Tag Archives: Switzerland

Luminous electronic tiles (lumentile)

A Dec. 19, 2016 news item on Nanowerk introduces a ceramic tile that can be given a different look at the touch of a fingertip,

Using pioneering photonics technology, The ‘Luminous Electronic Tile’, or LUMENTILE, project mixes the simplicity of a plain ceramic tile with the complexity of today’s sophisticated touch screen technology, creating a light source and unparalleled interaction. All it takes is one tap to change the colour, look or mood of any room in your house.

This is the first time anyone has tried to embed electronics into ceramics or glass for a large-scale application. With the ability to play videos or display images, the tiles allow the user to turn their walls into a large ‘cinema’ screen, where each unit acts as a set of pixels of the overall display.

An undated Horizon 2020 webpage describes the ‘digital wallpaper’ in more detail,

Scientists from Italy have created ‘digital wallpaper’, allowing for a constant change in design and aesthetic controlled via a smartphone, tablet or computer.

Each Luminous Electronic Tile – or Lumentile – acts as a touch screen which can change colour, pattern or light intensity, play videos or display images.

If numerous tiles are arranged together, they can create a ‘cinema’ screen with each tile acting as a set of pixels for the overall display.

The combination of ceramic, glass and electronics could allow the user to have interchangeable control of the look and design of their surroundings by tapping the tile.

Each tile can be arranged to completely or partially cover walls of a room, floor or ceiling.

However, they can also be transferred to the exterior of buildings, as either flat or curved tiles to fit around columns or uneven surfaces.

Project co-ordinator Professor Guido Giuliani, said: “It may sound like the stuff of James Bond but external tiles would create a ‘chameleonic skin’ or instant camouflage.

“Although we are a long way off this yet, this would allow a car or building to blend completely into its surroundings, and hence ‘disappear’.”

Although these tiles cannot be purchased yet, they hope to be available to users in two years, with mass production by the end of 2020.

Lumentile received a grant of more than €2.4m from the Horizon 2020 programme via the Photonics Public Private Partnership. Created in Italy by the Universita Degli Studi Di Pavia, the Lumentile project also has a number of European partners from Finland, Switzerland and Spain.

A combination of ceramic, glass and organic electronics, the luminous tile includes structural materials, solid-state light sources and electronic chips and can be controlled with a central computer, a smart phone or tablet. [downloaded from http://www.nanowerk.com/nanotechnology-news/newsid=45417.php]

You can find a bit more information on the Lumentile project website.

Sustainable Nanotechnologies (SUN) project draws to a close in March 2017

Two Oct. 31, 2016 news item on Nanowerk signal the impending sunset date for the European Union’s Sustainable Nanotechnologies (SUN) project. The first Oct. 31, 2016 news item on Nanowerk describes the projects latest achievements,

The results from the 3rd SUN annual meeting showed great advancement of the project. The meeting was held in Edinburgh, Scotland, UK on 4-5 October 2016 where the project partners presented the results obtained during the second reporting period of the project.

SUN is a three and a half year EU project, running from 2013 to 2017, with a budget of about €14 million. Its main goal is to evaluate the risks along the supply chain of engineered nanomaterials and incorporate the results into tools and guidelines for sustainable manufacturing.

The ultimate goal of the SUN Project is the development of an online software Decision Support System – SUNDS – aimed at estimating and managing occupational, consumer, environmental and public health risks from nanomaterials in real industrial products along their lifecycles. The SUNDS beta prototype has been released last October, 2015, and since then the main focus has been on refining the methodologies and testing them on selected case studies i.e. nano-copper oxide based wood preserving paint and nano- sized colourants for plastic car part: organic pigment and carbon black. Obtained results and open issues were discussed during the third annual meeting in order collect feedbacks from the consortium that will inform, in the next months, the implementation of the final version of the SUNDS software system, due by March 2017.

An Oct. 27, 2016 SUN project press release, which originated the news item, adds more information,

Significant interest has been payed towards the results obtained in WP2 (Lifecycle Thinking) which main objectives are to assess the environmental impacts arising from each life cycle stage of the SUN case studies (i.e. Nano-WC-Cobalt (Tungsten Carbide-cobalt) sintered ceramics, Nanocopper wood preservatives, Carbon Nano Tube (CNT) in plastics, Silicon Dioxide (SiO2) as food additive, Nano-Titanium Dioxide (TiO2) air filter system, Organic pigment in plastics and Nanosilver (Ag) in textiles), and compare them to conventional products with similar uses and functionality, in order to develop and validate criteria and guiding principles for green nano-manufacturing. Specifically, the consortium partner COLOROBBIA CONSULTING S.r.l. expressed its willingness to exploit the results obtained from the life cycle assessment analysis related to nanoTiO2 in their industrial applications.

On 6th October [2016], the discussions about the SUNDS advancement continued during a Stakeholder Workshop, where representatives from industry, regulatory and insurance sectors shared their feedback on the use of the decision support system. The recommendations collected during the workshop will be used for the further refinement and implemented in the final version of the software which will be released by March 2017.

The second Oct. 31, 2016 news item on Nanowerk led me to this Oct. 27, 2016 SUN project press release about the activities in the upcoming final months,

The project has designed its final events to serve as an effective platform to communicate the main results achieved in its course within the Nanosafety community and bridge them to a wider audience addressing the emerging risks of Key Enabling Technologies (KETs).

The series of events include the New Tools and Approaches for Nanomaterial Safety Assessment: A joint conference organized by NANOSOLUTIONS, SUN, NanoMILE, GUIDEnano and eNanoMapper to be held on 7 – 9 February 2017 in Malaga, Spain, the SUN-CaLIBRAte Stakeholders workshop to be held on 28 February – 1 March 2017 in Venice, Italy and the SRA Policy Forum: Risk Governance for Key Enabling Technologies to be held on 1- 3 March in Venice, Italy.

Jointly organized by the Society for Risk Analysis (SRA) and the SUN Project, the SRA Policy Forum will address current efforts put towards refining the risk governance of emerging technologies through the integration of traditional risk analytic tools alongside considerations of social and economic concerns. The parallel sessions will be organized in 4 tracks:  Risk analysis of engineered nanomaterials along product lifecycle, Risks and benefits of emerging technologies used in medical applications, Challenges of governing SynBio and Biotech, and Methods and tools for risk governance.

The SRA Policy Forum has announced its speakers and preliminary Programme. Confirmed speakers include:

  • Keld Alstrup Jensen (National Research Centre for the Working Environment, Denmark)
  • Elke Anklam (European Commission, Belgium)
  • Adam Arkin (University of California, Berkeley, USA)
  • Phil Demokritou (Harvard University, USA)
  • Gerard Escher (École polytechnique fédérale de Lausanne, Switzerland)
  • Lisa Friedersdor (National Nanotechnology Initiative, USA)
  • James Lambert (President, Society for Risk Analysis, USA)
  • Andre Nel (The University of California, Los Angeles, USA)
  • Bernd Nowack (EMPA, Switzerland)
  • Ortwin Renn (University of Stuttgart, Germany)
  • Vicki Stone (Heriot-Watt University, UK)
  • Theo Vermeire (National Institute for Public Health and the Environment (RIVM), Netherlands)
  • Tom van Teunenbroek (Ministry of Infrastructure and Environment, The Netherlands)
  • Wendel Wohlleben (BASF, Germany)

The New Tools and Approaches for Nanomaterial Safety Assessment (NMSA) conference aims at presenting the main results achieved in the course of the organizing projects fostering a discussion about their impact in the nanosafety field and possibilities for future research programmes.  The conference welcomes consortium partners, as well as representatives from other EU projects, industry, government, civil society and media. Accordingly, the conference topics include: Hazard assessment along the life cycle of nano-enabled products, Exposure assessment along the life cycle of nano-enabled products, Risk assessment & management, Systems biology approaches in nanosafety, Categorization & grouping of nanomaterials, Nanosafety infrastructure, Safe by design. The NMSA conference key note speakers include:

  • Harri Alenius (University of Helsinki, Finland,)
  • Antonio Marcomini (Ca’ Foscari University of Venice, Italy)
  • Wendel Wohlleben (BASF, Germany)
  • Danail Hristozov (Ca’ Foscari University of Venice, Italy)
  • Eva Valsami-Jones (University of Birmingham, UK)
  • Socorro Vázquez-Campos (LEITAT Technolоgical Center, Spain)
  • Barry Hardy (Douglas Connect GmbH, Switzerland)
  • Egon Willighagen (Maastricht University, Netherlands)
  • Nina Jeliazkova (IDEAconsult Ltd., Bulgaria)
  • Haralambos Sarimveis (The National Technical University of Athens, Greece)

During the SUN-caLIBRAte Stakeholder workshop the final version of the SUN user-friendly, software-based Decision Support System (SUNDS) for managing the environmental, economic and social impacts of nanotechnologies will be presented and discussed with its end users: industries, regulators and insurance sector representatives. The results from the discussion will be used as a foundation of the development of the caLIBRAte’s Risk Governance framework for assessment and management of human and environmental risks of MN and MN-enabled products.

The SRA Policy Forum: Risk Governance for Key Enabling Technologies and the New Tools and Approaches for Nanomaterial Safety Assessment conference are now open for registration. Abstracts for the SRA Policy Forum can be submitted till 15th November 2016.
For further information go to:
www.sra.org/riskgovernanceforum2017
http://www.nmsaconference.eu/

There you have it.

Atomic force microscope with nanowire sensors

Measuring the size and direction of forces may become reality with a nanotechnology-enabled atomic force microscope designed by Swiss scientists, according to an Oct. 17, 2016 news item on phys.org,

A new type of atomic force microscope (AFM) uses nanowires as tiny sensors. Unlike standard AFM, the device with a nanowire sensor enables measurements of both the size and direction of forces. Physicists at the University of Basel and at the EPF Lausanne have described these results in the recent issue of Nature Nanotechnology.

A nanowire sensor measures size and direction of forces (Image: University of Basel, Department of Physics)

A nanowire sensor measures size and direction of forces (Image: University of Basel, Department of Physics)

An Oct. 17, 2016 University of Basel press release (also on EurekAlert), which originated the news item, expands on the theme,

Nanowires are extremely tiny filamentary crystals which are built-up molecule by molecule from various materials and which are now being very actively studied by scientists all around the world because of their exceptional properties.

The wires normally have a diameter of 100 nanometers and therefore possess only about one thousandth of a hair thickness. Because of this tiny dimension, they have a very large surface in comparison to their volume. This fact, their small mass and flawless crystal lattice make them very attractive in a variety of nanometer-scale sensing applications, including as sensors of biological and chemical samples, and as pressure or charge sensors.

Measurement of direction and size

The team of Argovia Professor Martino Poggio from the Swiss Nanoscience Institute (SNI) and the Department of Physics at the University of Basel has now demonstrated that nanowires can also be used as force sensors in atomic force microscopes. Based on their special mechanical properties, nanowires vibrate along two perpendicular axes at nearly the same frequency. When they are integrated into an AFM, the researchers can measure changes in the perpendicular vibrations caused by different forces. Essentially, they use the nanowires like tiny mechanical compasses that point out both the direction and size of the surrounding forces.

Image of the two-dimensional force field

The scientists from Basel describe how they imaged a patterned sample surface using a nanowire sensor. Together with colleagues from the EPF Lausanne, who grew the nanowires, they mapped the two-dimensional force field above the sample surface using their nanowire “compass”. As a proof-of-principle, they also mapped out test force fields produced by tiny electrodes.

The most challenging technical aspect of the experiments was the realization of an apparatus that could simultaneously scan a nanowire above a surface and monitor its vibration along two perpendicular directions. With their study, the scientists have demonstrated a new type of AFM that could extend the technique’s numerous applications even further.

AFM – today widely used

The development of AFM 30 years ago was honored with the conferment of the Kavli-Prize [2016 Kavli Prize in Nanoscience] beginning of September this year. Professor Christoph Gerber of the SNI and Department of Physics at the University of Basel is one of the awardees, who has substantially contributed to the wide use of AFM in different fields, including solid-state physics, materials science, biology, and medicine.

The various different types of AFM are most often carried out using cantilevers made from crystalline Si as the mechanical sensor. “Moving to much smaller nanowire sensors may now allow for even further improvements on an already amazingly successful technique”, Martino Poggio comments his approach.

I featured an interview article with Christoph Gerber and Gerd Binnig about their shared Kavli prize and about inventing the AFM in a Sept. 20, 2016 posting.

As for the latest innovation, here’s a link to and a citation for the paper,

Vectorial scanning force microscopy using a nanowire sensor by Nicola Rossi, Floris R. Braakman, Davide Cadeddu, Denis Vasyukov, Gözde Tütüncüoglu, Anna Fontcuberta i Morral, & Martino Poggio. Nature Nanotechnology (2016) doi:10.1038/nnano.2016.189 Published online 17 October 2016

This paper is behind a paywall.

Tiny sensors produced by nanoscale 3D printing could lead to new generation of atomic force microscopes

A Sept. 26, 2016 news item on Nanowerk features research into producing smaller sensors for atomic force microscopes (AFMs) to achieve greater sensitivity,

Tiny sensors made through nanoscale 3D printing may be the basis for the next generation of atomic force microscopes. These nanosensors can enhance the microscopes’ sensitivity and detection speed by miniaturizing their detection component up to 100 times. The sensors were used in a real-world application for the first time at EPFL, and the results are published in Nature Communications.

A Sept. 26, 2016 École Polytechnique Fédérale de Lausanne (EPFL; Switzerland) press release by Laure-Anne Pessina, which originated the news item, expands on the theme (Note: A link has been removed),

Atomic force microscopy is based on powerful technology that works a little like a miniature turntable. A tiny cantilever with a nanometric tip passes over a sample and traces its relief, atom by atom. The tip’s infinitesimal up-and-down movements are picked up by a sensor so that the sample’s topography can be determined. (…)

One way to improve atomic force microscopes is to miniaturize the cantilever, as this will reduce inertia, increase sensitivity, and speed up detection. Researchers at EPFL’s Laboratory for Bio- and Nano-Instrumentation achieved this by equipping the cantilever with a 5-nanometer thick sensor made with a nanoscale 3D-printing technique. “Using our method, the cantilever can be 100 times smaller,” says Georg Fantner, the lab’s director.

Electrons that jump over obstacles

The nanometric tip’s up-and-down movements can be measured through the deformation of the sensor placed at the fixed end of the cantilever. But because the researchers were dealing with minute movements – smaller than an atom – they had to pull a trick out of their hat.

Together with Michael Huth’s lab at Goethe Universität at Frankfurt am Main, they developed a sensor made up of highly conductive platinum nanoparticles surrounded by an insulating carbon matrix. Under normal conditions, the carbon isolates the electrons. But at the nano-scale, a quantum effect comes into play: some electrons jump through the insulating material and travel from one nanoparticle to the next. “It’s sort of like if people walking on a path came up against a wall and only the courageous few managed to climb over it,” said Fantner.

When the shape of the sensor changes, the nanoparticles move further away from each other and the electrons jump between them less frequently. Changes in the current thus reveal the deformation of the sensor and the composition of the sample.

Tailor-made sensors

The researchers’ real feat was in finding a way to produce these sensors in nanoscale dimensions while carefully controlling their structure and, by extension, their properties. “In a vacuum, we distribute a precursor gas containing platinum and carbon atoms over a substrate. Then we apply an electron beam. The platinum atoms gather and form nanoparticles, and the carbon atoms naturally form a matrix around them,” said Maja Dukic, the article’s lead author. “By repeating this process, we can build sensors with any thickness and shape we want. We have proven that we could build these sensors and that they work on existing infrastructures. Our technique can now be used for broader applications, ranging from biosensors, ABS sensors for cars, to touch sensors on flexible membranes in prosthetics and artificial skin.”

Here’s a link to and a citation for the paper,

Direct-write nanoscale printing of nanogranular tunnelling strain sensors for sub-micrometre cantilevers by Maja Dukic, Marcel Winhold, Christian H. Schwalb, Jonathan D. Adams, Vladimir Stavrov, Michael Huth, & Georg E. Fantner. Nature Communications 7, Article number: 12487 doi:10.1038/ncomms12487 Published  26 September 2016

This is an open access paper.

Windows in Swiss trains are about to combine mobile reception and thermal insulation

A Sept. 2, 2016 news item on Nanowerk announces a whole new kind of train window,

EPFL [École polytechnique fédérale de Lausanne; Switzerland] researchers have developed a type of glass that offers excellent energy efficiency and lets mobile telephone signals through. And by teaming up with Swiss manufacturers, they have produced innovative windows. Railway company BLS is about to install them on some of its trains in order to improve energy efficiency.

An Aug. 26, 2016 EPFL press release, by Anne-Muriel Brouet, which originated the news item,

Train travel may be fast, but mobile connectivity onboard often lags behind. This is because the modern train car is a metal box that blocks out microwaves – in physics, this is called a Faraday cage. Even the windows contain an ultra-thin metal coating to improve thermal insulation. But EPFL researchers, working with manufacturing partners, have developed a new type of window that guarantees a comfortable temperature for passengers while at the same time letting mobile phone signals through.

In the rail industry, energy use is critical: around one third of the energy consumed by trains goes into providing heating and air conditioning in the train cars. And around 3% of this escapes through the windows. Double-glazed windows with an ultra-thin metal coating increase energy efficiency by a factor of four compared with untreated windows.

But the problem is that the metal sharply weakens the telecommunication signals. The solution that mobile phone operators and railway companies have used until now consists of placing signal boosters – or repeaters – in the trains. But they are expensive to install and maintain and have to be replaced regularly to keep pace with rapidly changing technologies. And each repeater consumes electricity.

A laser-scribed coating

Andreas Schüler, from EPFL’s Nanotechnology for Solar Energy Conversion Group, had another idea: “A metal coating that reflects heat waves (which are micrometric in size) but lets through both visible light (which is nanometric in size) and the electromagnetic waves of mobile phones (microwaves, which are centimetric in size).” But how is this done? “We breach the Faraday cage by modifying the metal coating with a special laser treatment. The windows then let the signals through,” said Schüler, a specialist in the optical and electronic properties of ultra-thin coatings.

To do this, a special structure is scribed into the metal coating with the aid of a high-precision laser. No more than 2.5% of the surface area of the metal coating is ablated by laser scribing. The resulting pattern is nearly invisible to the naked eye and does not affect the window’s insulating properties.

A manufacturing partnership pays off

Initial laboratory tests were extremely convincing. Several manufacturing partners were brought into the team in order to apply the method on a large scale. Thanks to the skills of glassmaker AGC Verres Industriels and the expertise of Class4Laser, prototype glass samples were produced and tested. “Measurements taken by experts from the University of Applied Sciences and Arts of Southern Switzerland (SUPSI) have demonstrated that this works,” said Schüler.

Energy savings for BLS

But the innovative glass needed to prove its mettle under real-life conditions. BLS was enthusiastic about testing the new windows as part of ongoing studies aimed at improving the energy efficiency of its trains. The first full-size windows were produced in the AGC Verres Industriels workshop and installed throughout a NINA-type self-propelled regional train.

The field tests met the partners’ expectations. Swisscom and SUPSI tested the efficacy of the new windows, both in BLS’s workshops and on the Bern-Thun train line. “Mobile reception is just as good in the train through laser-treated insulating glass as it is through ordinary glass,” said Schüler.

As a result, BLS has decided to install the new windows in most of its 36 NINA regional trains, replacing the old, non-insulating windows. Installation will begin in September 2016 as part of the company’s train modernization program. “Our commitment will help bring to market an innovative product designed to improve the energy efficiency of trains without compromising mobile reception for passengers,” said Quentin Sauvagnat, NINA fleet manager at BLS. Thanks to this product, those expensive signal repeaters will no longer be needed.

Are frequency-selective buildings next?

This proven and developed technology could be applied to buildings next. This is because, according to Schüler, “some glass buildings also act like Faraday cages. And as the internet of things continues to grow, there is a real interest in improving the properties of building materials that allow mobile signals through. More broadly, by making materials more frequency-selective, we could, for example, imagine a building that lets electromagnetic waves through but blocks Wi-Fi waves, thus enhancing corporate security.”

I have a friend who may find this train window innovation quite handy. As for frequency selective buildings, I imagine that would open up many possibilities for hackers.

Innovation and two Canadian universities

I have two news bits and both concern the Canadian universities, the University of British Columbia (UBC) and the University of Toronto (UofT).

Creative Destruction Lab – West

First, the Creative Destruction Lab, a technology commercialization effort based at UofT’s Rotman School of Management, is opening an office in the west according to a Sept. 28, 2016 UBC media release (received via email; Note: Links have been removed; this is a long media release which interestingly does not mention Joseph Schumpeter the man who developed the economic theory which he called: creative destruction),

The UBC Sauder School of Business is launching the Western Canadian version of the Creative Destruction Lab, a successful seed-stage program based at UofT’s Rotman School of Management, to help high-technology ventures driven by university research maximize their commercial impact and benefit to society.

“Creative Destruction Lab – West will provide a much-needed support system to ensure innovations formulated on British Columbia campuses can access the funding they need to scale up and grow in-province,” said Robert Helsley, Dean of the UBC Sauder School of Business. “The success our partners at Rotman have had in helping commercialize the scientific breakthroughs of Canadian talent is remarkable and is exactly what we plan to replicate at UBC Sauder.”

Between 2012 and 2016, companies from CDL’s first four years generated over $800 million in equity value. It has supported a long line of emerging startups, including computer-human interface company Thalmic Labs, which announced nearly USD $120 million in funding on September 19, one of the largest Series B financings in Canadian history.

Focusing on massively scalable high-tech startups, CDL-West will provide coaching from world-leading entrepreneurs, support from dedicated business and science faculty, and access to venture capital. While some of the ventures will originate at UBC, CDL-West will also serve the entire province and extended western region by welcoming ventures from other universities. The program will closely align with existing entrepreneurship programs across UBC, including, e@UBC and HATCH, and actively work with the BC Tech Association [also known as the BC Technology Industry Association] and other partners to offer a critical next step in the venture creation process.

“We created a model for tech venture creation that keeps startups focused on their essential business challenges and dedicated to solving them with world-class support,” said CDL Founder Ajay Agrawal, a professor at the Rotman School of Management and UBC PhD alumnus.

“By partnering with UBC Sauder, we will magnify the impact of CDL by drawing in ventures from one of the country’s other leading research universities and B.C.’s burgeoning startup scene to further build the country’s tech sector and the opportunities for job creation it provides,” said CDL Director, Rachel Harris.

CDL uses a goal-setting model to push ventures along a path toward success. Over nine months, a collective of leading entrepreneurs with experience building and scaling technology companies – called the G7 – sets targets for ventures to hit every eight weeks, with the goal of maximizing their equity-value. Along the way ventures turn to business and technology experts for strategic guidance on how to reach goals, and draw on dedicated UBC Sauder students who apply state-of the-art business skills to help companies decide which market to enter first and how.

Ventures that fail to achieve milestones – approximately 50 per cent in past cohorts – are cut from the process. Those that reach their objectives and graduate from the program attract investment from the G7, as well as other leading venture-capital firms.

Currently being assembled, the CDL-West G7 will be comprised of entrepreneurial luminaries, including Jeff Mallett, the founding President, COO and Director of Yahoo! Inc. from 1995-2002 – a company he led to $4 billion in revenues and grew from a startup to a publicly traded company whose value reached $135 billion. He is now Managing Director of Iconica Partners and Managing Partner of Mallett Sports & Entertainment, with ventures including the San Francisco Giants, AT&T Park and Mission Rock Development, Comcast Bay Area Sports Network, the San Jose Giants, Major League Soccer, Vancouver Whitecaps FC, and a variety of other sports and online ventures.

Already bearing fruit, the Creative Destruction Lab partnership will see several UBC ventures accepted into a Machine Learning Specialist Track run by Rotman’s CDL this fall. This track is designed to create a support network for enterprises focused on artificial intelligence, a research strength at UofT and Canada more generally, which has traditionally migrated to the United States for funding and commercialization. In its second year, CDL-West will launch its own specialist track in an area of strength at UBC that will draw eastern ventures west.

“This new partnership creates the kind of high impact innovation network the Government of Canada wants to encourage,” said Brandon Lee, Canada’s Consul General in San Francisco, who works to connect Canadian innovation to customers and growth capital opportunities in Silicon Valley. “By collaborating across our universities to enhance our capacity to turn the scientific discoveries into businesses in Canada, we can further advance our nation’s global competitiveness in the knowledge-based industries.”

The Creative Destruction Lab is guided by an Advisory Board, co-chaired by Vancouver-based Haig Farris, a pioneer of the Canadian venture capitalist industry, and Bill Graham, Chancellor of Trinity College at UofT and former Canadian cabinet minister.

“By partnering with Rotman, UBC Sauder will be able to scale up its support for high-tech ventures extremely quickly and with tremendous impact,” said Paul Cubbon, Leader of CDL-West and a faculty member at UBC Sauder. “CDL-West will act as a turbo booster for ventures with great ideas, but which lack the strategic roadmap and funding to make them a reality.”

CDL-West launched its competitive application process for the first round of ventures that will begin in January 2017. Interested ventures are encouraged to submit applications via the CDL website at: www.creativedestructionlab.com

Background

UBC Technology ventures represented at media availability

Awake Labs is a wearable technology startup whose products measure and track anxiety in people with Autism Spectrum Disorder to better understand behaviour. Their first device, Reveal, monitors a wearer’s heart-rate, body temperature and sweat levels using high-tech sensors to provide insight into care and promote long term independence.

Acuva Technologies is a Vancouver-based clean technology venture focused on commercializing breakthrough UltraViolet Light Emitting Diode technology for water purification systems. Initially focused on point of use systems for boats, RVs and off grid homes in North American market, where they already have early sales, the company’s goal is to enable water purification in households in developing countries by 2018 and deploy large scale systems by 2021.

Other members of the CDL-West G7 include:

Boris Wertz: One of the top tech early-stage investors in North America and the founding partner of Version One, Wertz is also a board partner with Andreessen Horowitz. Before becoming an investor, Wertz was the Chief Operating Officer of AbeBooks.com, which sold to Amazon in 2008. He was responsible for marketing, business development, product, customer service and international operations. His deep operational experience helps him guide other entrepreneurs to start, build and scale companies.

Lisa Shields: Founder of Hyperwallet Systems Inc., Shields guided Hyperwallet from a technology startup to the leading international payments processor for business to consumer mass payouts. Prior to founding Hyperwallet, Lisa managed payments acceptance and risk management technology teams for high-volume online merchants. She was the founding director of the Wireless Innovation Society of British Columbia and is driven by the social and economic imperatives that shape global payment technologies.

Jeff Booth: Co-founder, President and CEO of Build Direct, a rapidly growing online supplier of home improvement products. Through custom and proprietary web analytics and forecasting tools, BuildDirect is reinventing and redefining how consumers can receive the best prices. BuildDirect has 12 warehouse locations across North America and is headquartered in Vancouver, BC. In 2015, Booth was awarded the BC Technology ‘Person of the Year’ Award by the BC Technology Industry Association.

Education:

CDL-west will provide a transformational experience for MBA and senior undergraduate students at UBC Sauder who will act as venture advisors. Replacing traditional classes, students learn by doing during the process of rapid equity-value creation.

Supporting venture development at UBC:

CDL-west will work closely with venture creation programs across UBC to complete the continuum of support aimed at maximizing venture value and investment. It will draw in ventures that are being or have been supported and developed in programs that span campus, including:

University Industry Liaison Office which works to enable research and innovation partnerships with industry, entrepreneurs, government and non-profit organizations.

e@UBC which provides a combination of mentorship, education, venture creation, and seed funding to support UBC students, alumni, faculty and staff.

HATCH, a UBC technology incubator which leverages the expertise of the UBC Sauder School of Business and entrepreneurship@UBC and a seasoned team of domain-specific experts to provide real-world, hands-on guidance in moving from innovative concept to successful venture.

Coast Capital Savings Innovation Hub, a program base at the UBC Sauder Centre for Social Innovation & Impact Investing focused on developing ventures with the goal of creating positive social and environmental impact.

About the Creative Destruction Lab in Toronto:

The Creative Destruction Lab leverages the Rotman School’s leading faculty and industry network as well as its location in the heart of Canada’s business capital to accelerate massively scalable, technology-based ventures that have the potential to transform our social, industrial, and economic landscape. The Lab has had a material impact on many nascent startups, including Deep Genomics, Greenlid, Atomwise, Bridgit, Kepler Communications, Nymi, NVBots, OTI Lumionics, PUSH, Thalmic Labs, Vertical.ai, Revlo, Validere, Growsumo, and VoteCompass, among others. For more information, visit www.creativedestructionlab.com

About the UBC Sauder School of Business

The UBC Sauder School of Business is committed to developing transformational and responsible business leaders for British Columbia and the world. Located in Vancouver, Canada’s gateway to the Pacific Rim, the school is distinguished for its long history of partnership and engagement in Asia, the excellence of its graduates, and the impact of its research which ranks in the top 20 globally. For more information, visit www.sauder.ubc.ca

About the Rotman School of Management

The Rotman School of Management is located in the heart of Canada’s commercial and cultural capital and is part of the University of Toronto, one of the world’s top 20 research universities. The Rotman School fosters a new way to think that enables graduates to tackle today’s global business and societal challenges. For more information, visit www.rotman.utoronto.ca.

It’s good to see a couple of successful (according to the news release) local entrepreneurs on the board although I’m somewhat puzzled by Mallett’s presence since, if memory serves, Yahoo! was not doing that well when he left in 2002. The company was an early success but utterly dwarfed by Google at some point in the early 2000s and these days, its stock (both financial and social) has continued to drift downwards. As for Mallett’s current successes, there is no mention of them.

Reuters Top 100 of the world’s most innovative universities

After reading or skimming through the CDL-West news you might think that the University of Toronto ranked higher than UBC on the Reuters list of the world’s most innovative universities. Before breaking the news about the Canadian rankings, here’s more about the list from a Sept, 28, 2016 Reuters news release (receive via email),

Stanford University, the Massachusetts Institute of Technology and Harvard University top the second annual Reuters Top 100 ranking of the world’s most innovative universities. The Reuters Top 100 ranking aims to identify the institutions doing the most to advance science, invent new technologies and help drive the global economy. Unlike other rankings that often rely entirely or in part on subjective surveys, the ranking uses proprietary data and analysis tools from the Intellectual Property & Science division of Thomson Reuters to examine a series of patent and research-related metrics, and get to the essence of what it means to be truly innovative.

In the fast-changing world of science and technology, if you’re not innovating, you’re falling behind. That’s one of the key findings of this year’s Reuters 100. The 2016 results show that big breakthroughs – even just one highly influential paper or patent – can drive a university way up the list, but when that discovery fades into the past, so does its ranking. Consistency is key, with truly innovative institutions putting out groundbreaking work year after year.

Stanford held fast to its first place ranking by consistently producing new patents and papers that influence researchers elsewhere in academia and in private industry. Researchers at the Massachusetts Institute of Technology (ranked #2) were behind some of the most important innovations of the past century, including the development of digital computers and the completion of the Human Genome Project. Harvard University (ranked #3), is the oldest institution of higher education in the United States, and has produced 47 Nobel laureates over the course of its 380-year history.

Some universities saw significant movement up the list, including, most notably, the University of Chicago, which jumped from #71 last year to #47 in 2016. Other list-climbers include the Netherlands’ Delft University of Technology (#73 to #44) and South Korea’s Sungkyunkwan University (#66 to #46).

The United States continues to dominate the list, with 46 universities in the top 100; Japan is once again the second best performing country, with nine universities. France and South Korea are tied in third, each with eight. Germany has seven ranked universities; the United Kingdom has five; Switzerland, Belgium and Israel have three; Denmark, China and Canada have two; and the Netherlands and Singapore each have one.

You can find the rankings here (scroll down about 75% of the way) and for the impatient, the University of British Columbia ranked 50th and the University of Toronto 57th.

The biggest surprise for me was that China, like Canada, had two universities on the list. I imagine that will change as China continues its quest for science and innovation dominance. Given how they tout their innovation prowess, I had one other surprise, the University of Waterloo’s absence.

Attosecond science impacts femtochemistry

An Aug. 17, 2016 news item on Nanowerk reveals the latest about attoscience and femtochemistry (Note: A link has been removed),

Attosecond Science is a new exciting frontier in contemporary physics, aimed at time-resolving the motion of electrons in atoms, molecules and solids on their natural timescale. Electronic dynamics derives from the creation and evolution of coherence between different electronic states and proceeds on sub-femtosecond timescales. In contrast, chemical dynamics involves position changes of atomic centers and functional groups and typically proceeds on a slower, femtosecond timescale inherent to nuclear motion.

Nonetheless, there are exciting ways in which chemistry can hugely benefit from the technological developments pushed forward in the vibrant field of Attosecond Science. This was exploited in the work recently published by Lorenz Drescher and coworkers (“XUV transient absorption spectroscopy of iodomethane and iodobenzene photodissociation”).

An Aug. 17, 2016 (?) Forschungsverbund Berlin press release, which originated the news item, provides more detail about the work,

Attosecond pulses are generated in the process of High Harmonic Generation (HHG), in which infrared photons are upconverted to the extreme ultraviolet (XUV) frequency domain in a highly non-linear interaction of intense coherent light and matter. The short duration of attosecond pulses implies a frequency spectrum with photon energies spanning from a few electron volts (eV) to hundreds of eV. Such broad and continuous frequency spectra are ideally suited for core shell absorption measurements in molecules.

Core shell to valence shell transitions are a unique probe of molecular structure and dynamics. Core-to-valence transitions are element specific, due to the highly localized nature of core orbitals on specific atoms. On the other hand the intramolecular local environment of specific atomic sites is encoded, since an electron is lifted from a core orbital to a hole in the valence shell, affected by chemical bonding (…). Importantly, these transitions typically correspond to very short lifetimes of only a few femtoseconds. The use of ultrashort XUV pulses hence gives a new twist to the ultrafast studies of chemistry: It allows to probe chemical dynamics, initiated by a UV pump laser pulse, from the perspective of different reporter atoms within a molecule in an XUV transient absorption experiment. This is now beginning to be explored by a number of groups around the world.

In the experiment carried out by Drescher and coworkers at the MBI, photodissociation of iodomethane (CH3I) and iodobenzene (C6H5I) was studied with time-resolved XUV transient absorption spectroscopy at the iodine pre-N4,5 edge, using femtosecond UV pump pulses and XUV probe pulses from HHG (…). For both molecules the molecular core-to-valence absorption lines were found to fade immediately, within the pump-probe time-resolution. Absorption lines converging to the atomic iodine product however emerge promptly in CH3I but are time-delayed in C6H5I. In CH3I, we interpret this observation as the creation of an instantaneous new target state for XUV absorption by the UV pump pulse, which is then subject to relaxation of the excited valence shell as the molecule dissociates. This relaxation shows in a continuous shift in energy of the emerging atomic absorption lines in CH3I, which we measured in the experiment. In contrast, the delayed appearance of the absorption lines in C6H5I is indicative of a UV created vacancy, which within the molecule is initially spatially distant from the iodine reporter atom and has to first travel intramolecular before being observed. This behaviour is attributed to the dominant π → σ* UV excitation in iodobenzene, which involves the π orbital of the phenyl moiety.

While in the current work only a simplistic independent particle model was used to rationalize the observed experimental findings, MBI with its newly created theory department provides unique opportunities for joint experimental and theory studies on XUV transient absorption of photochemical processes. This will involve a new theoretical approach developed recently by researchers from MBI together with colleagues in Canada, the UK and Switzerland, which was recently submitted as a publication.

Here’s a link to and a citation for the paper,

Communication: XUV transient absorption spectroscopy of iodomethane and iodobenzene photodissociation by L. Drescher, M. C. E. Galbraith, G. Reitsma, J. Dura, N. Zhavoronkov, S. Patchkovskii, M. J. J. Vrakking, and J. Mikosch. J. Chem. Phys. 145, 011101 (2016); http://dx.doi.org/10.1063/1.4955212

This paper appears to be open access.

Georgina Lohan, Bharti Kher, and Pablo Picasso: the beauty and the beastliness of art (in Vancouver)

Georgina Lohan

Vancouver (Canada) artist Georgina Lohan’s latest show was a departure of sorts. Better known for her tableware and jewelry, her art exhibit showcased ceramic sculptures ranging in height from 16 inches to over seven feet and incorporating concepts from biology, species evolution, mythology, philosophy, sociology, and archaeology to convey imagery associated with the primordial world.

Perhaps one of the most striking elements of Lohan’s work is its beauty. This is not a quality one often sees in contemporary art. If she were fish, Lohan could be seen as swimming against the tide.

Origins II 62" x 24" Porcelain, steel 2016

Origins II 62″ x 24″ Porcelain, steel 2016 Courtesy: Georgina Lohan

Within a context that encompasses beauty and the primordial ooze, she is representing many of the disturbing themes seen in contemporary art: fragmentation, loss, destruction, and, indirectly, war.

The artist deliberately exploits the structural fragility of her pieces (four of them had to be anchored to the walls of the gallery).  From Lohan’s own writings about the show,

The repetitive nature of loss and destruction when working with a fragile medium has consolidated my tactic of collage porcelain debris as well as a consideration of the fragment as signifier for a larger totality.

The heat of the kiln is equivalent to an acceleration of time. Gravity becomes a critical force at these high temperatures and strategies of support become more and more necessary the larger and heavier the pieces become. Glazes liquefy, boil and bubble before smoothing out, colour change, the work expands and shrinks, moving and changing it molecular structure, growing crystals and other phenomena. The results can unpredictable and there is a high level of risk, but there are also those alchemical moments when base metals have turned to gold.

Sadly, the show ended Aug. 11, 2016 but Lohan has plans for future shows. You can find out more at her website.

Bharti Kher

The Vancouver Art Gallery (VAG) is showcasing UK-born, New Delhi-based artist Bharti Kher in North America’s first 20 year retrospective of her work, titled ‘Matter’, from July 9, 2016 to Oct. 10, 2016.

I saw the show on a Tuesday (Aug. 16, 2016) which features entry by donation from 5 pm. Depending on how you feel about crowds, you may want to get there early for the lineup. (The Picasso show which is also happening is quite the attraction, more about Picasso: The Artist and His Muses later in this post.

There is a lot to this show so I’m concentrating on  elements of special interest to me: the goddess sculptures, the ‘fabric pieces’, and one of the bindi pieces.

The sculptures of the women incorporating animal pelts, fragile teacups, and/or antlers fascinated me. I was particularly intrigued by ‘And all the while the benevolent slept’ (2008).

Bharti Kher's And all the while the benevolent slept, 2008 Guillaume Ziccarelli

Bharti Kher’s And all the while the benevolent slept, 2008. Credit: Guillaume Ziccarelli

Here’s what Kher is doing with this goddess according to a June 28, 2016 VAG news release,

Through her use of a particular body type or character, Kher’s sculptures make reference to iconic figures from mythology and history. And all the while the benevolent slept (2008) references Chinnamasta, an Indian goddess Kali who, in traditional iconography, holds her own detached head in her hand, blood gushing from her neck, while she stands on top of a copulating couple. Through her self-sacrifice she awakens the awareness of spiritual energy while at the same time incarnating sexual energy

Kher’s ‘Chinnamasta’ stands on a tree stump and has branches growing out of her neck rather than pouring blood. For someone from a province where forestry is a major industry, this piece lends itself to a political/ecological reading, as well as, as a reading of the feminine which is so much a part of Kher’s work. The skull does not seem wholly human.

The artist does not explain the piece beyond noting its origins in traditional Indian iconography. Here’s more about Chinnamasta from its Wikipedia entry (Note: Links have been removed),

Chhinnamasta (Sanskrit: छिन्नमस्ता, Chinnamastā, “She whose head is severed”), often spelled Chinnamasta, and also called Chhinnamastika and Prachanda Chandika, is one of the Mahavidyas, ten Tantric goddesses and a ferocious aspect of Devi, the Hindu Divine Mother. Chhinnamasta can be easily identified by her unusual iconography. The nude self-decapitated goddess, usually standing or seated on a copulating couple, holds her own severed head in one hand, a scimitar in another. Three jets of blood spurt out of her bleeding neck and are drunk by her severed head and two attendants.

Chhinnamasta is a goddess of contradictions. She symbolises both aspects of Devi: a life-giver and a life-taker. She is considered both a symbol of sexual self-control and an embodiment of sexual energy, depending upon interpretation. She represents death, temporality, and destruction as well as life, immortality, and recreation. The goddess conveys spiritual self-realization and the awakening of the kundalini – spiritual energy. The legends of Chhinnamasta emphasise her self-sacrifice – sometimes coupled with a maternal element – sexual dominance, and self-destructive fury.

In reading more about Chinnamasta, the piece grows in intrigue.

Moving on to the ‘fabric pieces, there’s this from the June 28, 2016 VAG news release,

Bharti Kher’s furniture and sari sculptures speaks to socially constructed ideals of femininity and domesticity. Any utilitarian function has been rendered useless, and instead these pieces of furniture become proxies for a body. The sari-draped chairs in Absence (2011) introduces the possibility of domestic narratives filled with mothers, daughters, wives and lovers, whose bodiless garments preserve a former presence. In The day they met (2011), vibrant and richly patterned saris are decisively placed on a staircase, effectively embalming the ritual act of sari unwrapping.

Bharti Kerr, Absence, 2011, sari, resin, wooden chair. Private Collection Courtesy of the Artist and Galerie Peerotin, Photo Guillaume Ziccarelli

Bharti Kher, Absence, 2011, sari, resin, wooden chair. Private Collection Courtesy of the Artist and Galerie Peerotin, Photo Guillaume Ziccarelli

The saris appear on various pieces of furniture and sometimes appear as twisted, long rolls that could be said to resemble snakes. The fabrics are beautiful and they call to mind Lohan’s work and also ‘women’s work’.

Now for the bindis. For anyone not familiar with bindis, there’s this from its Wikipedia entry (Note: Links have been removed),

A bindi (Hindi: बिंदी, from Sanskrit bindu, meaning “point, drop, dot or small particle”) is a red dot worn on the center of the forehead, commonly by Hindu and Jain women. The word Bindu dates back to the hymn of creation known as Nasadiya Sukta in Rig Veda.[1] Bindu is considered the point at which creation begins and may become unity. It is also described as “the sacred symbol of the cosmos in its unmanifested state”.[2][3] Bindi is a bright dot of red colour applied in the center of the forehead close to the eyebrow worn in Indian Subcontinent (particularly amongst Hindus in India, Pakistan, Bangladesh, Nepal, and Sri Lanka)[2] and Southeast Asia among Bali and Javanese Hindus. Bindi in Hinduism, Buddhism, and Jainism is associated with Ajna Chakra and Bindu[4] is known as the third eye chakra. Bindu is the point or dot around which the mandala is created, representing the universe.[3][5] Bindi has historical and cultural presence in the region of Greater India.[6][7]

The first piece you see in the Matter show is Virus VII (2016). It is comprised of bindis, blues ones rather than the traditional red, painstakingly overlapped in a spiral that extends several feet in height and width and affixed to the wall. The piece is accompanied by a wooden box with a plaque and containing sheets of blue bindis,

Matter exhibition at Vancouver Art Gallery, July 9 - Oct. 10, 2016 Bharti Kher, Virus VII, 2016, Photo: Megan Hill-Carol Vancouver Art Gallery

Matter exhibition at Vancouver Art Gallery, July 9 – Oct. 10, 2016 Bharti Kher, Virus VII, 2016, Photo: Megan Hill-Carol Vancouver Art Gallery

It is a stunning piece that almost seems to vibrate and is a fitting and sensual entry to the show.

For an alternative experience of the Kher show, there’s Robin Laurence’s July 6, 2016 preview titled: Bharti Kher’s hybrid vision merges humans with animals to address politics, sociology, and love for the Georgia Straight. Unexpectedly (for me), the first piece she sees is the heart,

The first artwork visitors will see when they enter Bharti Kher’s thoughtful and provocative exhibition at the Vancouver Art Gallery is a life-size sculpture of the heart of a blue sperm whale. The largest creature that now exists on our planet, the blue whale possesses a heart that is also the biggest in the world—the size, the artist says, of a small car. Kher’s realistic, cast-resin depiction of the organ’s two massive chambers, enormous aorta, and branching blood vessels is a work of weird grandeur.

To some, it might suggest an environmental message, a monument to a creature slaughtered by the hundreds of thousands in the 19th century and threatened in our own age by pollution and rising ocean temperatures. The artist, however, says the work is about the nature of love, and its title, An Absence of Assignable Cause, evokes the irrationality of that most vaunted and lamented emotion.

“More things have been written about love and all the ways around it,” she says. “I thought it would be interesting to talk about it using an animal as a metaphor.”

Picasso: The Artist and His Muses

Never having been a big fan of Pablo Picasso’s, I wouldn’t have made a special effort to see the VAG’s Picasso: The Artist and His Muses exhibition (June 11 – Oct. 2, 2016) but since I was already on premise for the Kher exhibit, it seemed to foolish to pass up the opportunity.

The show focuses on six women, his relationship with them, and how his art was affected by those relationships.

His most widely known images of women are those with the distorted features and extra or missing eyes and ears such as this,

Pablo Picasso Bust of a Woman (Dora Maar), 1938 oil on canvas Hirshhorn Museum and Sculpture Garden, Gift of Joseph H. Hirshhorn, 1966 © Picasso Estate/SODRAC (2016) Photo: Cathy Carver

Pablo Picasso
Bust of a Woman (Dora Maar), 1938
oil on canvas
Hirshhorn Museum and Sculpture Garden, Gift of Joseph H. Hirshhorn, 1966
© Picasso Estate/SODRAC (2016)
Photo: Cathy Carver

These images have always left me cold. Seeing them in real life didn’t make that big a difference although I hadn’t fully appreciated their vibrancy having previously seen reproductions only. I did say I’m not a fan and that is especially true of the images of women most often seen. The surprise in this show, are the naturalistic studies where one can appreciate his extraordinary technique even if one is inclined to shun his distorted women.

I mention this show only because its subject, women, has been the direct and indirect focus of this commentary. For an even more jaundiced view of this show, you can read Robin Laurence’s June 10, 2016 preview of the VAG exhibition,

Muse is such a curiously antiquated term. Divine woman breathing inspiration into the mind of the creative male? Really? Still, Picasso: The Artist and His Muses has a more visitor-friendly sound to it than “Picasso and the Women He Fucked and Painted”. Not that visitor-friendly titles are a necessity where Pablo Picasso exhibitions are concerned.

The mere name of the man—easily the most famous artist of the 20th century, whose personal myth is built as much on his prodigious womanizing as on his protean art-making—guarantees attendance. Irrespective of what’s on view. Irrespective, too, of the challenges his work might pose to contemporary critics.

Organized with Art Centre Basel in Switzerland, the Vancouver Art Gallery’s big-draw summer show includes some 60 paintings, drawings, sculptures, and prints ranging across the years 1905 to 1971. Borrowed from an international array of public and private collections, it is the most ambitious exhibition of Picasso works ever shown in Western Canada.

I recommend reading both of Laurence’s pieces before going to the exhibit.

Final words

It seems when it comes to contemporary art, beauty is transgressive. The distortions with which Picasso experimented seem to have taken root and, like bamboo, taken over. So, an artist risks being shunned if his/her works are intrinsically beautiful (Lohan). Alternatively, an artist can include it by stealth (Kher) so viewers do not experience it as the primary impression.

All of these artists’ exhibitions have in one fashion or another focused on women. Lohan’s material of choice, porcelain, referenced women’s work indirectly and resonated in a fascinating way with Kher’s teacup bearing goddess. While Lohan and Kher are interested in women’s experiences (dressing/undressing and ornamentation (Kher), women’s roles in society (Lohan), meanwhile, Picasso seems to have considered women as raw material for his work.

Could your photo be a solar cell?

Scientists at Aalto University (Finland) have found a way to print photographs that produce energy (like a solar cell does) according to a July 25, 2016 news item on Nanowerk,

Solar cells have been manufactured already for a long from inexpensive materials with different printing techniques. Especially organic solar cells and dye-sensitized solar cells are suitable for printing.

“We wanted to take the idea of printed solar cells even further, and see if their materials could be inkjet-printed as pictures and text like traditional printing inks,” tells University Lecturer Janne Halme.

A semi-transparent dye-sensitized solar cell with inkjet-printed photovoltaic portraits of the Aalto researchers (Ghufran Hashmi, Merve Özkan, Janne Halme) and a QR code that links to the original research paper. Courtesy: Aalto University

A semi-transparent dye-sensitized solar cell with inkjet-printed photovoltaic portraits of the Aalto researchers (Ghufran Hashmi, Merve Özkan, Janne Halme) and a QR code that links to the original research paper. Courtesy: Aalto University

A July 26, 2016 Aalto University press release, which originated the news item, describes the innovation in more detail,

When light is absorbed in an ordinary ink, it generates heat. A photovoltaic ink, however, coverts part of that energy to electricity. The darker the color, the more electricity is produced, because the human eye is most sensitive to that part of the solar radiation spectrum which has highest energy density. The most efficient solar cell is therefore pitch-black.

The idea of a colorful, patterned solar cell is to combine also other properties that take advantage of light on the same surface, such as visual information and graphics.

– For example, installed on a sufficiently low-power electrical device, this kind of solar cell could be part of its visual design, and at the same time produce energy for its needs, ponders Halme.

With inkjet printing, the photovoltaic dye could be printed to a shape determined by a selected image file, and the darkness and transparency of the different parts of the image could be adjusted accurately.

– The inkjet-dyed solar cells were as efficient and durable as the corresponding solar cells prepared in a traditional way. They endured more than one thousand hours of continuous light and heat stress without any signs of performance degradation, says Postdoctoral Researcher Ghufran Hashmi.

The dye and electrolyte that turned out to be best were obtained from the research group in the Swiss École Polytechnique Fédérale de Lausanne, where Dr. Hashmi worked as a visiting researcher.

– The most challenging thing was to find suitable solvent for the dye and the right jetting parameters that gave precise and uniform print quality, tells Doctoral Candidate Merve Özkan.

This puts solar cells (pun alert) in a whole new light.

Here’s a link to and a citation for the paper,

Dye-sensitized solar cells with inkjet-printed dyes by Syed Ghufran Hashmi, Merve Özkan, Janne Halme, Shaik Mohammed Zakeeruddin, Jouni Paltakari, Michael Grätzel, and Peter D. Lund. Energy Environ. Sci., 2016,9, 2453-2462 DOI: 10.1039/C6EE00826G First published online 09 Jun 2016

This paper is behind a paywall.

Osmotic power: electricity generated with water, salt and a 3-atoms-thick membrane


EPFL researchers have developed a system that generates electricity from osmosis with unparalleled efficiency. Their work, featured in “Nature”, uses seawater, fresh water, and a new type of membrane just three atoms thick.

A July 13, 2016 news item on Nanowerk highlights  research on osmotic power at École polytechnique fédérale de Lausanne (EPFL; Switzerland),

Proponents of clean energy will soon have a new source to add to their existing array of solar, wind, and hydropower: osmotic power. Or more specifically, energy generated by a natural phenomenon occurring when fresh water comes into contact with seawater through a membrane.

Researchers at EPFL’s Laboratory of Nanoscale Biology have developed an osmotic power generation system that delivers never-before-seen yields. Their innovation lies in a three atoms thick membrane used to separate the two fluids. …

A July 14, 2016 EPFL press release (also on EurekAlert but published July 13, 2016), which originated the news item, describes the research,

The concept is fairly simple. A semipermeable membrane separates two fluids with different salt concentrations. Salt ions travel through the membrane until the salt concentrations in the two fluids reach equilibrium. That phenomenon is precisely osmosis.

If the system is used with seawater and fresh water, salt ions in the seawater pass through the membrane into the fresh water until both fluids have the same salt concentration. And since an ion is simply an atom with an electrical charge, the movement of the salt ions can be harnessed to generate electricity.

A 3 atoms thick, selective membrane that does the job

EPFL’s system consists of two liquid-filled compartments separated by a thin membrane made of molybdenum disulfide. The membrane has a tiny hole, or nanopore, through which seawater ions pass into the fresh water until the two fluids’ salt concentrations are equal. As the ions pass through the nanopore, their electrons are transferred to an electrode – which is what is used to generate an electric current.

Thanks to its properties the membrane allows positively-charged ions to pass through, while pushing away most of the negatively-charged ones. That creates voltage between the two liquids as one builds up a positive charge and the other a negative charge. This voltage is what causes the current generated by the transfer of ions to flow.

“We had to first fabricate and then investigate the optimal size of the nanopore. If it’s too big, negative ions can pass through and the resulting voltage would be too low. If it’s too small, not enough ions can pass through and the current would be too weak,” said Jiandong Feng, lead author of the research.

What sets EPFL’s system apart is its membrane. In these types of systems, the current increases with a thinner membrane. And EPFL’s membrane is just a few atoms thick. The material it is made of – molybdenum disulfide – is ideal for generating an osmotic current. “This is the first time a two-dimensional material has been used for this type of application,” said Aleksandra Radenovic, head of the laboratory of Nanoscale Biology

Powering 50’000 energy-saving light bulbs with 1m2 membrane

The potential of the new system is huge. According to their calculations, a 1m2 membrane with 30% of its surface covered by nanopores should be able to produce 1MW of electricity – or enough to power 50,000 standard energy-saving light bulbs. And since molybdenum disulfide (MoS2) is easily found in nature or can be grown by chemical vapor deposition, the system could feasibly be ramped up for large-scale power generation. The major challenge in scaling-up this process is finding out how to make relatively uniform pores.

Until now, researchers have worked on a membrane with a single nanopore, in order to understand precisely what was going on. ” From an engineering perspective, single nanopore system is ideal to further our fundamental understanding of 8=-based processes and provide useful information for industry-level commercialization”, said Jiandong Feng.

The researchers were able to run a nanotransistor from the current generated by a single nanopore and thus demonstrated a self-powered nanosystem. Low-power single-layer MoS2 transistors were fabricated in collaboration with Andras Kis’ team at at EPFL, while molecular dynamics simulations were performed by collaborators at University of Illinois at Urbana–Champaign

Harnessing the potential of estuaries

EPFL’s research is part of a growing trend. For the past several years, scientists around the world have been developing systems that leverage osmotic power to create electricity. Pilot projects have sprung up in places such as Norway, the Netherlands, Japan, and the United States to generate energy at estuaries, where rivers flow into the sea. For now, the membranes used in most systems are organic and fragile, and deliver low yields. Some systems use the movement of water, rather than ions, to power turbines that in turn produce electricity.

Once the systems become more robust, osmotic power could play a major role in the generation of renewable energy. While solar panels require adequate sunlight and wind turbines adequate wind, osmotic energy can be produced just about any time of day or night – provided there’s an estuary nearby.

Here’s a link to and a citation for the paper,

Single-layer MoS2 nanopores as nanopower generators by Jiandong Feng, Michael Graf, Ke Liu, Dmitry Ovchinnikov, Dumitru Dumcenco, Mohammad Heiranian, Vishal Nandigana, Narayana R. Aluru, Andras Kis, & Aleksandra Radenovic. Nature (2016)  doi:10.1038/nature18593 Published online 13 July 2016

This paper is behind a paywall.