and insurance sectors shared their feedback on the use of the decision support system. The recommendations collected during the workshop will be used for the further refinement and implemented in the final version of the software which will be released by March 2017.

The second Oct. 31, 2016 news item on Nanowerk led me to this Oct. 27, 2016 SUN project press release about the activities in the upcoming final months,

The project has designed its final events to serve as an effective platform to communicate the main results achieved in its course within the Nanosafety community and bridge them to a wider audience addressing the emerging risks of Key Enabling Technologies (KETs).

The series of events include the New Tools and Approaches for Nanomaterial Safety Assessment: A joint conference organized by NANOSOLUTIONS, SUN, NanoMILE, GUIDEnano and eNanoMapper to be held on 7 – 9 February 2017 in Malaga, Spain, the SUN-CaLIBRAte Stakeholders workshop to be held on 28 February – 1 March 2017 in Venice, Italy and the SRA Policy Forum: Risk Governance for Key Enabling Technologies to be held on 1- 3 March in Venice, Italy.

Jointly organized by the Society for Risk Analysis (SRA) and the SUN Project, the SRA Policy Forum will address current efforts put towards refining the risk governance of emerging technologies through the integration of traditional risk analytic tools alongside considerations of social and economic concerns. The parallel sessions will be organized in 4 tracks:  Risk analysis of engineered nanomaterials along product lifecycle, Risks and benefits of emerging technologies used in medical applications, Challenges of governing SynBio and Biotech, and Methods and tools for risk governance.

The SRA Policy Forum has announced its speakers and preliminary Programme. Confirmed speakers include:

  • Keld Alstrup Jensen (National Research Centre for the Working Environment, Denmark)
  • Elke Anklam (European Commission, Belgium)
  • Adam Arkin (University of California, Berkeley, USA)
  • Phil Demokritou (Harvard University, USA)
  • Gerard Escher (École polytechnique fédérale de Lausanne, Switzerland)
  • Lisa Friedersdor (National Nanotechnology Initiative, USA)
  • James Lambert (President, Society for Risk Analysis, USA)
  • Andre Nel (The University of California, Los Angeles, USA)
  • Bernd Nowack (EMPA, Switzerland)
  • Ortwin Renn (University of Stuttgart, Germany)
  • Vicki Stone (Heriot-Watt University, UK)
  • Theo Vermeire (National Institute for Public Health and the Environment (RIVM), Netherlands)
  • Tom van Teunenbroek (Ministry of Infrastructure and Environment, The Netherlands)
  • Wendel Wohlleben (BASF, Germany)

The New Tools and Approaches for Nanomaterial Safety Assessment (NMSA) conference aims at presenting the main results achieved in the course of the organizing projects fostering a discussion about their impact in the nanosafety field and possibilities for future research programmes.  The conference welcomes consortium partners, as well as representatives from other EU projects, industry, government, civil society and media. Accordingly, the conference topics include: Hazard assessment along the life cycle of nano-enabled products, Exposure assessment along the life cycle of nano-enabled products, Risk assessment & management, Systems biology approaches in nanosafety, Categorization & grouping of nanomaterials, Nanosafety infrastructure, Safe by design. The NMSA conference key note speakers include:

  • Harri Alenius (University of Helsinki, Finland,)
  • Antonio Marcomini (Ca’ Foscari University of Venice, Italy)
  • Wendel Wohlleben (BASF, Germany)
  • Danail Hristozov (Ca’ Foscari University of Venice, Italy)
  • Eva Valsami-Jones (University of Birmingham, UK)
  • Socorro Vázquez-Campos (LEITAT Technolоgical Center, Spain)
  • Barry Hardy (Douglas Connect GmbH, Switzerland)
  • Egon Willighagen (Maastricht University, Netherlands)
  • Nina Jeliazkova (IDEAconsult Ltd., Bulgaria)
  • Haralambos Sarimveis (The National Technical University of Athens, Greece)

During the SUN-caLIBRAte Stakeholder workshop the final version of the SUN user-friendly, software-based Decision Support System (SUNDS) for managing the environmental, economic and social impacts of nanotechnologies will be presented and discussed with its end users: industries, regulators and insurance sector representatives. The results from the discussion will be used as a foundation of the development of the caLIBRAte’s Risk Governance framework for assessment and management of human and environmental risks of MN and MN-enabled products.

The SRA Policy Forum: Risk Governance for Key Enabling Technologies and the New Tools and Approaches for Nanomaterial Safety Assessment conference are now open for registration. Abstracts for the SRA Policy Forum can be submitted till 15th November 2016.
For further information go to:
www.sra.org/riskgovernanceforum2017
http://www.nmsaconference.eu/

There you have it.

Atomic force microscope with nanowire sensors

Measuring the size and direction of forces may become reality with a nanotechnology-enabled atomic force microscope designed by Swiss scientists, according to an Oct. 17, 2016 news item on phys.org,

A new type of atomic force microscope (AFM) uses nanowires as tiny sensors. Unlike standard AFM, the device with a nanowire sensor enables measurements of both the size and direction of forces. Physicists at the University of Basel and at the EPF Lausanne have described these results in the recent issue of Nature Nanotechnology.

A nanowire sensor measures size and direction of forces (Image: University of Basel, Department of Physics)

A nanowire sensor measures size and direction of forces (Image: University of Basel, Department of Physics)

An Oct. 17, 2016 University of Basel press release (also on EurekAlert), which originated the news item, expands on the theme,

Nanowires are extremely tiny filamentary crystals which are built-up molecule by molecule from various materials and which are now being very actively studied by scientists all around the world because of their exceptional properties.

The wires normally have a diameter of 100 nanometers and therefore possess only about one thousandth of a hair thickness. Because of this tiny dimension, they have a very large surface in comparison to their volume. This fact, their small mass and flawless crystal lattice make them very attractive in a variety of nanometer-scale sensing applications, including as sensors of biological and chemical samples, and as pressure or charge sensors.

Measurement of direction and size

The team of Argovia Professor Martino Poggio from the Swiss Nanoscience Institute (SNI) and the Department of Physics at the University of Basel has now demonstrated that nanowires can also be used as force sensors in atomic force microscopes. Based on their special mechanical properties, nanowires vibrate along two perpendicular axes at nearly the same frequency. When they are integrated into an AFM, the researchers can measure changes in the perpendicular vibrations caused by different forces. Essentially, they use the nanowires like tiny mechanical compasses that point out both the direction and size of the surrounding forces.

Image of the two-dimensional force field

The scientists from Basel describe how they imaged a patterned sample surface using a nanowire sensor. Together with colleagues from the EPF Lausanne, who grew the nanowires, they mapped the two-dimensional force field above the sample surface using their nanowire “compass”. As a proof-of-principle, they also mapped out test force fields produced by tiny electrodes.

The most challenging technical aspect of the experiments was the realization of an apparatus that could simultaneously scan a nanowire above a surface and monitor its vibration along two perpendicular directions. With their study, the scientists have demonstrated a new type of AFM that could extend the technique’s numerous applications even further.

AFM – today widely used

The development of AFM 30 years ago was honored with the conferment of the Kavli-Prize [2016 Kavli Prize in Nanoscience] beginning of September this year. Professor Christoph Gerber of the SNI and Department of Physics at the University of Basel is one of the awardees, who has substantially contributed to the wide use of AFM in different fields, including solid-state physics, materials science, biology, and medicine.

The various different types of AFM are most often carried out using cantilevers made from crystalline Si as the mechanical sensor. “Moving to much smaller nanowire sensors may now allow for even further improvements on an already amazingly successful technique”, Martino Poggio comments his approach.

I featured an interview article with Christoph Gerber and Gerd Binnig about their shared Kavli prize and about inventing the AFM in a Sept. 20, 2016 posting.

As for the latest innovation, here’s a link to and a citation for the paper,

Vectorial scanning force microscopy using a nanowire sensor by Nicola Rossi, Floris R. Braakman, Davide Cadeddu, Denis Vasyukov, Gözde Tütüncüoglu, Anna Fontcuberta i Morral, & Martino Poggio. Nature Nanotechnology (2016) doi:10.1038/nnano.2016.189 Published online 17 October 2016

This paper is behind a paywall.

Tiny sensors produced by nanoscale 3D printing could lead to new generation of atomic force microscopes

A Sept. 26, 2016 news item on Nanowerk features research into producing smaller sensors for atomic force microscopes (AFMs) to achieve greater sensitivity,

Tiny sensors made through nanoscale 3D printing may be the basis for the next generation of atomic force microscopes. These nanosensors can enhance the microscopes’ sensitivity and detection speed by miniaturizing their detection component up to 100 times. The sensors were used in a real-world application for the first time at EPFL, and the results are published in Nature Communications.

A Sept. 26, 2016 École Polytechnique Fédérale de Lausanne (EPFL; Switzerland) press release by Laure-Anne Pessina, which originated the news item, expands on the theme (Note: A link has been removed),

Atomic force microscopy is based on powerful technology that works a little like a miniature turntable. A tiny cantilever with a nanometric tip passes over a sample and traces its relief, atom by atom. The tip’s infinitesimal up-and-down movements are picked up by a sensor so that the sample’s topography can be determined. (…)

One way to improve atomic force microscopes is to miniaturize the cantilever, as this will reduce inertia, increase sensitivity, and speed up detection. Researchers at EPFL’s Laboratory for Bio- and Nano-Instrumentation achieved this by equipping the cantilever with a 5-nanometer thick sensor made with a nanoscale 3D-printing technique. “Using our method, the cantilever can be 100 times smaller,” says Georg Fantner, the lab’s director.

Electrons that jump over obstacles

The nanometric tip’s up-and-down movements can be measured through the deformation of the sensor placed at the fixed end of the cantilever. But because the researchers were dealing with minute movements – smaller than an atom – they had to pull a trick out of their hat.

Together with Michael Huth’s lab at Goethe Universität at Frankfurt am Main, they developed a sensor made up of highly conductive platinum nanoparticles surrounded by an insulating carbon matrix. Under normal conditions, the carbon isolates the electrons. But at the nano-scale, a quantum effect comes into play: some electrons jump through the insulating material and travel from one nanoparticle to the next. “It’s sort of like if people walking on a path came up against a wall and only the courageous few managed to climb over it,” said Fantner.

When the shape of the sensor changes, the nanoparticles move further away from each other and the electrons jump between them less frequently. Changes in the current thus reveal the deformation of the sensor and the composition of the sample.

Tailor-made sensors

The researchers’ real feat was in finding a way to produce these sensors in nanoscale dimensions while carefully controlling their structure and, by extension, their properties. “In a vacuum, we distribute a precursor gas containing platinum and carbon atoms over a substrate. Then we apply an electron beam. The platinum atoms gather and form nanoparticles, and the carbon atoms naturally form a matrix around them,” said Maja Dukic, the article’s lead author. “By repeating this process, we can build sensors with any thickness and shape we want. We have proven that we could build these sensors and that they work on existing infrastructures. Our technique can now be used for broader applications, ranging from biosensors, ABS sensors for cars, to touch sensors on flexible membranes in prosthetics and artificial skin.”

Here’s a link to and a citation for the paper,

Direct-write nanoscale printing of nanogranular tunnelling strain sensors for sub-micrometre cantilevers by Maja Dukic, Marcel Winhold, Christian H. Schwalb, Jonathan D. Adams, Vladimir Stavrov, Michael Huth, & Georg E. Fantner. Nature Communications 7, Article number: 12487 doi:10.1038/ncomms12487 Published  26 September 2016

This is an open access paper.

Windows in Swiss trains are about to combine mobile reception and thermal insulation

A Sept. 2, 2016 news item on Nanowerk announces a whole new kind of train window,

EPFL [École polytechnique fédérale de Lausanne; Switzerland] researchers have developed a type of glass that offers excellent energy efficiency and lets mobile telephone signals through. And by teaming up with Swiss manufacturers, they have produced innovative windows. Railway company BLS is about to install them on some of its trains in order to improve energy efficiency.

An Aug. 26, 2016 EPFL press release, by Anne-Muriel Brouet, which originated the news item,

Train travel may be fast, but mobile connectivity onboard often lags behind. This is because the modern train car is a metal box that blocks out microwaves – in physics, this is called a Faraday cage. Even the windows contain an ultra-thin metal coating to improve thermal insulation. But EPFL researchers, working with manufacturing partners, have developed a new type of window that guarantees a comfortable temperature for passengers while at the same time letting mobile phone signals through.

In the rail industry, energy use is critical: around one third of the energy consumed by trains goes into providing heating and air conditioning in the train cars. And around 3% of this escapes through the windows. Double-glazed windows with an ultra-thin metal coating increase energy efficiency by a factor of four compared with untreated windows.

But the problem is that the metal sharply weakens the telecommunication signals. The solution that mobile phone operators and railway companies have used until now consists of placing signal boosters – or repeaters – in the trains. But they are expensive to install and maintain and have to be replaced regularly to keep pace with rapidly changing technologies. And each repeater consumes electricity.

A laser-scribed coating

Andreas Schüler, from EPFL’s Nanotechnology for Solar Energy Conversion Group, had another idea: “A metal coating that reflects heat waves (which are micrometric in size) but lets through both visible light (which is nanometric in size) and the electromagnetic waves of mobile phones (microwaves, which are centimetric in size).” But how is this done? “We breach the Faraday cage by modifying the metal coating with a special laser treatment. The windows then let the signals through,” said Schüler, a specialist in the optical and electronic properties of ultra-thin coatings.

To do this, a special structure is scribed into the metal coating with the aid of a high-precision laser. No more than 2.5% of the surface area of the metal coating is ablated by laser scribing. The resulting pattern is nearly invisible to the naked eye and does not affect the window’s insulating properties.

A manufacturing partnership pays off

Initial laboratory tests were extremely convincing. Several manufacturing partners were brought into the team in order to apply the method on a large scale. Thanks to the skills of glassmaker AGC Verres Industriels and the expertise of Class4Laser, prototype glass samples were produced and tested. “Measurements taken by experts from the University of Applied Sciences and Arts of Southern Switzerland (SUPSI) have demonstrated that this works,” said Schüler.

Energy savings for BLS

But the innovative glass needed to prove its mettle under real-life conditions. BLS was enthusiastic about testing the new windows as part of ongoing studies aimed at improving the energy efficiency of its trains. The first full-size windows were produced in the AGC Verres Industriels workshop and installed throughout a NINA-type self-propelled regional train.

The field tests met the partners’ expectations. Swisscom and SUPSI tested the efficacy of the new windows, both in BLS’s workshops and on the Bern-Thun train line. “Mobile reception is just as good in the train through laser-treated insulating glass as it is through ordinary glass,” said Schüler.

As a result, BLS has decided to install the new windows in most of its 36 NINA regional trains, replacing the old, non-insulating windows. Installation will begin in September 2016 as part of the company’s train modernization program. “Our commitment will help bring to market an innovative product designed to improve the energy efficiency of trains without compromising mobile reception for passengers,” said Quentin Sauvagnat, NINA fleet manager at BLS. Thanks to this product, those expensive signal repeaters will no longer be needed.

Are frequency-selective buildings next?

This proven and developed technology could be applied to buildings next. This is because, according to Schüler, “some glass buildings also act like Faraday cages. And as the internet of things continues to grow, there is a real interest in improving the properties of building materials that allow mobile signals through. More broadly, by making materials more frequency-selective, we could, for example, imagine a building that lets electromagnetic waves through but blocks Wi-Fi waves, thus enhancing corporate security.”

I have a friend who may find this train window innovation quite handy. As for frequency selective buildings, I imagine that would open up many possibilities for hackers.

Innovation and two Canadian universities

I have two news bits and both concern the Canadian universities, the University of British Columbia (UBC) and the University of Toronto (UofT).

Creative Destruction Lab – West

First, the Creative Destruction Lab, a technology commercialization effort based at UofT’s Rotman School of Management, is opening an office in the west according to a Sept. 28, 2016 UBC media release (received via email; Note: Links have been removed; this is a long media release which interestingly does not mention Joseph Schumpeter the man who developed the economic theory which he called: creative destruction),

The UBC Sauder School of Business is launching the Western Canadian version of the Creative Destruction Lab, a successful seed-stage program based at UofT’s Rotman School of Management, to help high-technology ventures driven by university research maximize their commercial impact and benefit to society.

“Creative Destruction Lab – West will provide a much-needed support system to ensure innovations formulated on British Columbia campuses can access the funding they need to scale up and grow in-province,” said Robert Helsley, Dean of the UBC Sauder School of Business. “The success our partners at Rotman have had in helping commercialize the scientific breakthroughs of Canadian talent is remarkable and is exactly what we plan to replicate at UBC Sauder.”

Between 2012 and 2016, companies from CDL’s first four years generated over $800 million in equity value. It has supported a long line of emerging startups, including computer-human interface company Thalmic Labs, which announced nearly USD $120 million in funding on September 19, one of the largest Series B financings in Canadian history.

Focusing on massively scalable high-tech startups, CDL-West will provide coaching from world-leading entrepreneurs, support from dedicated business and science faculty, and access to venture capital. While some of the ventures will originate at UBC, CDL-West will also serve the entire province and extended western region by welcoming ventures from other universities. The program will closely align with existing entrepreneurship programs across UBC, including, e@UBC and HATCH, and actively work with the BC Tech Association [also known as the BC Technology Industry Association] and other partners to offer a critical next step in the venture creation process.

“We created a model for tech venture creation that keeps startups focused on their essential business challenges and dedicated to solving them with world-class support,” said CDL Founder Ajay Agrawal, a professor at the Rotman School of Management and UBC PhD alumnus.

“By partnering with UBC Sauder, we will magnify the impact of CDL by drawing in ventures from one of the country’s other leading research universities and B.C.’s burgeoning startup scene to further build the country’s tech sector and the opportunities for job creation it provides,” said CDL Director, Rachel Harris.

CDL uses a goal-setting model to push ventures along a path toward success. Over nine months, a collective of leading entrepreneurs with experience building and scaling technology companies – called the G7 – sets targets for ventures to hit every eight weeks, with the goal of maximizing their equity-value. Along the way ventures turn to business and technology experts for strategic guidance on how to reach goals, and draw on dedicated UBC Sauder students who apply state-of the-art business skills to help companies decide which market to enter first and how.

Ventures that fail to achieve milestones – approximately 50 per cent in past cohorts – are cut from the process. Those that reach their objectives and graduate from the program attract investment from the G7, as well as other leading venture-capital firms.

Currently being assembled, the CDL-West G7 will be comprised of entrepreneurial luminaries, including Jeff Mallett, the founding President, COO and Director of Yahoo! Inc. from 1995-2002 – a company he led to $4 billion in revenues and grew from a startup to a publicly traded company whose value reached $135 billion. He is now Managing Director of Iconica Partners and Managing Partner of Mallett Sports & Entertainment, with ventures including the San Francisco Giants, AT&T Park and Mission Rock Development, Comcast Bay Area Sports Network, the San Jose Giants, Major League Soccer, Vancouver Whitecaps FC, and a variety of other sports and online ventures.

Already bearing fruit, the Creative Destruction Lab partnership will see several UBC ventures accepted into a Machine Learning Specialist Track run by Rotman’s CDL this fall. This track is designed to create a support network for enterprises focused on artificial intelligence, a research strength at UofT and Canada more generally, which has traditionally migrated to the United States for funding and commercialization. In its second year, CDL-West will launch its own specialist track in an area of strength at UBC that will draw eastern ventures west.

“This new partnership creates the kind of high impact innovation network the Government of Canada wants to encourage,” said Brandon Lee, Canada’s Consul General in San Francisco, who works to connect Canadian innovation to customers and growth capital opportunities in Silicon Valley. “By collaborating across our universities to enhance our capacity to turn the scientific discoveries into businesses in Canada, we can further advance our nation’s global competitiveness in the knowledge-based industries.”

The Creative Destruction Lab is guided by an Advisory Board, co-chaired by Vancouver-based Haig Farris, a pioneer of the Canadian venture capitalist industry, and Bill Graham, Chancellor of Trinity College at UofT and former Canadian cabinet minister.

“By partnering with Rotman, UBC Sauder will be able to scale up its support for high-tech ventures extremely quickly and with tremendous impact,” said Paul Cubbon, Leader of CDL-West and a faculty member at UBC Sauder. “CDL-West will act as a turbo booster for ventures with great ideas, but which lack the strategic roadmap and funding to make them a reality.”

CDL-West launched its competitive application process for the first round of ventures that will begin in January 2017. Interested ventures are encouraged to submit applications via the CDL website at: www.creativedestructionlab.com

Background

UBC Technology ventures represented at media availability

Awake Labs is a wearable technology startup whose products measure and track anxiety in people with Autism Spectrum Disorder to better understand behaviour. Their first device, Reveal, monitors a wearer’s heart-rate, body temperature and sweat levels using high-tech sensors to provide insight into care and promote long term independence.

Acuva Technologies is a Vancouver-based clean technology venture focused on commercializing breakthrough UltraViolet Light Emitting Diode technology for water purification systems. Initially focused on point of use systems for boats, RVs and off grid homes in North American market, where they already have early sales, the company’s goal is to enable water purification in households in developing countries by 2018 and deploy large scale systems by 2021.

Other members of the CDL-West G7 include:

Boris Wertz: One of the top tech early-stage investors in North America and the founding partner of Version One, Wertz is also a board partner with Andreessen Horowitz. Before becoming an investor, Wertz was the Chief Operating Officer of AbeBooks.com, which sold to Amazon in 2008. He was responsible for marketing, business development, product, customer service and international operations. His deep operational experience helps him guide other entrepreneurs to start, build and scale companies.

Lisa Shields: Founder of Hyperwallet Systems Inc., Shields guided Hyperwallet from a technology startup to the leading international payments processor for business to consumer mass payouts. Prior to founding Hyperwallet, Lisa managed payments acceptance and risk management technology teams for high-volume online merchants. She was the founding director of the Wireless Innovation Society of British Columbia and is driven by the social and economic imperatives that shape global payment technologies.

Jeff Booth: Co-founder, President and CEO of Build Direct, a rapidly growing online supplier of home improvement products. Through custom and proprietary web analytics and forecasting tools, BuildDirect is reinventing and redefining how consumers can receive the best prices. BuildDirect has 12 warehouse locations across North America and is headquartered in Vancouver, BC. In 2015, Booth was awarded the BC Technology ‘Person of the Year’ Award by the BC Technology Industry Association.

Education:

CDL-west will provide a transformational experience for MBA and senior undergraduate students at UBC Sauder who will act as venture advisors. Replacing traditional classes, students learn by doing during the process of rapid equity-value creation.

Supporting venture development at UBC:

CDL-west will work closely with venture creation programs across UBC to complete the continuum of support aimed at maximizing venture value and investment. It will draw in ventures that are being or have been supported and developed in programs that span campus, including:

University Industry Liaison Office which works to enable research and innovation partnerships with industry, entrepreneurs, government and non-profit organizations.

e@UBC which provides a combination of mentorship, education, venture creation, and seed funding to support UBC students, alumni, faculty and staff.

HATCH, a UBC technology incubator which leverages the expertise of the UBC Sauder School of Business and entrepreneurship@UBC and a seasoned team of domain-specific experts to provide real-world, hands-on guidance in moving from innovative concept to successful venture.

Coast Capital Savings Innovation Hub, a program base at the UBC Sauder Centre for Social Innovation & Impact Investing focused on developing ventures with the goal of creating positive social and environmental impact.

About the Creative Destruction Lab in Toronto:

The Creative Destruction Lab leverages the Rotman School’s leading faculty and industry network as well as its location in the heart of Canada’s business capital to accelerate massively scalable, technology-based ventures that have the potential to transform our social, industrial, and economic landscape. The Lab has had a material impact on many nascent startups, including Deep Genomics, Greenlid, Atomwise, Bridgit, Kepler Communications, Nymi, NVBots, OTI Lumionics, PUSH, Thalmic Labs, Vertical.ai, Revlo, Validere, Growsumo, and VoteCompass, among others. For more information, visit www.creativedestructionlab.com

About the UBC Sauder School of Business

The UBC Sauder School of Business is committed to developing transformational and responsible business leaders for British Columbia and the world. Located in Vancouver, Canada’s gateway to the Pacific Rim, the school is distinguished for its long history of partnership and engagement in Asia, the excellence of its graduates, and the impact of its research which ranks in the top 20 globally. For more information, visit www.sauder.ubc.ca

About the Rotman School of Management

The Rotman School of Management is located in the heart of Canada’s commercial and cultural capital and is part of the University of Toronto, one of the world’s top 20 research universities. The Rotman School fosters a new way to think that enables graduates to tackle today’s global business and societal challenges. For more information, visit www.rotman.utoronto.ca.

It’s good to see a couple of successful (according to the news release) local entrepreneurs on the board although I’m somewhat puzzled by Mallett’s presence since, if memory serves, Yahoo! was not doing that well when he left in 2002. The company was an early success but utterly dwarfed by Google at some point in the early 2000s and these days, its stock (both financial and social) has continued to drift downwards. As for Mallett’s current successes, there is no mention of them.

Reuters Top 100 of the world’s most innovative universities

After reading or skimming through the CDL-West news you might think that the University of Toronto ranked higher than UBC on the Reuters list of the world’s most innovative universities. Before breaking the news about the Canadian rankings, here’s more about the list from a Sept, 28, 2016 Reuters news release (receive via email),

Stanford University, the Massachusetts Institute of Technology and Harvard University top the second annual Reuters Top 100 ranking of the world’s most innovative universities. The Reuters Top 100 ranking aims to identify the institutions doing the most to advance science, invent new technologies and help drive the global economy. Unlike other rankings that often rely entirely or in part on subjective surveys, the ranking uses proprietary data and analysis tools from the Intellectual Property & Science division of Thomson Reuters to examine a series of patent and research-related metrics, and get to the essence of what it means to be truly innovative.

In the fast-changing world of science and technology, if you’re not innovating, you’re falling behind. That’s one of the key findings of this year’s Reuters 100. The 2016 results show that big breakthroughs – even just one highly influential paper or patent – can drive a university way up the list, but when that discovery fades into the past, so does its ranking. Consistency is key, with truly innovative institutions putting out groundbreaking work year after year.

Stanford held fast to its first place ranking by consistently producing new patents and papers that influence researchers elsewhere in academia and in private industry. Researchers at the Massachusetts Institute of Technology (ranked #2) were behind some of the most important innovations of the past century, including the development of digital computers and the completion of the Human Genome Project. Harvard University (ranked #3), is the oldest institution of higher education in the United States, and has produced 47 Nobel laureates over the course of its 380-year history.

Some universities saw significant movement up the list, including, most notably, the University of Chicago, which jumped from #71 last year to #47 in 2016. Other list-climbers include the Netherlands’ Delft University of Technology (#73 to #44) and South Korea’s Sungkyunkwan University (#66 to #46).

The United States continues to dominate the list, with 46 universities in the top 100; Japan is once again the second best performing country, with nine universities. France and South Korea are tied in third, each with eight. Germany has seven ranked universities; the United Kingdom has five; Switzerland, Belgium and Israel have three; Denmark, China and Canada have two; and the Netherlands and Singapore each have one.

You can find the rankings here (scroll down about 75% of the way) and for the impatient, the University of British Columbia ranked 50th and the University of Toronto 57th.

The biggest surprise for me was that China, like Canada, had two universities on the list. I imagine that will change as China continues its quest for science and innovation dominance. Given how they tout their innovation prowess, I had one other surprise, the University of Waterloo’s absence.

Attosecond science impacts femtochemistry

An Aug. 17, 2016 news item on Nanowerk reveals the latest about attoscience and femtochemistry (Note: A link has been removed),

Attosecond Science is a new exciting frontier in contemporary physics, aimed at time-resolving the motion of electrons in atoms, molecules and solids on their natural timescale. Electronic dynamics derives from the creation and evolution of coherence between different electronic states and proceeds on sub-femtosecond timescales. In contrast, chemical dynamics involves position changes of atomic centers and functional groups and typically proceeds on a slower, femtosecond timescale inherent to nuclear motion.

Nonetheless, there are exciting ways in which chemistry can hugely benefit from the technological developments pushed forward in the vibrant field of Attosecond Science. This was exploited in the work recently published by Lorenz Drescher and coworkers (“XUV transient absorption spectroscopy of iodomethane and iodobenzene photodissociation”).

An Aug. 17, 2016 (?) Forschungsverbund Berlin press release, which originated the news item, provides more detail about the work,

Attosecond pulses are generated in the process of High Harmonic Generation (HHG), in which infrared photons are upconverted to the extreme ultraviolet (XUV) frequency domain in a highly non-linear interaction of intense coherent light and matter. The short duration of attosecond pulses implies a frequency spectrum with photon energies spanning from a few electron volts (eV) to hundreds of eV. Such broad and continuous frequency spectra are ideally suited for core shell absorption measurements in molecules.

Core shell to valence shell transitions are a unique probe of molecular structure and dynamics. Core-to-valence transitions are element specific, due to the highly localized nature of core orbitals on specific atoms. On the other hand the intramolecular local environment of specific atomic sites is encoded, since an electron is lifted from a core orbital to a hole in the valence shell, affected by chemical bonding (…). Importantly, these transitions typically correspond to very short lifetimes of only a few femtoseconds. The use of ultrashort XUV pulses hence gives a new twist to the ultrafast studies of chemistry: It allows to probe chemical dynamics, initiated by a UV pump laser pulse, from the perspective of different reporter atoms within a molecule in an XUV transient absorption experiment. This is now beginning to be explored by a number of groups around the world.

In the experiment carried out by Drescher and coworkers at the MBI, photodissociation of iodomethane (CH3I) and iodobenzene (C6H5I) was studied with time-resolved XUV transient absorption spectroscopy at the iodine pre-N4,5 edge, using femtosecond UV pump pulses and XUV probe pulses from HHG (…). For both molecules the molecular core-to-valence absorption lines were found to fade immediately, within the pump-probe time-resolution. Absorption lines converging to the atomic iodine product however emerge promptly in CH3I but are time-delayed in C6H5I. In CH3I, we interpret this observation as the creation of an instantaneous new target state for XUV absorption by the UV pump pulse, which is then subject to relaxation of the excited valence shell as the molecule dissociates. This relaxation shows in a continuous shift in energy of the emerging atomic absorption lines in CH3I, which we measured in the experiment. In contrast, the delayed appearance of the absorption lines in C6H5I is indicative of a UV created vacancy, which within the molecule is initially spatially distant from the iodine reporter atom and has to first travel intramolecular before being observed. This behaviour is attributed to the dominant π → σ* UV excitation in iodobenzene, which involves the π orbital of the phenyl moiety.

While in the current work only a simplistic independent particle model was used to rationalize the observed experimental findings, MBI with its newly created theory department provides unique opportunities for joint experimental and theory studies on XUV transient absorption of photochemical processes. This will involve a new theoretical approach developed recently by researchers from MBI together with colleagues in Canada, the UK and Switzerland, which was recently submitted as a publication.

Here’s a link to and a citation for the paper,

Communication: XUV transient absorption spectroscopy of iodomethane and iodobenzene photodissociation by L. Drescher, M. C. E. Galbraith, G. Reitsma, J. Dura, N. Zhavoronkov, S. Patchkovskii, M. J. J. Vrakking, and J. Mikosch. J. Chem. Phys. 145, 011101 (2016); http://dx.doi.org/10.1063/1.4955212

This paper appears to be open access.