Tag Archives: synaptic device

Hacking the human brain with a junction-based artificial synaptic device

Earlier today I published a piece featuring Dr. Wei Lu’s work on memristors and the movement to create an artificial brain (my June 28, 2017 posting: Dr. Wei Lu and bio-inspired ‘memristor’ chips). For this posting I’m featuring a non-memristor (if I’ve properly understood the technology) type of artificial synapse. From a June 28, 2017 news item on Nanowerk,

One of the greatest challenges facing artificial intelligence development is understanding the human brain and figuring out how to mimic it.

Now, one group reports in ACS Nano (“Emulating Bilingual Synaptic Response Using a Junction-Based Artificial Synaptic Device”) that they have developed an artificial synapse capable of simulating a fundamental function of our nervous system — the release of inhibitory and stimulatory signals from the same “pre-synaptic” terminal.

Unfortunately, the American Chemical Society news release on EurekAlert, which originated the news item, doesn’t provide too much more detail,

The human nervous system is made up of over 100 trillion synapses, structures that allow neurons to pass electrical and chemical signals to one another. In mammals, these synapses can initiate and inhibit biological messages. Many synapses just relay one type of signal, whereas others can convey both types simultaneously or can switch between the two. To develop artificial intelligence systems that better mimic human learning, cognition and image recognition, researchers are imitating synapses in the lab with electronic components. Most current artificial synapses, however, are only capable of delivering one type of signal. So, Han Wang, Jing Guo and colleagues sought to create an artificial synapse that can reconfigurably send stimulatory and inhibitory signals.

The researchers developed a synaptic device that can reconfigure itself based on voltages applied at the input terminal of the device. A junction made of black phosphorus and tin selenide enables switching between the excitatory and inhibitory signals. This new device is flexible and versatile, which is highly desirable in artificial neural networks. In addition, the artificial synapses may simplify the design and functions of nervous system simulations.

Here’s how I concluded that this is not a memristor-type device (from the paper [first paragraph, final sentence]; a link and citation will follow; Note: Links have been removed)),

The conventional memristor-type [emphasis mine](14-20) and transistor-type(21-25) artificial synapses can realize synaptic functions in a single semiconductor device but lacks the ability [emphasis mine] to dynamically reconfigure between excitatory and inhibitory responses without the addition of a modulating terminal.

Here’s a link to and a citation for the paper,

Emulating Bilingual Synaptic Response Using a Junction-Based Artificial Synaptic Device by
He Tian, Xi Cao, Yujun Xie, Xiaodong Yan, Andrew Kostelec, Don DiMarzio, Cheng Chang, Li-Dong Zhao, Wei Wu, Jesse Tice, Judy J. Cha, Jing Guo, and Han Wang. ACS Nano, Article ASAP DOI: 10.1021/acsnano.7b03033 Publication Date (Web): June 28, 2017

Copyright © 2017 American Chemical Society

This paper is behind a paywall.